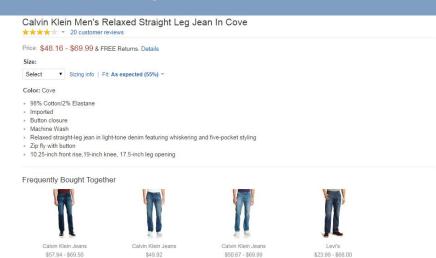
Image-based recommendations on styles and substitutes

Julian McAuley, UCSD

& Chris Targett, Qinfeng ('Javen') Shi, Anton van den Hengel, University of Adelaide

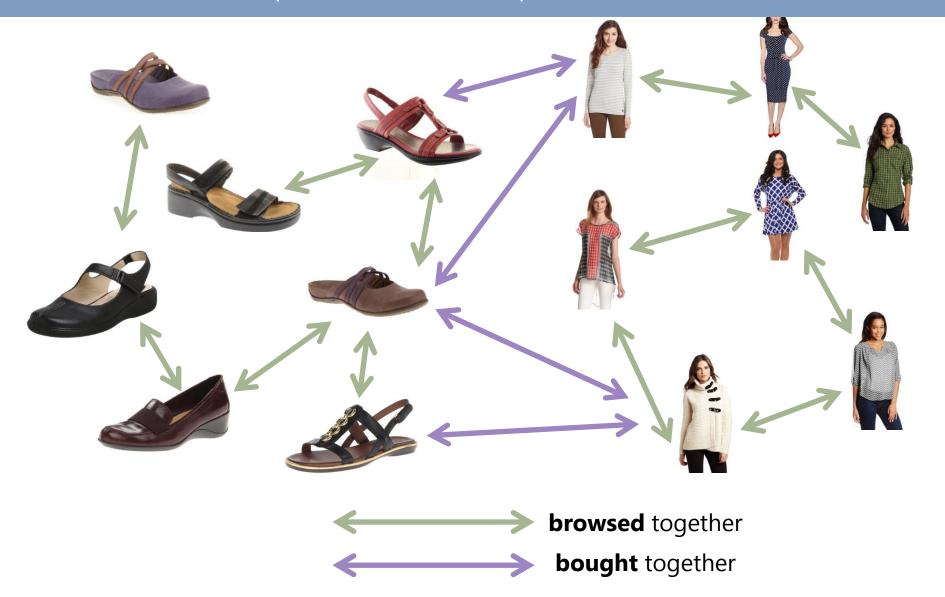
Relationships between products



Customers Who Viewed This Item Also Viewed

Customers Who Bought This Item Also Bought

Relationships between products



Modeling networks of images

Understanding product networks with **images**

Prediction: Can we estimate whether two products are likely to be purchased/browsed together?Understanding: Can we understand which products have compatible visual "styles", and use this to recommend baskets of products to people?

Relationships between products – why?

1. To understand the notions of **substitute** and **complement goods**

Relationships between products – why?

2. To recommend baskets of related items

Query:

Query:

Suggested outfit:

Suggested outfit:

Data

Amazon product network:

- thousands of categories
- 9 million **products**
- 21 million **users**
- 140 million reviews
- 300 million relationships

Data

Four types of relationship:

- 1) People who **viewed** X also **viewed** Y
- 2) People who **viewed** X eventually **bought** Y
 - 3) People who **bought** X also **bought** Y
 - 4) People **bought** X and Y **together**

Substitutes (1 and 2), and **Complements** (3 and 4)

Why might images be useful

- Visual explanations might be useful for some categories
- The image is the most important feature for many categories
 - Cold-start problems

Binary prediction task:

Given a pair of products, **x and y**, predict whether they were purchased together, or whether they were chosen randomly

$$p(x \text{ and } y \text{ are related}) \sim -d(x,y)$$

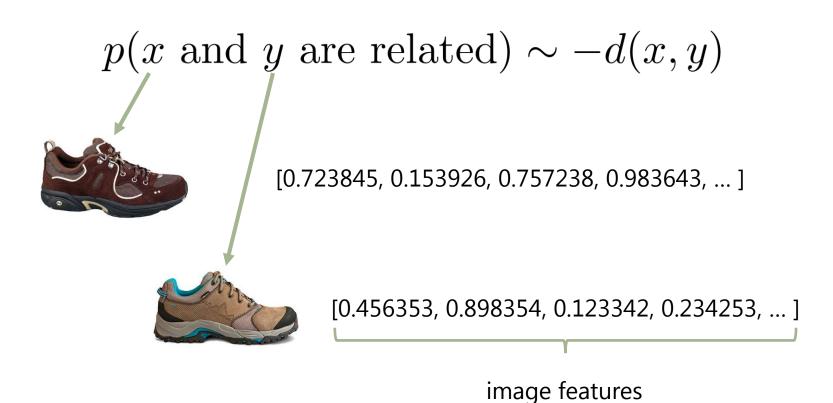
But we are not **given** a distance function: We need to **learn** the concept of similarity from data:

$$p_{\theta}(x \text{ and } y \text{ are related}) \sim -d_{\theta}(x,y)$$

Train θ by maximum likelihood:

$$\theta = \arg \max_{\theta'} \prod_{\substack{\text{edges } (x,y)}} p_{\theta}(x \text{ and } y \text{ are related})$$

$$\prod_{\substack{\text{non-edges } (x,y)}} (1 - p_{\theta}(x \text{ and } y \text{ are related}))$$



[0.723845, 0.153926, 0.757238, 0.983643, ...]

4096-dimensional image features

We used **Caffe**, a convolutional neural net trained on **ImageNet**



What are we actually learning?

How did Amazon generate their ground-truth data?

Given a product:

Let U_i be the set of users who viewed it

for every product in the corpus...

What are we actually learning?

How did Amazon generate their ground-truth data?

Given a product:

Let U_i be the set of users who viewed it

('Jaccard index') Rank products according to:

.79

Attempt 1: distance between features

Features of (image of) product *i*:

$$\mathbf{x}_i = [0.723845, 0.153926, 0.757238, 0.983643, ...]$$

Features of product *j*:

$$\mathbf{x}_j = [0.456353, 0.898354, 0.123342, 0.234253, ...]$$

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sum_k \theta_k (\mathbf{x}_{i,k} - \mathbf{x}_{j,k})^2$$

Attempt 1: distance between features

```
Features of (image of) product i: \mathbf{x}_i = [0.723845, 0.153926, 0.757238, 0.983643, ...] Features of product j: \mathbf{x}_j = [0.456353, 0.898354, 0.123342, 0.234253, ...]
```

At best we'll discover visual **similarity**, but visual relationships are more subtle

Attempt 2: Mahalanobis distance

$$d(\mathbf{x}_{i}, \mathbf{x}_{j}) = (\mathbf{x}_{i} - \mathbf{x}_{j})M(\mathbf{x}_{i} - \mathbf{x}_{j})^{T}$$

$$M = \begin{pmatrix} 0.1 & 0.2 & \cdots & 0.1 \\ 0.2 & 0.1 & & 0.6 \\ \vdots & & \ddots & \vdots \\ 0.1 & 0.6 & \cdots & 0.1 \end{pmatrix}$$
color

Attempt 2: Mahalanobis distance

$$d(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i - \mathbf{x}_j) M(\mathbf{x}_i - \mathbf{x}_j)^T$$

- High-dimensional
- Prone to overfitting
- Too slow!

Attempt 3: Low-rank Mahalanobis

$$d(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i - \mathbf{x}_j) M(\mathbf{x}_i - \mathbf{x}_j)^T$$
Replace M by an approximation of low rank $d(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i - \mathbf{x}_j) UU^T (\mathbf{x}_i - \mathbf{x}_j)^T$

$$d_v(\mathbf{x}_i,\mathbf{x}_j) = (\mathbf{x}_i - \mathbf{x}_j)U\Delta_v U^T(\mathbf{x}_i - \mathbf{x}_j)^T$$
 user user-personalized transform (see paper)

Attempt 3: Low-rank Mahalanobis

$$\mathbf{let} \ \mathbf{s}_i = \mathbf{x}_i U$$

$$(1 \times K) \quad (1 \times F) \quad (F \times K)$$

then
$$d(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{s}_i - \mathbf{s}_j\|_2^2$$

We call this the 'style space' embedding of x

Training

$$U = \arg \max_{U'} \prod_{\text{edges } (x,y)} p_U(x \text{ and } y \text{ are related})$$

$$\prod_{\text{non-edges } (x,y)} (1 - p_U(x \text{ and } y \text{ are related}))$$

Results

Books

	bought	also	also	buy after	
average	together	bought	viewed	viewing	rank (K)
65.0%	60.7%	66.7%	66.1%	66.3%	1
71.2%	68.8%	72.1%	71.6%	72.4%	10
72.1%	69.0%	73.6%	72.4%	73.5%	100

Electronics

	buy after	also	also	bought	
rank (K)	viewing	viewed	bought	together	average
1	68.4%	74.7%	64.5%	72.3%	67.5%
10	83.4%	80.4%	77.6%	78.0%	79.9%
100	85.7%	84.0%	82.3%	82.4%	83.6%

Results

Clothing

	also	also	bought	
rank (K)	viewed	bought	together	average
1	78.7%	75.4%	78.9%	77.7%
10	88.2%	86.8%	90.7%	88.6%
100	90.0%	90.8%	93.8%	91.5%

Shoes

rank (K)	also viewed	also bought	bought together	average
1	78.4%	78.9%	89.5%	82.3%
10	94.1%	95.3%	96.1%	95.2%
100	96.6%	97.6%	97.9%	97.4%

We've projected images into a low dimensional space encoding their style, what are the "extreme" points?

Which styles are at **opposite** ends of the spectrum?

Generating recommendations

How can we use the system to generate recommendations?

Query:

Suggested outfit:

Generating recommendations

How can we use the system to generate recommendations?

Query:

Suggested outfit:

Generating recommendations

Outfits in the wild

Least coordinated

Most coordinated

Outfits in the wild

Old outfits

New outfits

Change in log-likelihood

Questions?

Co-authors:

Christopher Targett

Qinfeng "Javen" Shi

Anton van den Hengel

(The University of Adelaide)