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One-slide summary

Recently, a classification competition was held using the ImageNet
dataset (Berg et al., 2010)1

Entrants were evaluated using a structured performance measure

None of the top entrants optimised this performance measure directly

Can we do better if we use structured learning techniques?

1http://www.image-net.org/challenges/LSVRC/2010/index
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(Deng et al., 2009)
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The ImageNet Dataset

Over 12 million images

Over 17 thousand categories

Categories are organised in a taxonomy, derived from Wordnet

Each image is annotated with a single category
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Building ImageNet

Query several image search engines with WordNet nouns

Additional queries by translating the nouns into other languages

Cleaning by asking Turkers to check which images correspond to each
noun

Disambiguate mistakes from different Turkers by voting

Result: very accurate labelling of one label per image
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Evaluating a Classifier

1 A classifier should not be heavily penalised if its output is ‘close to’
the correct output

2 A classifier should not be penalised for predicting objects that appear
in the image, but were not labelled
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Evaluating a Classifier (1)

A classifier should not be heavily penalised if its output is ‘close to’
the correct output

d(y , yn) is the distance between the node yn and the nearest
common ancestor of y and yn

y

yn

d(y,yn) = 2
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Evaluating a Classifier (2)

A classifier should not be penalised for predicting objects that appear
in the image, but were not labelled

The classifier is allowed to output a set of labels Y

Only the most accurate label is considered

The ImageNet Loss Function

d(Y , yn) = min
y∈Y

d(y , yn)

Obviously, the total number of labels K is limited to avoid degeneracy.
K = 5 in the competition.
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The Competition

Subset of ImageNet: 1000 categories and 1.2 million images

Competition winners: one-vs-all, 1000 linear binary SVMs trained
with SGD and proprietary features

Disregard the competition loss

Secret sauce: features + efficient implementation

Obvious question: can the taxonomy improve classification at all?

This is our research question
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Basic Strategy

Given the success of one-vs-all SVMs, our focus is on refining rather
than replacing them

Re-weight the SVM parameter vectors with a single weighting vector
so as to minimise an upper bound on competition’s loss function

→ The hypothesis to be tested is: does such refinement improve accuracy?

Julian McAuley (ANU Stanford) Structured Learning for ImageNet July 25, 2011 13 / 33



Support Vector Machines

ϕ(X)

ϕ(X).ϑ = b
positive examples

negative examples
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Support Vector Machines

‘Soft-margin’ formulation

minθ,ξ
1
2 ||θ||2 + C

∑
i ξi

subject to ci (θ · Φ(xi )− b) ≥ 1− ξi , ξi ≥ 0

We want to be confident about correct predictions

We want to be doubtful about incorrect predictions
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Prediction for one-vs-all SVMs

In the one-vs-all SVM methods, prediction of a single category y for a
given image x amounts to finding

ȳbinary(x) = argmax
y∈C

〈
x , θy

binary

〉
(C is the set of classes)

For predicting 5 labels, return those with higher scores

Ȳbinary(x) = argmax
Y∈Y

∑
y∈Y

〈
x , θy

binary

〉
(Y is the set of sets of 5 labels)
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Diminishing Returns

Correct label: African Marigold

Plausible (but incorrect) labels:
I European rabbit
I Cottontail rabbit
I New England cottontail
I Mexican cottontail
I Mountain cottontail
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Prediction in our model

Let {θy
binary} be the set of parameters learned by the binary SVMs.

We prepared our own features: no access to the proprietary features
of the winners

We introduce a single parameter vector θ to parameterise each θy
binary

We propose the following predictor

Ȳ (x ; θ) = argmax
Y∈Y

∑
y∈Y

〈
x � θy

binary, θ
〉
, or

Ȳ (x ; θ) = argmax
Y∈Y

〈∑
y∈Y

:=φ(x ,y)︷ ︸︸ ︷
x � θy

binary︸ ︷︷ ︸
:=Φ(x ,Y )

, θ

〉

For θ = 1 we recover the one-vs-all linear predictor
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The Convex Relaxation

[θ∗, ξ∗] = argmin
θ,ξ

[
1

N

N∑
n=1

ξn + λ ‖θ‖2

]
s.t. 〈Φ(xn, yn), θ〉 − 〈Φ(xn,Y ), θ〉︸ ︷︷ ︸

margin

≥ ∆(Y , yn)− ξn︸︷︷︸
slack

ξn ≥ 0

∀n,Y ∈ Y

Theorem (Tsochantaridis et al., 2005): ∆(Y n
∗ , y

n) ≤ ξ∗n
where Y n

∗ = argmax
Y

〈Φ(xn,Y ), θ∗〉
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Missing Labels

Problem: Φ(x , yn) is not directly comparable to Φ(x ,Y )

This is because yn has only one label while Y has 5

Solution: define Y n := (yn, zn
1 , z

n
2 , z

n
3 , z

n
4 ), where zn = (zn

1 , z
n
2 , z

n
3 , z

n
4 )

is a vector of latent variables

Use latent structured learning (Yu and Joachims, 2009)

Alternate optimisation over zn and θ
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Latent Structured Learning

If the latent variables are observed, we can perform structured
learning as usual

Having learned a model, we can estimate new values for the latent
variables

Alternating between these steps is guaranteed to monotonically
decrease the objective and reach a local minimum

The ‘boosted’ model is guaranteed to perform at least as well as the
original classifier (at least on the training set!)
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First Problem: Infering Missing Labels

Optimisation over zn can be done greedily since Φ decomposes
linearly over zn

i :

zn
∗ := argmax

zn
〈Φ(xn, (yn, zn)), θ〉

= argmax
zn:zn

i 6=yn

〈
φ(xn, yn) +

∑
i

φ(xn, zn
i ), θ

〉
= argmax

zn:zn
i 6=yn

∑
i

〈φ(xn, zn
i ), θ〉

Which is identical to the prediction problem, but restricted to 4
classes distinct from yn, and therefore can be easily solved in linear
time.
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Second Problem: Constraint Generation

With Y n ‘completed’, we can optimise for θ:

[θ∗, ξ∗] = argmin
θ,ξ

[
1

N

N∑
n=1

ξn + λ ‖θ‖2

]
s.t. 〈Φ(xn,Y n), θ〉 − 〈Φ(xn,Y ), θ〉 ≥ ∆(Y , yn)− ξn
ξn ≥ 0

∀n,Y ∈ Y

There are
(1000

5

) ×N +N constraints ≈ 1013 × N → too many

Use constraint generation
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Second Problem: Constraint Generation

Constraint generation amounts to finding the constraint Ŷ n

maximising the violation margin ξn, which consists of solving

Ŷ n = argmax
Y∈Y

min
y∈Y

d(y , yn) +
∑
y∈Y

〈φ(xn, y), θ〉


Naively: requires enumeration of
(1000

5

) ≈ 1013 states

How to solve this efficiently?
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Second Problem: Constraint Generation

Assume we knew c = argminy∈Ŷ n d(y , yn)

Then the problem becomes

Ŷ n = argmax
Y∈Y′

d(c , yn) +
∑
y∈Y

〈φ(xn, y), θ〉


Where Y′ is simply Y restricted to include c and only containing other
y respecting d(y , yn) ≥ d(c , yn)).

This can be solved by finding the 4 classes y with largest score
〈φ(xn, y), θ〉: linear in # classes

Of course we don’t know c, so we have to try this for all possible c
and pick the max: linear in # classes

Total complexity: quadratic in # classes
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Implementation Speed-ups

We note that in the challenge dataset, d(y , yn) ∈ {0, . . . , 18}

This means that d(c, yn) we can only attain 19 values

Speeds-up constraint generation from O(1000× 1000) to
O(19× 1000)

Also the inner products can be parallelised efficiently: GPU
implementation
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Results: 1024-dimensional feature vector
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Results: 4096-dimensional feature vector
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Final Remarks

Can the taxonomy improve classification? Yes

Our results are still not as good as the winners

If we had their features, we might be able to boost their own results...
but by how much?
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Other Applications

Latent-variable Structured Learning appears to be useful when we have
weak labels

Possible Applications

Application Full Labelling Weak Labelling

Classification multiple labels one label
Segmentation label for each pixel bounding box
Ranking rank of each document relevance of each document
Correspondence match between parts match between objects
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Conclusion

Structured energies, and structured error measures are natural for
many computer vision problems

‘Simple’ classification schemes often fail to exploit this structure

Structured learning aims to solve this problem, but may require rich
labels that are expensive to produce

Latent structured learning may allow us to apply structured learning
techniques when rich labels are not available
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