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ABSTRACT
Much existing literature on fair recommendation (i.e., group fair-
ness) leverages users’ demographic attributes (e.g., gender) to de-
velop fair recommendation methods. However, in real-world scenar-
ios, due to privacy concerns and convenience considerations, users
may not be willing to share their demographic information with
the system, which limits the application of many existing methods.
Moreover, sequential recommendation (SR) models achieve state-of-
the-art performance compared to traditional collaborative filtering
(CF) recommenders, and can represent users solely using user-item
interactions (user-free). This leaves a wrong impression that SR
models are free from group unfairness by design. In this work, we
explore a critical question: how can we build a fair sequential recom-
mendation system without even knowing user demographics? To
address this problem, we propose Agnostic FairSeqRec (A-FSR):
a model-agnostic and demographic-agnostic debiasing framework
for sequential recommendation without requiring users’ demo-
graphic attributes. Firstly, A-FSR reduces the correlation between
the potential stereotypical patterns in the input sequences and fi-
nal recommendations via Dirichlet neighbor smoothing. Secondly,
A-FSR estimates an under-represented group of sequences via a
gradient-based heuristic, and implicitly moves training focus to-
wards the under-represented group byminimizing a distributionally
robust optimization (DRO) based objective. Results on real-world
datasets show that A-FSR achieves significant improvements on
group fairness in sequential recommendation, while outperforming
other state-of-the-art baselines.
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1 INTRODUCTION
Recommendation systems help users to efficiently select contents
that meet their needs, such as online commerce [37], social me-
dia [6], and web recommendations [26]. However, concerns have
been raised about group fairness in recommendations. Recently, sig-
nificant disparities of recommendation performance are observed
across different demographic groups [22, 30, 34], which results in
group unfairness. In contrast, a fair recommender shall achieve the
same or comparable recommendation performance for user groups
with different demographic attributes. Otherwise, discrimination
in recommendation violates ethical regulations [7, 24].

Moreover, many recommenders are user-free in that they do
not build a user model in their recommendations. As such, users’
demographic information is not usually available to develop fair
methods for such systems. As one of the important user-free recom-
menders, Sequential Recommendation (SR) systems capture user
dynamics and show superior performance over traditional recom-
menders (e.g., content-based filtering) [10, 14]. More importantly, a
user-free SR model can accurately recommend desired items with-
out requiring additional user information (e.g., user profile or de-
mographics) [18, 20]. However, SR still suffers from a non-trivial
performance bias across different demographic groups [19].

Efforts have been made to improve group fairness in recommen-
dations [31]. Under group fairness, the recommender shall achieve
comparable performance for different demographic groups. How-
ever, much existing literature on fair recommendation (i.e., group
fairness) assumes that demographic attributes (e.g., gender) are
present in the user datasets, and relies upon such an assumption
to develop fair methods [19, 23, 31, 36]. This assumption could be
rather impractical in real-world applications. For instance, GDPR
1 imposes constraints on collecting and using sensitive human
features for decision making. These privacy constraints indicate
that collecting user data with demographic information could be
1General Data Protection Regulation:https://gdpr-info.eu/
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Figure 1: An illustrative example of demographic-
stereotypical patterns. Larger training penalty (e.g.,
gradients) could be incurred w.r.t. such demographic-
stereotypical patterns (cosmetic-related items). In compar-
ison, the training penalty could be smaller on the items
that are more related to the expected recommendation (i.e.,
the male dressing shoes), because suit, male dressing shoes,
shirts belong to a roughly same category of male clothes.

problematic when building recommendation systems. In addition,
many users may choose to not share their sensitive demographic
information with the system due to privacy concerns and conve-
nience considerations [11]. Therefore, we study the question of
how to build a fair sequential recommendation system with-
out knowing user demographics.

In this work, we aim to develop amodel-agnostic and demographic-
agnostic method, which can be deployed for arbitrary sequential
recommender systems (e.g., BERT4Rec [27], SASRec [18] or NARM
[20]). On one hand, our method is motivated by the fact that user
demographics may not be available in all datasets, yet fair recom-
mendations are often needed. On the other hand, existing fair SR
solutions (e.g., [19]) focus on designing specific model architectures,
which are not suitable for general SR models (e.g., transformer-
based or RNN-based models). The challenges of our setting are
three-fold: (1) No user demographic information: as a consequence,
it is infeasible to directly measure and reduce model bias during
training as in existing literature. (2) Besides fairness, the frame-
work shall maintain a satisfactory overall performance since trivial
fair solutions (e.g., reducing recommendation performance for all
groups) should be avoided. (3) The debiasing framework is expected
to be applicable for arbitrary sequential recommender architectures.

To better illustrate our method, we present an example in Fig-
ure 1. In this example, assume a male shopping a suit for an event.
However, the cosmetic-related items in his browse history might
mislead the system to recommend high-heels instead of dress shoes.
Since the cosmetic-related items could be more related to female
products, the system makes such stereotypical recommendation. In
practice, men could also use cosmetics for important events. In this
example, the cosmetic-related items in his browse history could be
regarded as stereotypical patterns. More formally, the demographic-
stereotypical patterns are certain sub-sequences within user data
that likely mislead the recommender to return stereotypical rec-
ommendations. Such stereotypical recommendations lead to per-
formance bias (i.e. recommendations based on the guessed demo-
graphic information instead of the true browse history or user-item
interactions). Therefore, our method debiases the model by mining
such stereotypical patterns from user data.

Model Dataset Stats. @Male
/
@Female

BERT4Rec
(Biased)

ML-100K
NDCG@3 0.1985

/
0.1437

Loss (L) 6.6787
/
6.7967

Grad. Norm (∥∇∥) 0.0722
/
0.1691

ML-1M
NDCG@3 0.4045

/
0.3629

Loss (L) 6.7759
/
6.8361

Grad. Norm (∥∇∥) 0.1246
/
0.3314

LastFM
NDCG@3 0.6659

/
0.5480

Loss (L) 9.0142
/
9.6229

Grad. Norm (∥∇∥) 0.2720
/
0.4138

Table 1: Pilot Study: the performance, training loss and the
gradient norm of BERT4Rec without any debiasing methods.
The female group is the under-represented group.

In the example shown in Figure 1, we hypothesize that the per-
formance bias of a recommender is related to its training gradients
w.r.t. the items. In fact, existing studies [5, 28] have also found that
gradients w.r.t. the inputs are efficient sensitivity measurements
of the model for each input element. Investigating gradients is
a primary approach to detecting bias and shortcut learning (i.e.,
learning superficial data features) of the model [2]. In terms of
recommendation, such superficial data features are more likely
to be stereotypical patterns [25]. To further demonstrate the rela-
tionship between the performance bias and training gradients in
our specific SR setting, we conduct a pilot study for BERT4Rec on
three different datasets. In the pilot study, we train the BERT4Rec
model using the biased datasets without any debiasing methods.
After training, we calculate three key statistics (i.e., NDCG@3, the
loss, and norm of gradients w.r.t. item embeddings) for the trained
biased BERT4Rec on different demographic groups (i.e., male and
female)2. The results are reported in Table 1. We observe that the
under-represented female group experiences worse recommenda-
tion performance compared to the male group. More importantly,
by comparing three statistics betweenmale group and female group,
it is clear that larger training penalty (e.g., gradients) was always in-
curred on the under-represented group (i.e., female in the example
above), which supports our hypothesis.

Motivated by the above observations, our framework firstly de-
tects demographic-stereotypical patterns in the input user data
without users’ demographic information. To achieve this, we lever-
age the training gradients w.r.t. the input sequences, and treat items
with the largest gradients as stereotypical patterns as motivated in
Figure 1 and Table 1. Then, after detecting the stereotypical patterns,
we present a novel Dirichlet neighbor smoothing (DNS) module
to debias the recommender. Our proposed DNS is a randomized
method and blurs the correlation between the stereotypical patterns
and predictions. DNS reduces the bias of the model and preserves
the temporal transition dynamics within the sequences, which helps
maintain an overall high recommendation performance of the de-
biased model. This is also the rationale that we only focus on the
sub-sequences with largest gradients instead of using the gradients
of the entire input sequences: we still want to preserve the original
user dynamics (interacted items) in the history. Finally, we estimate
under-represented users with the detected stereotypical patterns,

2The detailed experiment settings are discussed in Section 5. In this pilot study, we
used gender labels for evaluation, but they are not used during training.
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and improve the worst-case performance on them to enhance the
robustness of the fairness improvements on the training data. The
rationale behind the worst-case optimization is to address the dis-
crepancy between the estimated under-represented group and the
true under-represented one. Eventually, the recommendation per-
formance on the potential minority group is improved, achieving
the desired group fairness in recommendation.

We summarize our contributions as follows3:
(1) To the best of our knowledge, we are the first to propose a

universal debiasing framework without requiring user de-
mographics for sequential recommendation.

(2) Specifically, we present two novel modules: (1) Dirichlet
Neighbor Smoothing, a randomized method that blurs the
correlation between the stereotypical patterns and predic-
tions; (2) Worst-case Performance Optimization: a Distri-
butionally Robust Optimization (DRO) based module that
enhances the robustness of the fairness improvements on
potential under-represented users.

(3) We demonstrate the effectiveness of our method with exten-
sive experiments over multiple real-world datasets. In terms
of group fairness, our results suggest that the proposed A-
FSR consistently outperforms baseline methods when user
demographics are not available for training.

2 RELATEDWORK
2.1 Fair Recommendation
Fairness has increasingly become a critical objective when devel-
oping modern recommender systems [29, 35]. Wang et al. [30]
systematically investigate various notions of fairness in recom-
mendation from different perspectives, such as user perspective,
item perspective and system perspective. Among all the fairness
notions, a large group of studies, including our work, focus on the
group fairness of recommendation for its ethical implications in
real-world applications. For instance, Beutel et al. [1] proposed new
metrics to quantify fairness in recommendation, and added corre-
sponding regularization to improve fairness. Li et al. [21] studied
the fairness between active and inactive users, and presented a
constrained re-ranking approach. Wei and He [31] studied group
fairness in recommendation using adversarial learning and meta
learning techniques. However, the above methods assume the de-
mographic attributes of the users are present in the datasets. In
practice, due to privacy concerns and legal regulations, collecting
user demographic information could be infeasible [11]. Moreover,
only limited solutions (e.g., FairSR [19]) are developed to address
the bias issue in sequential recommendation. More importantly,
FairSR still leverages demographic information of the users, and
only works on the specific model architecture (i.e., FairSR) designed
in Li et al. [19]. Compared to existing literature, our proposed A-FSR
is a demographic-agnostic fair solution and could be deployed for
any existing sequential recommenders. And, we note that many cur-
rent fair recommendation methods are not applicable for sequential
recommenders. Therefore, upon evaluation, we only select baseline
methods that could be modified to sequential recommenders and
exclude methods that require unique model architectures. Finally,
3We adopt publicly available datasets in our experiments and will release the code
upon acceptance.

we highlight that this work focuses on group fairness, whereas the
item fairness (i.e., popularity fairness) [30] is not within this scope
of this work.

2.2 Sequential Recommendation
Sequential recommendation (SR) achieves state-of-the-art perfor-
mance and is user-free [14, 16, 38, 39]. SR models take a sequence
of interacted items as input, and make recommendations for users
by generating items that meet users’ interests [18, 20, 27]. For in-
stance, several Recurrent Neural Network (RNN) based SR models
are proposed in [15, 20]. Inspired by natural language modeling,
He et al. [14], Kang and McAuley [18], Sun et al. [27] proposed
transformer based architectures to build sequential recommenders.
Moreover, Graph Neural Network (GNN) based models have also
been proven to be efficient in sequential recommendation [4, 33].
However, many of these studies overlooked the group unfairness
issue of such models. A fair SR solution that could be deployed for
arbitrary sequential models is still missing despite the existence of
FairSR [19]. More importantly, user-free SR models make recom-
mendations without additional user information (e.g., user profile
or demographics) [18, 20]. Such design of sequential recommenders
creates a misleading impression that SR models are automatically
free from the group unfairness issue, which is not true as shown in
[19]. The question of debiasing sequential recommender systems
without user demographics still remains.

3 PRELIMINARIES
3.1 Data
An SR model takes a sequence of interacted items 𝑥 (sorted by
timestamps) as input, and recommends items that meet users’ needs.
A sequence 𝑥 is a list of items [𝑥1, 𝑥2, ..., 𝑥𝑙 ] of length 𝑙 . Each element
in 𝑥 belongs to the item scope I that contains all items: 𝑥𝑖 ∈ I.
The next user-item interaction 𝑥𝑙+1 ∈ I after 𝑥 is used as ground
truth 𝑦 (i.e., 𝑦 = 𝑥𝑙+1) in our sequential recommendation setting.

Assume a dataset D, containing |D| sequences of interacted
items. 𝑥 (𝑚) denotes the𝑚-th sequence in D. Each 𝑥 corresponds
to a user. Users who share the same demographic attribute form a
demographic group. Our goal is to develop a fair recommender that
achieves comparable performance for different demographic groups.
However, we assume demographic attributes are not available to
train the model, but we will use them for evaluation.

3.2 Model
A sequential recommender is defined as a function 𝑓 , mapping
input sequences into next-item recommendations. Given an input
sequence 𝑥 , 𝑓 computes a probability distribution over the item
scope I, and makes recommendations of items with highest prob-
abilities: 𝑦 = argmax 𝑓 (𝑥). Moreover, for a better understanding
of our framework, we highlight that 𝑓 consists of an embedding
function 𝑓𝑒 and a sequential model 𝑓𝑚 , where 𝑓 (𝑥) = 𝑓𝑚 (𝑓𝑒 (𝑥)) as
in [39]. The embedding function 𝑓𝑒 transforms the discrete item ids
into continuous item embeddings.
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3.3 Group Fairness
Under group fairness [8, 31], the recommender should achieve the
same recommendation performance for users from different groups
(e.g., demographic groups). For instance, although the shopping
pattern (e.g., purchasing gender-associated items) could be different
between male and female users, a fair recommender is expected to
show similar and satisfactory performance for both gender groups.
As in Wei and He [31], to measure the group fairness, we compute
the performance gap between two different demographic groups:

Φ = | 1
|𝐴1 |

∑︁
𝑥∈𝐴1

𝑅(𝑥,𝑦) − 1
|𝐴2 |

∑︁
𝑥∈𝐴2

𝑅(𝑥,𝑦) |, (1)

where 𝐴1 and 𝐴2 refer to two different demographic groups (e.g.,
𝐴1 represents the female user group, and 𝐴2 represents the male
user group). 𝑅 could be any metric that evaluates the recommenda-
tion performance (e.g., Recall or NDCG [17]). Intuitively, a lower Φ
represents a better fairness performance in recommendation. Note
that Φ in Equation 1 is defined over two demographic groups. Nat-
ural extensions of Equation 1 over multiple demographic groups
could be developed by computing the sum of performance differ-
ences over all possible demographic groups or by comparing the
best-performance group and the worst-performance group.

3.4 Optimization
Traditionally, an optimal recommender is obtained by minimizing
the empirical loss over D:

𝑓 ∗ = min
𝑓

E(𝑥,𝑦)∼D [L(𝑓 (𝑥), 𝑦)], (2)

where L represents the training loss function. Note that Equation 2
does not take group fairness into consideration and the resulting
recommender could be severely biased.

4 ALGORITHM
We first show how to locate the stereotypical patterns in the input
data. Then, we present the two novel modules of A-FSR, Dirichlet
neighbor smoothing and worst-case performance optimization.

4.1 Demographic-Stereotypical Patterns
The demographic-stereotypical patterns are sub-sequences within
user sequences, which likely cause the shortcut learning of the
model and mislead it to return biased recommendations. We lever-
age gradients w.r.t. input items to locate potential demographic-
stereotypical patternswithout requiring user demographic attributes.
For the sake of simplicity, we propose to locate such patterns in
the continuous and differentiable embedding space instead of the
discrete item space. Since gradients w.r.t. the inputs are efficient
sensitivity measurements of the model as shown in Table 1, our
framework treats the embedding with the largest gradients and
its adjacent embeddings as potential demographic-stereotypical
patterns. Embeddings with higher gradients suggest a stronger
penalty on such input items, which are more likely to trigger short-
cut learning of the recommender. Thus, along with their adjacent
embeddings, the embedding with the largest gradient is more likely
to form the stereotypical pattern in sequential recommendation,
compared to the remaining item embeddings.

Assume an input sequence of items 𝑥 = [𝑥1, 𝑥2, ..., 𝑥𝑙 ], we firstly
locate the embedding 𝑧𝑖∗ with the largest gradient:

𝑧𝑖∗ = [𝑓𝑒 (𝑥)]𝑖∗ ,

where 𝑖∗ = arg max
𝑖∈[𝑙 ]

{
| | 𝜕L(𝑓 (𝑥), 𝑦)

𝜕𝑧1
| |, ..., | | 𝜕L(𝑓 (𝑥), 𝑦)

𝜕𝑧𝑙
| |
}
.

(3)

In Equation 3, 𝑧𝑖 = [𝑓𝑒 (𝑥)]𝑖 represents the embedding of the 𝑖-th
item in 𝑥 . With 𝑧𝑖∗ , we further include the adjacent embeddings
of 𝑧𝑖∗ to construct the demographic-stereotypical pattern in the
embedding space. That is, the demographic-stereotypical pattern
𝑧stereo in the embedding space for 𝑥 is a span of embeddings with
size 2𝑠 + 1 centered at 𝑧𝑖∗ :

𝑧stereo = [𝑧𝑖∗−𝑠 , 𝑧𝑖∗−𝑠+1, ..., 𝑧𝑖∗ , 𝑧𝑖∗+1, ..., 𝑧𝑖∗+𝑠 ] . (4)

Note that 𝑧stereo is a sub-sequence of 𝑧. Correspondingly, in the
item space, the stereotypical pattern 𝑥stereo is derived by mapping
embeddings into the item space, which is also a sub-sequence of
the original sequence 𝑥 :

𝑧 = [𝑧1, ...,
located stereotypical embeddings︷                    ︸︸                    ︷

𝑧𝑖∗−𝑠 , ..., 𝑧𝑖∗ , ..., 𝑧𝑖∗+𝑠 , ..., 𝑥𝑙︸                                                  ︷︷                                                  ︸
item embeddings of the input sequence 𝑥

] . (5)

4.2 Dirichlet Neighbor Smoothing
The demographic-stereotypical patterns lead to stereotypical rec-
ommendations. To reduce the correlation between such patterns
and the recommendations, we propose Dirichlet Neighbor Smooth-
ing (DNS), a randomized approach to replace the stereotypical
embeddings with the embeddings of other items. To begin with, to
determine the neighbors for any item 𝑥𝑖 , we compute the cosine
similarity between all item pairs in the embedding space. Next, we
formally define the neighborhood N𝑘 of an item 𝑥𝑖 as follows:

Definition 4.1 (Neighborhood N𝑘 of an item 𝑥𝑖 ). The neighbor-
hood N𝑘 of an item 𝑥𝑖 is a set of items, whose elements have top-𝑘
cosine similarity with item 𝑥𝑖 in the embedding space. The parame-
ter 𝑘 controls the threshold of becoming a neighbor of 𝑥𝑖 :

N𝑘 (𝑥𝑖 ) = arg max
N⊂I, |N |=𝑘,𝑥𝑖∉N

∑︁
𝑥 𝑗 ∈N

CosSim(𝑓𝑒 (𝑥𝑖 ), 𝑓𝑒 (𝑥 𝑗 )) . (6)

We refer to N𝑘 (𝑥𝑖 ) as the 1-hop neighborhood of 𝑥𝑖 , since the
items in N𝑘 are the most similar to 𝑥𝑖 in the embedding space.
However, N𝑘 (𝑥𝑖 ) could still be demographic-stereotypical. There-
fore, we propose to use a further and less-similar neighborhood
of the 1-hop neighbors by taking neighbors of neighbors: the 2-
hop neighborhood of 𝑥𝑖 , constructed using all 1-hop neighbors of
𝑥𝑖 ’s neighbors. To differentiate the 1-hop neighborhood and 2-hop
neighborhood of 𝑥𝑖 , we add superscripts inN (1)

𝑘
(𝑥𝑖 ) andN (2)

𝑘
(𝑥𝑖 ).

With defined neighbors, we then compute a convex hull in the
embedding space for each item 𝑥𝑖 (Figure 2). This convex hull is
the smallest convex polygon that encloses all items in the neigh-
borhood, and is spanned by 𝑥𝑖 ’s multi-hop neighbors. Since we
aim to reduce the bias incurred by the stereotypical patterns, we
propose to substitute each item embedding in the stereotypical
pattern with embeddings of other items, which are sampled from
its multi-hop neighborhoods. Herein, the convex hull is used as
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Figure 2: Dirichlet Neighbor Smoothing. Left: we construct
themulti-hop neighbors for each itemusing cosine similarity
among items, and sample from the neighborhood according
to a Dirichlet distribution. Right: we compute the smoothed
item embedding for each item embedding within the located
stereotypical pattern, where the smoothing item is a linear
combination of sampled neighbors.

the sampling space, and we sample substitutions from the convex
hull according to a Dirichlet distribution. The Dirichlet distribution
is defined by the vertices (i.e., neighbors of a given item) in the
convex hull. As in Figure 2 (right), by sampling multiple neighbors
in the neighborhood, we compute ’the expected item’ to replace the
items in the stereotypical pattern. Formally, for item 𝑥𝑖 and the set
of its multi-hop neighbors N(𝑥𝑖 ) = N (1)

𝑘
(𝑥𝑖 ) ∪ ... ∪ N (𝐶 )

𝑘
(𝑥𝑖 ), we

represent its neighboring items with 𝜂𝑖 , which are sampled from a
Dirichlet distribution:

𝜂𝑖 = [𝜂𝑖,1, . . . , 𝜂𝑖, |N (𝑥𝑖 ) | ] ∼ Dirichlet (𝛽1, . . .), (7)

where 𝛽s are parameters for the Dirichlet distribution.
We first look up multi-hop neighbors for the items in the stereo-

typical pattern: N(𝑥𝑖 ) for 𝑥𝑖 ∈ 𝑥𝑠𝑡𝑒𝑟𝑒𝑜 . Then, we sample 𝜂𝑖 from
N(𝑥𝑖 ) according to the Dirichlet distribution. Finally, we compute
the expected embedding vector using 𝜂𝑖 and all elements in N(𝑥𝑖 )
to update the original stereotypical pattern of embeddings within
each sequence as follows:

∀𝑥𝑖 ∈ 𝑥stereo = {𝑥𝑖∗−𝑠 , 𝑥𝑖∗−𝑠+1, ..., 𝑥𝑖∗ , 𝑥𝑖∗+1, ..., 𝑥𝑖∗+𝑠 }

∀𝑛𝑖, 𝑗 ∈ N (𝑥𝑖 ), 𝑧𝑖 =

|N (𝑥𝑖 ) |∑︁
𝑗=1

𝜂𝑖, 𝑗 · 𝑓𝑒 (𝑛𝑖, 𝑗 )

where 𝑛𝑖, 𝑗 represents the 𝑗-th item inN(𝑥𝑖 ), namely the 𝑗-th neigh-
bor of 𝑥𝑖 . Eventually, after performing DNS for each item embed-
ding of the stereotypical pattern within a sequence, we obtain a
smoothed sequence embedding 𝑧:

𝑧 = [𝑧1, ....,

Dirichlet Smoothed Embeddings︷                                   ︸︸                                   ︷
𝑧𝑖∗−𝑠 , 𝑧𝑖∗−𝑠+1, ..., 𝑧𝑖∗ , 𝑧𝑖∗+1, 𝑧𝑖∗+𝑠 , ..., 𝑧𝑙︸                                                    ︷︷                                                    ︸

item embeddings of the entire input sequence

]

Note that we select Dirichlet distribution in our method, because
it assigns higher importance weights to the top-place values and
lower importance weights to the tail-values in a controllable fashion.
In our sequential recommendation, it matches the intuition of our
smoothing step: preserving the user dynamics by assigning more
importance weights to similar items in the closest neighborhood,
and using further and less similar neighborhoods to reduce the
bias of the stereotypical patterns. Moreover, Dirichlet distribution
automatically serves as a normalized re-weighting mechanism to
compute the expected items: the

∑
𝜂𝑖, 𝑗 = 1. This indicates that the

smoothed embedding 𝑧𝑖 is a linear combination of embeddings of
neighbors in the convex hull as shown in Figure 2.

4.3 Worst-case Performance Optimization
Besides DNS, A-FSR improves the model performance for the poten-
tial under-represented group under a worst-case scenario, which
further improves model’s group fairness.

However, without user demographics, it is extremely challenging
to identify the under-represented group. To overcome this challenge,
we observe that if a recommender is biased against a demographic
group, then the poor recommendation performance usually incurs
a larger loss on this group during training. The penalty strength
(i.e. gradient) on such user data is prone to be larger as well. To this
end, we leverage gradients w.r.t. the input data again to estimate
the under-represented group. Now, let 𝑥 (𝑚) denote the𝑚-th input
sequence of a dataset D. Therefore, for 𝑥 (𝑚) , its training loss w.r.t.
its item embeddings is computed as:

∇𝑧 (𝑚)L(𝑓 (𝑥 (𝑚) ), 𝑦 (𝑚) ) = 𝜕L(𝑓 (𝑥 (𝑚) ), 𝑦 (𝑚) )
𝜕𝑧 (𝑚)

=
𝜕L(𝑓 (𝑥 (𝑚) ), 𝑦 (𝑚) )

𝜕𝑓𝑒 (𝑥 (𝑚) )
.

(8)

We use the largest gradient of an item embedding as the group
indicator for 𝑥 (𝑚) . Mathematically, the group indicator 𝑎 of 𝑥 (𝑚)

is defined as the largest gradient norm of input item embeddings:

𝑎(𝑥 (𝑚) ) = max{| |∇
𝑧
(𝑚)
1

L(𝑓 (𝑥 (𝑚) ), 𝑦 (𝑚) ) | |, ...}. (9)

Since the true demographic attribute 𝑎 (𝑚) of sequence 𝑥 (𝑚) is un-
known during training, we propose to use 𝑎(𝑥 (𝑚) ) as the proxy of
𝑥 (𝑚) ’s demographic attribute. To this end, we construct an esti-
mated under-represented demographic group 𝐴𝑢𝑛𝑑𝑒𝑟 , by selecting
sequences that have top-𝑀 largest group indicators:

𝐴𝑢𝑛𝑑𝑒𝑟 = arg max
�̂�⊂D, |�̂� |=𝑀

∑︁
𝑥 (𝑚) ∈�̂�

𝑎(𝑥 (𝑚) ) . (10)

Herein, 𝑀 is a hyperparameter and is chosen empirically to de-
termine the size of the estimated under-represented group. Note
that the sequences (or users) in 𝐴𝑢𝑛𝑑𝑒𝑟 are associated with the
stereotypical patterns on their user-item histories. We consider the
recommendation over 𝐴𝑢𝑛𝑑𝑒𝑟 as the performance on the under-
represented users. However, applying Equation 2 to 𝐴𝑢𝑛𝑑𝑒𝑟 does
not necessarily guarantee a generalized performance improvement
on the test data. This is because there exists discrepancy between
the estimated under-represented group 𝐴𝑢𝑛𝑑𝑒𝑟 and the true under-
represented demographic group. If 𝑀 is too large, then 𝐴𝑢𝑛𝑑𝑒𝑟

contains sequences (or users) from the true majority demographic
group. Minimizing L̂𝑒𝑟𝑚 under this case could even further am-
plify the group unfairness. In contrast, if 𝑀 is too small, 𝐴𝑢𝑛𝑑𝑒𝑟

is then too conservative to cover all under-represented sequences,
minimizing the loss is not effective either.

To overcome the generalization issue caused by the discrep-
ancy between 𝐴𝑢𝑛𝑑𝑒𝑟 and the true under-represented demographic
group, we propose to improve the worst-case performance via a
distributionally robust optimization (DRO) approach [13]. That is,
instead of computing and minimizing the averaged training loss
over 𝐴𝑢𝑛𝑑𝑒𝑟 , we minimize a robust loss to enhance the robustness
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Figure 3: Overview of our proposed Agnostic-FairSeqRec (A-FSR. )
of the performance improvements against such potential distribu-
tion shifts. Specifically, we consider an uncertainty set 𝑄 , which
encodes all possible distributions within a divergence ball center at
𝐴𝑢𝑛𝑑𝑒𝑟 . Our DRO objective minimizes the loss over the worst-case
distribution in 𝑄 :

L𝑑𝑟𝑜 = sup
𝑄∈B(�̂�𝑢𝑛𝑑𝑒𝑟 ,𝑟 )

E(𝑥,𝑦)∼𝑄 [L(𝑓 (𝑥), 𝑦)], (11)

where B(𝐴𝑢𝑛𝑑𝑒𝑟 , 𝑟 ) denotes the divergence ball centered at the
empirical distribution of 𝐴𝑢𝑛𝑑𝑒𝑟 , and 𝑟 is the radius of the ball.
For simplicity, we approximate Equation 11 by adding importance
weights 𝑞 to the sequences in 𝐴𝑢𝑛𝑑𝑒𝑟 :

L̂𝑑𝑟𝑜 = sup
𝑞∈ B̂

E(𝑥,𝑦)∼�̂�𝑢𝑛𝑑𝑒𝑟
[𝑞L(𝑓 (𝑥), 𝑦)]

= sup
𝑞∈ B̂

𝑀∑︁
𝑚=1

𝑞 (𝑚) · L(𝑓 (𝑥 (𝑚) ), 𝑦 (𝑚) ),
(12)

where B̂ is the approximated chi-squared ball for Equation 11. Upon
implementation, we use B̂ = B(U(1, 𝑀), 𝑟 ) B {𝑞 |𝐷X2 ( [𝑞 (1) , ..., 𝑞 (𝑀 ) ]
∥ [ 1

𝑀
, ..., 1

𝑀
]) ≤ 𝑟,

∑𝑀
𝑚=1 𝑞

(𝑚) = 1}. By minimizing Equation 12,
the training focus will be implicitly moved towards the potential
under-represented users that suffer from the stereotypical patterns.
Moreover, the design of Equation 12 also accommodates the discrep-
ancy between the estimated under-represented group and the true
under-represented group, so that the performance improvements
are robust against potential distribution shifts.

Finally, we highlight that Equation 12 is fundamentally different
from directly using DRO for improving model fairness in [13]. The
key reason is that in the training stage of sequential recommenders,
different sequences (training samples) might belong to the
same user. This means that directly applying DRO for all train-
ing sequences could incompatibly increase and reduce the training
penalty on the same user at the same time during training. Instead,
we estimate under-represented group first, and then use DRO to
overcome the generalization issue caused by the discrepancy of
the actual under-represented group and the estimated one. More-
over, the worst-case performance optimization is only used on a
small portion of the users (i.e., estimated under-represented groups)
instead of the whole population. This mechanism is deliberately
designed to avoid the overly-conservative debiasing for all users.

4.4 Overall Framework
Our proposed A-FSR consists of all modules introduced above. The
recommender is trained by jointly optimizing the training loss
over the dataset D and the robust loss over the identified under-
represented group 𝐴𝑢𝑛𝑑𝑒𝑟 :

L𝐴−𝐹𝑆𝑅 (𝑓 ,D) = L𝑟𝑒𝑐 (𝑓 ,D) + 𝜆 · L̂𝑑𝑟𝑜 (𝑓 , 𝐴𝑢𝑛𝑑𝑒𝑟 )

=
1
|D|

|D |∑︁
𝑖=1

L(𝑓𝑚 (𝑧 (𝑖 ) ), 𝑦 (𝑖 ) )

+ 𝜆 ·
[
sup
𝑞∈ B̂

𝑀∑︁
𝑚=1

𝑞 (𝑚) · L(𝑓𝑚 (𝑧 (𝑚) ), 𝑦 (𝑚) )
]
,

𝑠 .𝑡 . B̂ = B(U(1, 𝑀), 𝑟 )
𝑧 = [𝑧1, ...., 𝑧𝑖∗−𝑠 , ..., 𝑧𝑖∗ , 𝑧𝑖∗+𝑠 , ..., 𝑧𝑙 ]
𝑧𝑖 = 𝑓𝑒 (𝑥𝑖 ).

(13)

Note that in Equation 13, a tunnable trade-off factor 𝜆 is introduced
to adjust the penalty of the robust loss L𝑑𝑟𝑜 .𝑧 is the item embed-
dings of 𝑥 after DNS. Finally, we highlight that A-FSR is different
from the DRO-fairness or Maxmin-fairness in [9, 32] in the sense
that we debias the model by considering stereotypical patterns in
the data and cover all users, whereas in [9, 32], fairness is achieved
by merely improving worst-off individuals.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. We select ML-100K [12], ML-1M [12] and LastFM [3] for
experiments. These three datasets contain annotated demographic
attributes for us to evaluate the group fairness, but we do not use
demographic attributes during training. We use gender as the de-
mographic attribute to evaluate the bias and repeat the experiments
for 5 times as in [31]. The results are reported with the mean value
and the standard deviation.

Baseline Sequential Recommenders.Without loss of gener-
ality, we adopt the state-of-the-art NARM [20], SASRec [18] and
BERT4Rec [27] as baseline models in our experiments.

Baseline Fair Recommendation Methods. Our setting of no
user demographics largely limits our selection of baselines from
existing fair recommendation methods. Moreover, we need to se-
lect model-agnostic algorithms and exclude baseline methods that
require specific model design (e.g., FairSR) for a fair comparison.
Therefore, we selected IPW [23], Reg [36] and Adv [31] as baselines.
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Model Dataset ML-100K ML-1M LastFM

Baselines topk Φ𝑅
/
Φ𝑁 ↓ Φ𝑅

/
Φ𝑁 ↓ Φ𝑅

/
Φ𝑁 ↓

BERT4Rec

Naive @3 0.0629±0.0256
/
0.0504±0.0194 0.0341±0.0051

/
0.0404±0.0032 0.0644±0.0020

/
0.0702±0.0027

@5 0.0472±0.0167
/
0.0439±0.0179 0.0275±0.0034

/
0.0376±0.0026 0.0452±0.0150

/
0.0621±0.0079

IPW @3 0.0823±0.0090
/
0.0648±0.0073 0.0349±0.0053

/
0.0396±0.0055 0.0529±0.0173

/
0.0625±0.0136

@5 0.0534±0.0132
/
0.0519±0.0052 0.0243±0.0042

/
0.0352±0.0046 0.0411±0.0071

/
0.0577±0.0071

Reg @3 0.0608±0.0352
/
0.0440±0.0225 0.0504±0.0035

/
0.0433±0.0018 0.0346±0.0147

/
0.0497±0.0144

@5 0.0519±0.0250
/
0.0398±0.0181 0.0450±0.0061

/
0.0412±0.0023 0.0449±0.0063

/
0.0541±0.0083

Adv @3 0.0622±0.0220
/
0.0532±0.0156 0.0223±0.0049

/
0.0292±0.0052 0.0528±0.0218

/
0.0682±0.0134

@5 0.0517±0.0070
/
0.0492±0.0098 0.0112±0.0037

/
0.0248±0.0038 0.0413±0.0142

/
0.0631±0.0091

A-FSR (Ours) @3 0.0465±0.0238
/
0.0357±0.0151 0.0223±0.0097

/
0.0290±0.0078 0.0336±0.0137

/
0.0342±0.0173

@5 0.0404±0.0069
/
0.0331±0.0072 0.0086±0.0078

/
0.0232±0.0059 0.0451±0.0009

/
0.0392±0.0120

SASRec

Naive @3 0.1119±0.0277
/
0.0936±0.0178 0.1800±0.0107

/
0.1636±0.0083 0.0731±0.0110

/
0.0870±0.0068

@5 0.1222±0.0235
/
0.0977±0.0160 0.1748±0.0048

/
0.1614±0.0067 0.0485±0.0199

/
0.0768±0.0110

IPW @3 0.0796±0.0140
/
0.0666±0.0051 0.1247±0.0030

/
0.1125±0.0018 0.0745±0.0058

/
0.0956±0.0056

@5 0.0882±0.0206
/
0.0702±0.0081 0.1142±0.0054

/
0.1083±0.0019 0.0626±0.0125

/
0.0907±0.0115

Reg @3 0.0594±0.0206
/
0.0488±0.0230 0.0823±0.0090

/
0.0774±0.0106 0.0860±0.0217

/
0.0992±0.0083

@5 0.0787±0.0247
/
0.0564±0.0209 0.0697±0.0115

/
0.0724±0.0108 0.0646±0.0206

/
0.0904±0.0105

Adv @3 0.0664±0.0272
/
0.0533±0.0228 0.1341±0.0190

/
0.1241±0.0155 0.0523±0.0374

/
0.0625±0.0370

@5 0.0716±0.0274
/
0.0544±0.0211 0.1250±0.0197

/
0.1204±0.0158 0.0375±0.0251

/
0.0569±0.0318

A-FSR (Ours) @3 0.0522±0.0231
/
0.0440±0.0184 0.0473±0.0064

/
0.0489±0.0059 0.0597±0.0210

/
0.0799±0.0139

@5 0.0568±0.0207
/
0.0464±0.0172 0.0344±0.0055

/
0.0435±0.0062 0.0364±0.0086

/
0.0703±0.0083

NARM

Naive @3 0.0627±0.0058
/
0.0522±0.0105 0.0289±0.0095

/
0.0309±0.0097 0.0550±0.0117

/
0.0566±0.0122

@5 0.0460±0.0267
/
0.0457±0.0151 0.0242±0.0073

/
0.0290±0.0077 0.0361±0.0361

/
0.0490±0.0151

IPW @3 0.0832±0.0169
/
0.0690±0.0170 0.0381±0.0080

/
0.0447±0.0052 0.0458±0.0156

/
0.0505±0.0121

@5 0.0699±0.0210
/
0.0635±0.0168 0.0349±0.0111

/
0.0435±0.0055 0.0354±0.0039

/
0.0462±0.0083

Reg @3 0.0691±0.0251
/
0.0625±0.0249 0.0360±0.0058

/
0.0369±0.0056 0.0634±0.0274

/
0.0632±0.0210

@5 0.0610±0.0246
/
0.0590±0.0253 0.0286±0.0110

/
0.0340±0.0070 0.0478±0.0227

/
0.0567±0.0189

Adv @3 0.0427±0.0172
/
0.0407±0.0124 0.0206±0.0061

/
0.0240±0.0071 0.0331±0.0022

/
0.0444±0.0016

@5 0.0333±0.0171
/
0.0372±0.0114 0.0097±0.0037

/
0.0194±0.0057 0.0301±0.0069

/
0.0427±0.0029

A-FSR (Ours) @3 0.0359±0.0234
/
0.0249±0.0164 0.0032±0.0008

/
0.0026±0.0016 0.0296±0.0093

/
0.0367±0.0131

@5 0.0154±0.0125
/
0.0166±0.0130 0.0073±0.0029

/
0.0041±0.0019 0.0217±0.0117

/
0.0338±0.0138

Table 2: Evaluation of Group Fairness. Each row represents a fair recommendation method, including baseline methods and
A-FSR. Each column stands for one dataset. The performance gap in terms of Recall (Φ𝑅) and NDCG (Φ𝑁 ) are reported in the
same column split by

/
. The best results are highlighted in bold, and the second-best results are highlighted with underlines.

Note that these baselines originally require demographic attributes
to debias the model. Thus, upon implementation, random gender la-
bels were assigned to them based on the distribution of the datasets.
We also add a naive baseline, where no-debiasing method is applied
when training the recommenders.

Evaluation Metrics. Following [18, 38, 39], we perform leave-
last-out evaluation. In terms of the evaluation metrics, we use nor-
malized discounted cumulative gain (NDCG) and Recall. To evaluate
group fairness, we compute the performance gap between different
demographic groups using Equation 1 by plugging in 𝑅 with either
NDCG (Φ𝑁 ) or Recall (Φ𝑅 ).

ImplementationDetails.Allmodels are trainedwithoutwarmup
using an Adam optimizer with a learning rate of 0.001, weight decay
0.01 and batch size of 64. Following [18, 27, 38], we set the maxi-
mum sequence lengths of ML-1M to be 200 and 50 for the other

two datasets. For our method, we empirically set the span size of
the identified stereotypical pattern as 3. When performing DNS,
we empirically pick the top-6 closest neighbors of each item in the
located stereotypical pattern. Finally, regarding DRO, the size of
the under-represented group is 5, and we keep the radius of the
divergence ball the same as 𝜆 for the sake of simplicity4.

5.2 Performance Evaluation (Table 2 and 3)
The first set of experiments is conducted to evaluate the efficacy
of A-FSR. Table 2 reports the results of model fairness, and Table 3
reports the results of model performance. According to Table 2, we
observe that A-FSR outperforms the baselines on all datasets in

4During our experiments, we observed that A-FSR is sensitive to 𝜆, but less sensitive
to the number of neighbors and the size of the estimated under-represented group.
Due to space limit, we could not include these results in this submission.
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Model Dataset ML-100K ML-1M LastFM

Baselines topk 𝑅𝑒𝑐𝑎𝑙𝑙
/
𝑁𝐷𝐶𝐺 ↑ 𝑅𝑒𝑐𝑎𝑙𝑙

/
𝑁𝐷𝐶𝐺 ↑ 𝑅𝑒𝑐𝑎𝑙𝑙

/
𝑁𝐷𝐶𝐺 ↑

BERT4Rec

Naive @3 0.2567±0.0058
/
0.1929±0.0021 0.5691±0.0032

/
0.4771±0.0038 0.6032±0.0066

/
0.5408±0.0046

@5 0.3657±0.0110
/
0.2377±0.0044 0.6585±0.0037

/
0.5140±0.0038 0.6650±0.0020

/
0.5663±0.0027

IPW @3 0.2492±0.0070
/
0.1888±0.0051 0.5121±0.0050

/
0.4221±0.0049 0.5929±0.0108

/
0.5313±0.0094

@5 0.3637±0.0148
/
0.2358±0.0054 0.6094±0.0048

/
0.4622±0.0048 0.6654±0.0085

/
0.5614±0.0075

Reg @3 0.2347±0.0163
/
0.1760±0.0127 0.3923±0.0172

/
0.3091±0.0170 0.5900±0.0010

/
0.5236±0.0032

@5 0.3357±0.0158
/
0.2175±0.0125 0.4990±0.0151

/
0.3530±0.0161 0.6536±0.0051

/
0.5497±0.0016

Adv @3 0.2535±0.0107
/
0.1908±0.0072 0.5690±0.0057

/
0.4764±0.0051 0.6157±0.0076

/
0.5510±0.0028

@5 0.3696±0.0103
/
0.2386±0.0070 0.6587±0.0042

/
0.5133±0.0045 0.6747±0.0065

/
0.5755±0.0019

A-FSR (Ours) @3 0.2552±0.0092
/
0.1916±0.0078 0.5657±0.0080

/
0.4730±0.0069 0.6005±0.0072

/
0.5332±0.0065

@5 0.3741±0.0128
/
0.2403±0.0096 0.6564±0.0074

/
0.5104±0.0066 0.6714±0.0040

/
0.5624±0.0058

SASRec

Naive @3 0.2545±0.0084
/
0.1932±0.0095 0.5219±0.0039

/
0.4312±0.0021 0.6205±0.0082

/
0.5469±0.0069

@5 0.3579±0.0136
/
0.2357±0.0116 0.6216±0.0015

/
0.4723±0.0018 0.6802±0.0045

/
0.5715±0.0056

IPW @3 0.2254±0.0147
/
0.1671±0.0112 0.5063±0.0021

/
0.4086±0.0020 0.6139±0.0088

/
0.5451±0.0053

@5 0.3316±0.0111
/
0.2104±0.0095 0.6162±0.0060

/
0.4538±0.0015 0.6851±0.0052

/
0.5745±0.0040

Reg @3 0.2219±0.0116
/
0.1633±0.0078 0.4787±0.0031

/
0.3812±0.0026 0.6177±0.0022

/
0.5510±0.0034

@5 0.3313±0.0126
/
0.2081±0.0075 0.5955±0.0050

/
0.04293±0.0030 0.6836±0.0026

/
0.5782±0.0052

Adv @3 0.2239±0.0090
/
0.1679±0.0045 0.5126±0.0041

/
0.4168±0.0059 0.5675±0.0340

/
0.4923±0.0339

@5 0.3302±0.0067
/
0.2115±0.0030 0.6205±0.0047

/
0.4612±0.0049 0.6439±0.0206

/
0.5228±0.0284

A-FSR (Ours) @3 0.2204±0.0161
/
0.1632±0.0123 0.5127±0.0061

/
0.4157±0.0043 0.6231±0.0071

/
0.5547±0.0029

@5 0.3242±0.0205
/
0.2057±0.0145 0.6206±0.0054

/
0.4602±0.0040 0.6853±0.0048

/
0.5803±0.0020

NARM

Naive @3 0.3662±0.0094
/
0.2873±0.0058 0.6180±0.0032

/
0.5313±0.0026 0.5826±0.0068

/
0.5186±0.0055

@5 0.4832±0.0054
/
0.3354±0.0037 0.7032±0.0031

/
0.5663±0.0016 0.6474±0.0134

/
0.5452±0.0086

IPW @3 0.3560±0.0077
/
0.2768±0.0045 0.6112±0.0025

/
0.5247±0.0019 0.5715±0.0114

/
0.5082±0.0080

@5 0.4772±0.0104
/
0.3265±0.0066 0.6943±0.0026

/
0.5589±0.0016 0.6418±0.0084

/
0.5369±0.0065

Reg @3 0.3448±0.0146
/
0.2670±0.0090 0.6153±0.0021

/
0.5255±0.0008 0.5851±0.0036

/
0.5121±0.0072

@5 0.4624±0.0070
/
0.3153±0.0062 0.6978±0.0019

/
0.5595±0.0010 0.6490±0.0056

/
0.5385±0.0075

Adv @3 0.3585±0.0041
/
0.2813±0.0019 0.6184±0.0042

/
0.5321±0.0045 0.5814±0.0147

/
0.5122±0.0120

@5 0.4699±0.0056
/
0.3270±0.0040 0.7025±0.0033

/
0.5667±0.0042 0.6483±0.0096

/
0.5399±0.0100

A-FSR (Ours) @3 0.3506±0.0057
/
0.2758±0.0068 0.6238±0.0021

/
0.5357±0.0011 0.6092±0.0092

/
0.5407±0.0072

@5 0.4711±0.0090
/
0.3253±0.0080 0.7099±0.0027

/
0.5711±0.0012 0.6657±0.0180

/
0.5561±0.0110

Table 3: Evaluation of Recommendation Performance. A-FSRmaintains a satisfactory performance compared to other baselines.

terms of improving group fairness. In the most biased setting, where
the un-debiased SASRec achieves 0.1800 on Φ𝑅 , A-FSR reduces its
bias by 73.7% and achieves 0.0473. Moreover on both transformer-
based models (i.e., BERT4Rec and SASRec) and RNN-based models
(NARM), A-FSR is consistently effective, indicating that A-FSR could
be applied to different kinds of sequential recommendation systems.
In addition to fairness, we also report the overall recommendation
performance of all methods to verify that A-FSR is not a trivial fair
solution that reduces performance for all demographic groups. It
is observed from Table 3 that A-FSR can maintain similar overall
recommendation performance compared to the baseline methods.

5.3 Universal Fairness (Table 4)
Recall A-FSR does not use the user demographic attributes to debias
themodel. As such, in addition to the gender fairness, we expect that
A-FSR could also demonstrate a universal fairness improvements
w.r.t. other demographic attributes. To test the universal fairness,

we evaluate the trained models w.r.t. another demographic attribute
of the users: the occupations. That is, we evaluate the fairness for
the occupation-based groups. The results are reported in Table 4.
As expected, A-FSR also improves the group fairness w.r.t. users’
occupations. We only compare A-FSR against the naive baseline,
because other fair recommendation baseline methods could not
automatically achieve the universal fairness w.r.t. different demo-
graphic attributes. Instead, the baseline methods require to re-train
the models with specific loss or regularization terms for the new
demographic attributes. Due to space limit, we could only report
results for BERT4Rec and SASRec on ML-100K and ML-1M.

5.4 Ablation Study (Table 5)
Finally, we perform an ablation study to understand the contribu-
tion of each component to A-FSR. In particular, we still train and
test the sequence recommenders using A-FSR, but we mask out
each component individually: (1) A-FSR without DNS, where we
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Model Dataset Metrics Naive A-FSR (Ours)

BERT4Rec
ML-100K Φ𝑅@3

/
Φ𝑁@3↓ 0.3310±0.0531

/
0.2561±0.0333 0.2105±0.0431

/
0.1062±0.0219

Φ𝑅@5
/
Φ𝑁@5↓ 0.3952±0.0342

/
0.2827±0.0202 0.3119±0.0487

/
0.1851±0.0243

ML-1M Φ𝑅@3
/
Φ𝑁@3↓ 0.3673±0.0234

/
0.3254±0.0168 0.2284±0.0705

/
0.1839±0.0626

Φ𝑅@5
/
Φ𝑁@5↓ 0.2859±0.0248

/
0.2927±0.0111 0.1984±0.0669

/
0.1709±0.0574

SASRec
ML-100K Φ𝑅@3

/
Φ𝑁@3↓ 0.2792±0.0815

/
0.2460±0.0558 0.2056±0.0466

/
0.1479±0.0350

Φ𝑅@5
/
Φ𝑁@5↓ 0.3528±0.0626

/
0.2812±0.0514 0.2110±0.0379

/
0.1654±0.0388

ML-1M Φ𝑅@3
/
Φ𝑁@3↓ 0.3251±0.0346

/
0.3124±0.0261 0.2165±0.0524

/
0.1759±0.0431

Φ𝑅@5
/
Φ𝑁@5↓ 0.2364±0.0307

/
0.2771±0.0243 0.2252±0.0378

/
0.2264±0.0372

Table 4: Universal Fairness w.r.t. occupations of the users. The best fairness results are highlighted in bold.

Model Dataset Metrics A-FSR (ours) w/o DNS w/o DRO

BERT4Rec
ML-100K Φ𝑅@5

/
Φ𝑁@5 ↓ 0.0404±0.0068

/
0.0331±0.0072 0.0476±0.0063

/
0.0474±0.0077 0.0482±0.0326

/
0.0437±0.0201

Recall@5
/
NDCG@5 ↑ 0.3741±0.0128

/
0.2403±0.0096 0.3769±0.0058

/
0.2442±0.0063 0.3881±0.0045

/
0.2510±0.0041

ML-1M Φ𝑅@5
/
Φ𝑁@5 ↓ 0.0086±0.0078

/
0.0232±0.0059 0.0163±0.0058

/
0.0277±0.0049 0.0172±0.0063

/
0.0270±0.0038

Recall@5
/
NDCG@5 ↑ 0.6564±0.0074

/
0.5104±0.0066 0.6375±0.0054

/
0.4922±0.0026 0.6160±0.0036

/
0.4686±0.0035

SASRec
ML-100K Φ𝑅@5

/
Φ𝑁@5 ↓ 0.0568±0.0207

/
0.0464±0.0172 0.0957±0.0197

/
0.0792±0.0097 0.0829±0.0276

/
0.0613±0.0237

Recall@5
/
NDCG@5 ↑ 0.3242±0.0205

/
0.2115±0.0030 0.3299±0.0083

/
0.2129±0.0046 0.3339±0.0123

/
0.2160±0.0081

ML-1M Φ𝑅@5
/
Φ𝑁@5 ↓ 0.0344±0.0055

/
0.0435±0.0062 0.1220±0.0041

/
0.1157±0.0048 0.0376±0.0079

/
0.0428±0.0053

Recall@5
/
NDCG@5 ↑ 0.6206±0.0054

/
0.4602±0.0040 0.6126±0.0044

/
0.4556±0.0038 0.6162±0.0048

/
0.4583±0.0030

Table 5: Ablation Study: masking out the Dirichlet neighbor smoothing (DNS) and the worst-case performance optimization
(DRO). The best fairness results are highlighted in bold and the second-best results are highlighted with underlines.

Size
(2s+1)

ML-100K ML-1M

Φ𝑅@3 ↓
/
𝑅𝑒𝑐𝑎𝑙𝑙@3 ↑ Φ𝑅@3 ↓

/
𝑅𝑒𝑐𝑎𝑙𝑙@3 ↑

3 0.0465±0.0238
/
0.2552±0.0092 0.0223±0.0097

/
0.5657±0.0080

5 0.0499±0.0229
/
0.2665±0.0133 0.0283±0.0029

/
0.5112±0.0056

7 0.0577±0.0245
/
0.2689±0.0105 0.0354±0.0076

/
0.5139±0.0029

9 0.0278±0.0207
/
0.2634±0.0067 0.0444±0.0120

/
0.3999±0.0107

11 0.0471±0.0257
/
0.2710±0.0081 0.0431±0.0086

/
0.3932±0.0123

Table 6: Sensitivity Analysis for BERT4Rec: increasing the
span size of the identified stereotypical pattern.

directly compute Equation 13 over the original item embeddings of
the input sequence; (2) A-FSR without worst-case performance op-
timization, where we only perform Dirichlet Neighbor Smoothing
and set 𝜆 = 0. The results are reported in Table 5. Due to the space
limit, we could only report results for BERT4Rec and SASRec on
ML-100K and ML-1M. From Table 5, we observe that both modules
are necessary to improve the fairness of the model.

5.5 Sensitivity Analysis (Table 6)
We then perform sensitive analysis w.r.t. the key hyperparame-
ter of A-FSR, i.e., the span size of the stereotypical pattern (i.e., 𝑠
in Equation 4). In particular, we increase the span size of stereo-
typical pattern from 3 to 11. The results are reported in Table 6.
It is observed that A-FSR shows different behaviors on different
datasets. For example, on ML-100K, A-FSR is less sensitive to size
of the smoothed sub-sequence, whereas on ML-1M, A-FSR shows
a larger sensitivity. On ML-1M, if the size of the smoothed sub-
sequence is too large, then both fairness and recommendation per-
formance degrades. This observation is expected because ML-100K

is smaller and simpler than ML-1M. It is more challenging for the
recommender to learn user dynamics on ML-1M, and the larger
randomness in the smoothing step will further blur the learned
user dynamics for the recommender. Due to space limit, we could
only report results for BERT4Rec.

6 CONCLUSION
In this work, we study the problem of developing fair sequential rec-
ommenders without user demographics. While much existing fair
recommendation literature leverages user demographics to develop
fair solutions, we highlight the essence of developing fair recom-
mender methods without user demographics: it could be infeasible
to collect user demographic information due to privacy concerns
or legal regulations. To address this problem, we designed a novel
demographic-agnostic and model-agnostic debiasing framework
Agnostic FairSeqRec (A-FSR). Our experimental results demonstrate
that on multiple model architectures and multiple datasets A-FSR
consistently outperforms state-of-the-art baseline methods by a
significant margin.
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