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ABSTRACT
Online recommendation requires handling rapidly changing user

preferences. Deep reinforcement learning (DRL) is an effective

means of capturing users’ dynamic interest during interactions

with recommender systems. Generally, it is challenging to train a

DRL agent in online recommender systems because of the sparse

rewards caused by the large action space (e.g., candidate item space)

and comparatively fewer user interactions. Leveraging experience

replay (ER) has been extensively studied to conquer the issue of

sparse rewards. However, they adapt poorly to the complex environ-

ment of online recommender systems and are inefficient in learning

an optimal strategy from past experience. As a step to filling this

gap, we propose a novel state-aware experience replay model, in

which the agent selectively discovers the most relevant and salient

experiences and is guided to find the optimal policy for online rec-

ommendations. In particular, a locality-sensitive hashing method is

proposed to selectively retain the most meaningful experience at

scale and a prioritized reward-driven strategy is designed to replay

more valuable experiences with higher chance. We formally show

that the proposed method guarantees the upper and lower bound

on experience replay and optimizes the space complexity, as well

as empirically demonstrate our model’s superiority to several exist-

ing experience replay methods over three benchmark simulation

platforms.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies → Reinforcement learning.
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1 INTRODUCTION
Online recommendation aims to learn users’ preferences and recom-

mend items dynamically to help users find desired items in highly

dynamic environments [37]. Deep reinforcement learning (DRL)

naturally fits online recommendation as it learns policies through

interactions with the environment via maximizing a cumulative

reward. DRL has been widely applied to sequential decision-making

(e.g., in Atari [23] and AlphaGo [32]). A considerable amount of

literature has been published on deep reinforcement learning-based

dynamic recommender systems [2, 4, 39].

DRL-based recommender systems cover three categories of meth-

ods: deep Q-learning (DQN), policy gradient, and hybrid methods.

DQN aims to find the best step via maximizing a Q-value over

all possible actions. Zheng et al. [42] introduced DRL into recom-

mender systems for news recommendation; Chen et al. [4] intro-

duced a robust reward function to Q-learning, which stabilized the

reward in online recommendations. Despite the capability of fast

indexing in selecting a discrete action, Q-learning-based methods

conduct the “maximize" operation over the action space (i.e., all

available items) and suffer from the stuck agent problem [8]—the

“maximize" operation becomes infeasible when the action space has

high dimensionality (e.g., 100,000 items form a 10k-dimensional

action space) [3]. Policy-gradient-based methods use the average

reward as a guideline to mitigate the stuck agent problem [3]. How-

ever, they are prone to converge to sub-optimality [26]. While both

DQN and policy gradient are more suitable for small action and

state spaces [20, 34] in a recommendation context, hybrid meth-

ods [3, 8, 13, 40] have the capability to map large high-dimensional

discrete state spaces into low-dimensional continuous spaces via

combining the advantages of Q-learning and policy gradient. A typ-

ical hybrid method is the actor-critic network [19], which adopts

policy gradient on an actor-network and Q-learning on a critic net-

work to achieve Nash equilibrium on both networks. Actor-critic

networks have been widely applied to DRL-based recommender

https://doi.org/10.1145/3477495.3532015
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Figure 1: The proposed Locality-Sensitive stete-guided Ex-
perience Replay (LSER). The environment provides the cur-
rent state 𝑠𝑡 , with the policy 𝜋 learned by the agent; the ac-
tion 𝑎𝑡 can be obtained by 𝑎𝑡 = 𝜋 (𝑠𝑡 ). 𝑟𝑡 will be provided by
the user (e.g. click or not). LSER takes 𝑠𝑡 as the input and
encodes it on the projective space. Given the encoded states,
LSER will return the most similar experience for the DRL
agent to update the parameters. After that, this transition
ℎ(𝑠𝑡 ) : (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 ) will be stored.

systems [5, 21]. Hence, we use the actor-critic network as the main

framework in this study.

Most studies assuming the reward function is associated with

explicit user feedback such as purchase or rating may be hindered

by the sparse rewards prevalent in the context of recommender

systems. As an example, before a user signals explicitly by making

a purchase or rating on the item of interest, a large amount of inter-

action data has been generated. Such an absence of rewards makes

it difficult for the agent to learn an appropriate recommendation

policy. Moreover, existing DRL-based recommendation methods,

except for policy-gradient-based ones, rely heavily on experience

replay to learn from previous experience to avoid re-traversal of

the state-action space and stabilize the training on large, sparse

state and action spaces [6, 36]. The replay buffer may get stuck with

a large number of interactions and thus degrade or even damage

the policy learning. Furthermore, in contrast to the larger, diverse

pool of continuous actions required in recommendation tasks, ex-

isting experience replay methods are mostly designed for games

with a small pool of discrete actions. Therefore, a straightforward

application of those methods may result in strong biases during

the policy learning process [12], thus impeding the generalization

of optimal recommendation results. For example, Schaul et al. [29]

assume that not every experience is worth replaying and propose

a prioritized experience replay (PER) method to replay only the

experience with the largest temporal difference error. Sun et al.

[33] propose attentive experience replay (AER), which introduces

similarity measurements into PER to boost the efficiency of find-

ing similar states’ experiences, but attention mechanisms cause

inefficiency on large state and action spaces [18].

We present a novel experience replay structure, Locality-Sensitive

Experience Replay (LSER), to address the above challenges. Differ-

ing from existing approaches, which apply random or uniform

sampling, LSER samples experiences based on expected states. In-

spired by collaborative filtering (which measures the similarity

between users and items to make recommendations) and AER [33],

LSER only replays experience from similar states to improve the

sampling efficiency. Specifically, we introduce a rankingmechanism

to prioritize replays and promote higher-reward experiences. We

further use the 𝜖-greedy method to avoid replaying high-reward

states excessively.

Considering the high-dimensionality of vectorized representa-

tions of states [6], we convert similarity measurements for high-

dimensional data into a hash key matching problem and employ

locality-sensitive hashing to transform states into low-dimensional

representations. Then, we assign similar vectors the same hash

codes (based on the property of locality-sensitive hashing). Such a

transformation reduces all the states into low dimension hash keys.

In summary, we make the following contributions:

• We propose a novel experience replay method (LSER) for

reinforcement-learning-based online recommendation. It

employs a similarity measurement to improve training effi-

ciency.

• LSER replays experience based on the similarity level of

the given state and the stored states; the agent thus has a

higher chance to learn valuable information than it does

with uniform sampling.

• The experiments on three platforms, VirtualTB, RecSim and

RecoGym, demonstrate the efficacy and superiority of LSER

to several state-of-the-art experience replay methods.

2 METHODOLOGY
In this section, we will briefly introduce the proposed LSER method

with theoretical analysis. The overall structure of using LSER in

DRL RS can be found in Figure 1.

2.1 Overview
Online Recommendation aims to find a solution that best reflects

real-time interactions between users and the recommender system

and apply the solution to the recommendation policy. The system

needs to analyze users’ behaviors and update the recommendation

policy dynamically. In particular, reinforcement learning-based rec-

ommendation learns from interactions through a Markov Decision

Process (MDP).

Given a recommendation problem consisting of a set of users

U = {𝑢0, 𝑢1, · · ·𝑢𝑛}, a set of items I = {𝑖0, 𝑖1, · · · 𝑖𝑚} and user at-

tributes D = {𝑑0, 𝑑1, · · · , 𝑑𝑛}, MDP can be represented as a tuple

(S,A,P,R, 𝛾), where S denotes the state space (i.e., the combina-

tion of the subsets of I and its corresponding user information)

A denotes the action space, which represents the agent’s selection

during recommendation based on the state space S, P denotes the

set of transition probabilities for state transfer based on the action

received, R is a set of rewards received from users, which are used

to evaluate the action taken by the recommender system (each

reward is a binary value to indicate whether user has clicked the



recommended item or not), and 𝛾 is a discount factor 𝛾 ∈ [0, 1] for
the trade-off between future and current rewards.

Given a user 𝑢 and an initial state 𝑠0 observed by the agent (or

the recommender system), which includes a subset of the item set

I and the user’s profile information 𝑑0, a typical recommendation

iteration for the user proceeds as follows: first, the agent takes

action 𝑎0 based on the recommended policy 𝜋0 under the observed

state 𝑠0 and receives the corresponding reward 𝑟0—the reward 𝑟0
is the numerical representation of user’s behavior such as click-

through or not; then, the agent generates a new policy 𝜋1 based

on the received reward 𝑟0 and determines the new state 𝑠1 based

on the probability distribution 𝑝 (𝑠new |𝑠0, 𝑎0) ∈ P. The cumulative

reward (denoted by 𝑟𝑐 ) after 𝑘 iterations from the initial state is as

follows:

𝑟𝑐 =
∑
𝑘=0

𝛾𝑘𝑟𝑘

DRL-based recommender systems use a replay buffer to store and
replay old experiences for training. Given the large state and action

space in a recommender system, not every experience is worth

replaying [6]—replaying an experience that does not contain useful

information will increase the training time significantly and intro-

duce extra uncertainty to convergence. Hence, it is reasonable to

prioritize and replay important experiences for DRL recommender

systems.

The ideal criterion for measuring the importance of a transition

in RL is the amount of knowledge learnable from the transition

in its current state [11, 29]. State-of-the-art methods like AER are

unsuitable for recommendation tasks that contain large, higher

dimensional state and action spaces as their sampling strategies

may not work properly. Thus, we propose a new experience replay

method named Locality-sensitive experience replay (LSER) for online
recommendations, which uses hashing for dimension reduction

when sampling and storing the experiences.

2.2 Locality-sensitive Experience Replay
We formulate the storage and sampling issue in LSER as a similarity

measurement problem, where LSER stores similar states in the same

buckets and samples similar experiences based on state similarities.

A popular way of searching for similar high-dimensional vectors in

Euclidean space is Locality-Sensitive Hashing (LSH), which follows

the idea of Approximate Nearest Neighbor (ANN) while allocating

similar items into the same buckets to measure similarity. How-

ever, standard LSH conducts bit-sampling on the Hamming space;

it requires time-consuming transformation between the Euclidean

space to the Hamming space, liable to lose information. Aiming at

measuring the similarity between high-dimensional vectors without

losing significant information, we propose using a 𝑝-stable distribu-

tion [24] to conduct dimensionality reduction while preserving the

original distance. This converts high-dimensional vectors (states)

into low-dimensional representations easier to be handled by the

similarity measure.

To address possible hash collision (i.e., dissimilar features may

be assigned into the same bucket and recognized as similar), we

introduce the formal definition of the collision probability for LSH.

Then, we theoretically analyze the collision probability for the

𝑝-stable distribution to prove that our method has a reasonable

boundary for collision probability.

Definition 1 (Collision probability for LSH in 𝑝-stable

distribution). Given an LSH function ℎ𝑎𝑏 ∈ H and the probability
density function (PDF) of the absolute value of the 𝑝-stable (𝑝 ∈ [1, 2])
distribution 𝑓𝑝 (𝑡) in 𝐿𝑝 space, the collision probability for vectors u
and v is represented by:

𝑃 = 𝑃𝑟 [ℎab (u) = ℎab (v)] =
∫ 𝑤

0

1

𝑐
𝑓𝑝

(
𝑡

𝑐

) (
1 − 𝑡

𝑤

)
𝑑𝑡 (1)

where 𝑐 = ∥u − v∥𝑝 and𝑤 is a user-defined fixed distance measure.

Here, we use a 2-state distribution, i.e., normal distribution for

dimensionality reduction. We randomly initialize 𝑛ℎ hyperplanes

based on the normal distribution on the projective space P𝑛
to get

the hash representation for a given state 𝑠 , where 𝑛 is the dimension

of the state. The hashing representation ℎ(𝑠) for the given state 𝑠 is

calculated as follows:

ℎ𝑝∈P𝑛 (𝑠) = {0, 1}𝑛with
{
1 𝑝𝑖 · 𝑠𝑖 > 0

0 𝑝𝑖 · 𝑠𝑖 ≤ 0 .
(2)

The collision probability of the above method can be represented

as:

𝑃 = Pr [ℎ𝑝∈P𝑛 (u) = ℎ𝑝∈P𝑛 (v)] = 1 − 𝐴𝑛𝑔(u, v)
𝜋

where 𝐴𝑛𝑔(u, v) = arccos

|u ∩ v|√
|u| · |v|

. (3)

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2) formulates the information loss during the projec-

tion, where we use term 𝑒 to represent the quantification between

the real value 𝑝 · 𝑣 and hashed results induced from ℎ(v). Since
the relative positions in the original space are preserved during

the hash transformation with an extra measurement 𝑒 , the upper

bound and lower bound of collision probability boundary in projec-

tive space is guaranteed to be maintained by introducing an extra

parameter 𝑒 . That means the more dissimilar states will not receive

a higher probability to be allocated to the same hash result.

Lemma 1. Given an arbitrary hash function ℎ𝑎𝑏 ∈ H , the collision
probability for a given vector u and v is bounded at both ends.

Proof. Since Pr [ℎ𝑎𝑏 (u) = ℎ𝑎𝑏 (v)] monotonically decreases in

𝑐 for any hash function from the LSH familyH , the collision proba-

bility is bounded from above by 𝑃𝑟 [ℎ𝑎𝑏 (u) = ℎ𝑎𝑏 (v)] for 𝑐 − 𝑒 and

from below by 𝑃𝑟 [ℎ𝑎𝑏 (u) = ℎ𝑎𝑏 (v)] for 𝑐 + 𝑒 .

𝑃 =

∫ 𝑤

0

1

𝑐
𝑓𝑝

(
𝑡

𝑐

) (
1 − 𝑡

𝑤

)
𝑑𝑡 =

∫ 𝑤/𝑐

0

𝑓𝑝 (𝑞)
(
1 − 𝑞𝑐

𝑤

)
𝑑𝑞 with 𝑞 =

𝑡

𝑐
.

Then, we have the upper bound:∫ 𝑤/(𝑐−𝑒)

0

𝑓𝑝 (𝑞)
(
1 − (𝑐 − 𝑒)𝑞

𝑤

)
𝑑𝑞 with 𝑞 =

𝑡

𝑐 − 𝑒

=

∫ 𝑤/(𝑐−𝑒)

0

(
𝑓𝑝 (𝑞)

(
1 − 𝑞𝑐

𝑤

)
+
𝑞𝑒 𝑓𝑝 (𝑞)

𝑤

)
𝑑𝑞

≤𝑃 + 𝑒

𝑤

∫ 𝑤/(𝑐−𝑒)

0

𝑞𝑓𝑝 (𝑞) 𝑑𝑞 ≤ 𝑃 + 𝑒

𝑐 − 𝑒



and the lower bound:∫ 𝑤/(𝑐+𝑒)

0

𝑓𝑝 (𝑞)
(
1 − (𝑐 + 𝑒)𝑞

𝑤

)
𝑑𝑞 with 𝑞 =

𝑡

𝑐 + 𝑒

=

∫ 𝑤/(𝑐+𝑒)

0

(
𝑓𝑝 (𝑞)

(
1 − 𝑞𝑐

𝑤

)
−
𝑞𝑒 𝑓𝑝 (𝑞)

𝑤

)
𝑑𝑞

= 𝑃 − 𝑒

𝑤

∫ 𝑤/(𝑐+𝑒)

0

𝑞𝑓𝑝 (𝑞) 𝑑𝑞 −
∫ 𝑤/𝑐

𝑤/(𝑐+𝑒)
𝑓𝑝 (𝑞)

(
1 − 𝑞𝑐

𝑤

)
𝑑𝑞

≥ 𝑃 − 𝑒

𝑐 + 𝑒
−
(
1 − 𝑐

𝑐 + 𝑒

)
= 𝑃 − 2𝑒

𝑐 + 𝑒

We compute the upper bound based on Hölder’s inequality in

𝐿1 space:∫ 𝑤/(𝑐−𝑒)

0

𝑞𝑓𝑝 (𝑞) 𝑑𝑞 ≤
(

sup

𝑞∈[0,𝑤/(𝑐−𝑒) ]
𝑞

)
∥ 𝑓𝑝 ∥1 ≤ 𝑤

𝑐 − 𝑒

Considering the 𝐿∞ space, we have:∫ 𝑤/(𝑐−𝑒)

0

𝑞𝑓𝑝 (𝑞) 𝑑𝑞 ≤ ∥ 𝑓𝑝 ∥∞
∫ 𝑤/(𝑐−𝑒)

0

𝑞 𝑑𝑞 =
𝑤2∥ 𝑓𝑝 ∥∞
2(𝑐 − 𝑒)2

We use the similar method in 𝐿1 to compute the lower bound:∫ 𝑤/𝑐

𝑤/(𝑐+𝑒)
𝑓𝑝 (𝑞)

(
1 − 𝑞𝑐

𝑤

)
𝑑𝑞 ≤

(
sup

𝑞∈[𝑤/(𝑐+𝑒),𝑤/𝑐 ]

(
1 − 𝑞𝑐

𝑤

))
∥ 𝑓𝑝 ∥1

≤ 1 − 𝑐𝑤/(𝑐 + 𝑒)
𝑤

=
𝑒

𝑐 + 𝑒

and in 𝐿∞:∫ 𝑤/𝑐

𝑤/(𝑐+𝑒)
𝑓𝑝 (𝑞)

(
1 − 𝑞𝑐

𝑤

)
𝑑𝑞 ≤ ∥ 𝑓𝑝 ∥∞

∫ 𝑤/𝑐

𝑤/(𝑐+𝑒)

(
1 − 𝑐

𝑤
𝑞

)
𝑑𝑞

≤
𝑒2𝑤 ∥ 𝑓𝑝 ∥∞
2𝑐 (𝑐 + 𝑒)2

The collision probability 𝑃𝑟 [ℎ𝑎𝑏 (𝑢) = ℎ𝑎𝑏 (𝑣)] is bounded from

both ends as follows:[
𝑃 −min

(
2𝑒

𝑐 + 𝑒
,
𝑒2𝑤 ∥ 𝑓𝑝 ∥∞
2(𝑐 + 𝑒)2

)
, 𝑃 +min

(
𝑒

𝑐 − 𝑒
,
𝑤2∥ 𝑓𝑝 ∥∞
2(𝑐 − 𝑒)2

)]
□

Note that, when calculating the lower and upper bounds, 𝑞 rep-

resents
𝑡

𝑐+𝑒 and
𝑡

𝑐−𝑒 , respectively. The algorithm of LSER is shown

in Algorithm 1.

In the following, we demonstrate from two perspectives that

LSER can find the efficiency of a similar state. First, we show the

efficacy of LSER with a theoretical guarantee, i.e., similar states

can be sampled given the current state. We formulate ‘the sam-

pling of similar states’ as a neighbor-finding problem in the projec-

tive space and provide theoretical proof of the soundness of LSER.

Given a set of states S, and a query 𝑞𝑠 , LSER can quickly find a

state 𝑠 ∈ S within distance 𝑟2 or determine that S has no states

within distance 𝑟1. Based on existing work [16], the LSH family

is (𝑟1, 𝑟2, 𝑝1, 𝑝2)-sensitive, i.e., we can find a distribution H such

that 𝑝1 ≥ 𝑃𝑟ℎ∼H [ℎ𝑎𝑏 (u) = ℎ𝑎𝑏 (v)] when u and v are similar and

𝑝2 ≤ 𝑃𝑟ℎ∼H [ℎ𝑎𝑏 (u) = ℎ𝑎𝑏 (v)] when u and v are dissimilar.

Theorem 2. Let H be (𝑟1, 𝑟2, 𝑝1, 𝑝2)-sensitive. Suppose 𝑝1 > 1/𝑛
and 𝑝2 > 1/𝑛, where 𝑛 is the size of data points. There exists a solution

for the neighbor finding problem in LSER within 𝑂 (𝑛𝜌𝑝−1
1

log𝑛)
query time, and 𝑂 (𝑛1+𝜌𝑝−1

1
) space.

Proof. Assume 𝑟1, 𝑟2, 𝑝1, 𝑝2 are known, 𝜌 =
log(1/𝑝1)
log(1/𝑝2) , and 𝑘 =

log(𝑛)
log(1/𝑝2) where 𝑘 is the number of hash functions, and LSH initial-

izes 𝐿 tables. Based on the definition in [16], we have:

𝑘𝐿 = 𝑘

⌈
𝑝−𝑘
1

⌉
≤ 𝑘 (𝑒 log(1/𝑝1) ·𝑘 + 1) ≤ 𝑘 (𝑛𝜌/𝑝1 + 1) = 𝑂 (𝑛𝜌/𝑝1 log𝑛)

(4)

The space complexity is straightforward and can be calculated

as 𝑂 (𝐿𝑛𝑑𝑠 ) where 𝑑𝑠 is the dimension of state 𝑠 . It can be written

as 𝑂 (𝑛1+𝜌/𝑝1𝑑𝑠 ) (by applying 𝐿 = 𝑛𝜌/𝑝1) and further simplified

into 𝑂 (𝑛1+𝜌/𝑝1).
Then, we prove LSER can find similar neighbors. The 𝐿 table

can be classified into two categories: similar and dissimilar. Given a

state 𝑠 , the similar category gives similar states while the dissimilar

category provides dissimilar states. We split the two categories

such that 𝐿 = ⌊𝑛⌋ + ⌈𝑚⌉ and its corresponding ⌊𝑘⌋, ⌈𝑘⌉. Given any

state 𝑠 ∈ S in the distance 𝑟1, LSER must be able to find the most

similar states with higher probability—the query and the data need

to share the same hash-bucket in one of the tables. The probability

of their not sharing the same hash-bucket is

(1 − 𝑝
⌊𝑘 ⌋
1

) ⌊𝑛⌋ (1 − 𝑝
⌈𝑘 ⌉
1

) ⌈𝑚⌉ ≤ (1 − 𝑝
⌊𝑘 ⌋
1

)𝑛−1 (1 − 𝑝
⌈𝑘 ⌉
1

)𝑚 (5)

≤ 𝑒−𝑛𝑝
⌊𝑘⌋
1

−𝑚𝑝
⌈𝑘⌉
1 (1 − 𝑝

⌊𝑘 ⌋
1

)−1 (6)

= 𝑒−(𝑛𝑝
−1+𝛼
1

+𝑚𝑝𝛼
1
)𝑛−𝜌

(1 − 𝑝
⌊𝑘 ⌋
1

)−1
(7)

= 𝑒−1 (1 − 𝑝
⌊𝑘 ⌋
1

)−1 (8)

where 𝛼 = ⌈𝑘⌉ −𝑘 . We have applied the definitions 𝑝𝑘
1
= 𝑝

𝜌𝑘

2
= 𝑛−𝜌

for step 6 to step 7 and 𝑛𝑝−1+𝛼
1

+𝑚𝑝𝛼
1
= 𝑛𝜌 for step (7) to (8). Finally,

we get the probability of LSER’s getting the similar states as follows:

𝑃 ≥ 1 − 𝑒−1 (1 − 𝑝
⌊𝑘 ⌋
1

)−1 > 0

Recall that 𝑝1 > 1/𝑛. Therefore, we conclude that LSER can find

the most similar states. □

2.3 Storage and Sampling Strategy
Existing experience replay methods in DRL research assume that

recent experience is more informative than older experience. There-

fore, they simply replace the oldest experience with the newest

experience to update the experience buffer in DRL-based recom-

mender systems without further optimization.

As such, some valuable experiences might be discarded, i.e., cat-

astrophic forgetting. In contrast, we design a state-aware reward-

driven experience storage strategy, which removes the experience

with the lowest reward—instead of following the First-In-First-Out

(FIFO) strategy—when the replay buffer is full. Formally speaking,

a transition 𝜏𝑡 : (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 ) will be stored in the replay buffer

based on the value ℎ𝑝∈P𝑛 (𝜏𝑡 .𝑠𝑡 ). If the replay buffer is full, the tran-
sition with the same value of ℎ𝑝∈P𝑛 (𝜏𝑡 .𝑠𝑡 ) but lower reward will

be replaced. In practice, an indicator𝑚𝑡 is stored in the transition

as well to indicate when the recommendation should terminate.
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Figure 2: Given a high dimensional space, three random
hype-planes are initialized based on normal distribution.
Eachhyper-plane splits the space into twohash areas 0 and 1.
The space is split into six hash areas.We can find that, states
are encoded into a binary string e.g.,{111, 101, 011, 001, 000}

The sampling strategy is another crucial component of LSER,

determiningwhich experience should be selected for the agent to op-

timize in LSER. We propose a state-aware reward-driven sampling

strategy that only replays the experience with the top-N highest

rewards in the same hashing area; this way, the agent can quickly

find the correct direction for optimization. We call our sampling

strategy ‘state-aware’ because we use a hash key to encode the state

and replay the experience based on the hash key. Our strategy has

a higher chance of replaying the correct experience than uniform

sampling. Here, we illustrate how to address three related chal-

lenges faced by our sampling strategy: exploitation-vs-exploration
dilemma, bias annealing and non-existence dilemma.

Exploitation vs. exploration dilemma. The exploitation and explo-

ration dilemma is a well-known dilemma when training an agent

for RL, including LSER. While our reward-driven strategy forces the

agent to exploit existing high-rewarding experiences, the agent may

converge to a sub-optimal policy instead of the globally optimal one.

We use a similar method to 𝜖-greedy to achieve a trade-off between

exploitation and exploration. LSER first draws a random probability

𝑝 ∈ [0, 1] then uses reward-driven sampling if the probability is

less than a threshold 𝜖max , and random sampling otherwise. The

threshold allows LSER to replay low-priority experiences to fulfill

the exploration requirement.

Bias annealing. Prioritizing partial experiences among the replay

buffer may introduce inductive bias [29, 33]—the training process is

highly non-stationary (due to changing policies); even a small bias

introduced by the sampling strategy may change the solution that

the policy converges to. A common solution is to let the priority

anneal periodically so that the agent can visit those less-replayed

experiences. By using the threshold, our 𝜖-greedy method has a

similar effect as annealing on allowing low-priority experiences to

be replayed.

Non-existence dilemma. When splitting the projective space into

areas to initialize hyperplanes, some areas may not have any data
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Figure 3: The structure of the DDPG which will be used as
the main algorithm for our DRL agent in this work.

points (esp. when the number of hyperplanes is large), causing

the ‘non-existence dilemma.’ Consequently, when a new transition

comes, the algorithm will stop if no experience can be found on

ℎ𝑝∈P𝑛 . We use the similarity measure to overcome this problem.

Specifically, we find the two hash areas that are most similar to each

other (based on current ℎ𝑝∈P𝑛 ) and conduct sampling on those two

states. We use Jaccard similarity to measure the similarity between

hash codes 𝐴, 𝐵. As such, LSER can always replay the relevant

experience.

2.4 Training Procedure
We use Deep Deterministic Policy Gradient (DDPG) [20] as the

training backbone. DDPG has been dominant in enabling dynamic

recommender systems recently [6]. It is worth mentioning that

compared to SAC or TD3, DDPG aims to solve the Q-value overes-

timation problem in a more sample-efficient way, which makes it

more suitable for recommender systems where interaction data are

usually highly sparse.

In our experiments, we choose an actor-critic network as the

agent and train two parts of the actor-critic network simultaneously.

We can simply incorporate LSER to any actor-critic based DRL RS

if LSER works properly with DDPG. The critic network aims to

minimize the following loss function:

𝑙 (𝜃𝜓 ) =
1

𝑁

𝑁∑
𝑗=1

((𝑟 + 𝛾𝜉) −𝜓𝜃𝜓 (𝑠𝑡 , 𝑎𝑡 ))
2

where 𝜉 = 𝜓𝜃 ′
𝜓
(𝑠𝑡+1, 𝜙𝜃 ′

𝜙
(𝑠𝑡+1))

where 𝜃𝜓 and 𝜃𝜙 are the critic and actor parameters, 𝑁 is the size

of the mini-batch from the replay buffer,𝜓𝜃 ′
𝜓
and 𝜙𝜃 ′

𝜙
are the target

critic and target actor network, respectively. We apply the Ornstein-

Uhlenbeck process in the action space to introduce perturbation;

this encourages the agent to explore. The target network will be

updated based on the corresponding hyper-parameter 𝜏 .



3 EXPERIMENTS

Algorithm 1: LSH memory by using dictionary

input :Transition for storage 𝜏 : (𝑠𝑡 , 𝑎𝑡 ,𝑚𝑡 , 𝑠𝑡+1, 𝑟𝑡 ),
capacity 𝑐 , state dimension 𝑑𝑠 , batch size 𝑏, Hash bits

𝑛ℎ , state 𝑠 for sampling, epsilon threshold 𝜖𝑚𝑎𝑥 .

1 Initialize 𝑛ℎ hyperplanes on projection space P𝑑𝑠 ;

2 Initialize empty dictionaryM;

3 Function encode(s) is
4 for 𝑝 in P𝑑𝑠 do
5 Calculate hash bits by using Eq.2;

6 end
7 return "".join(hash bits)
8 end
9 Function Push(𝜏) is
10 𝑣ℎ = encode(𝜏 .𝑠𝑡 ) // get the hash code

11 if T.size < T.capacity then
12 if 𝑣ℎ in M then
13 M[𝑣ℎ].append(𝜏);
14 else
15 M[𝑣ℎ] = 𝜏 ;

16 end
17 else
18 if 𝑣ℎ in M and 𝜏 .𝑟𝑡 > M[𝑣ℎ] [0] .𝑟 then

// replace tuple has the minimal reward

19 M[𝑣ℎ] [0] = 𝜏 ;

20 end
21 end
22 Sort(M[𝑣ℎ]) based on reward in ascending order;

23 end
24 Function Sample(s,b) is
25 𝑣ℎ = encode(𝑠);

26 𝑝 = random.random();

27 Find two most similar hash values 𝑣1, 𝑣2 based on 𝑣ℎ ;

28 if 𝑣ℎ in M then
29 if 𝑝 < 𝜖𝑚𝑎𝑥 then
30 result =M[𝑣ℎ] [−𝑏 :];
31 else
32 result = random.sample(M[𝑣ℎ], 𝑏);
33 end
34 else
35 if 𝑝 < 𝜖𝑚𝑎𝑥 then
36 result =M[𝑣1] [−𝑏 :] +M[𝑣2] [−𝑏 :];
37 else
38 result = random.sample(M[𝑣1], 𝑏) +

random.sample(M[𝑣2], 𝑏);
39 end
40 end
41 return result;
42 end

3.1 Online Simulation Platform Evaluation
We conduct experiments on three widely used public simulation

platforms: VirtualTB [31], RecSim [15] and RecoGym [28], which

mimic online recommendations in real-world applications.

VirtualTB is a real-time simulation platform for recommendations,

where the agent recommends items based on users’ dynamic inter-

ests. VirtualTB uses pre-trained generative adversarial imitation

learning (GAIL) to generate different users with both static and

dynamic interests. Moreover, the interactions between users and

items are generated by GAIL. Benefitting from that, VirualTB can

provide a large number of users and the corresponding interactions

to simulate real-world scenarios.

RecSim is a configurable platform for authoring simulation envi-

ronments that naturally supports sequential interaction with users

in recommender systems. RecSim differs from VirtualTB in con-

taining different, simpler tasks but fewer users and items. There

are two different tasks from RecSim, namely interest evolution and

long-term satisfaction. The former (interest evolution) encourages

the agent to explore and fulfill the user’s interest without further

exploitation; the latter (long-term satisfaction) depicts an environ-

ment where a user interacts with a content characterized by the

level of ‘clickbaitiness.’ Generally, clickbaity items lead to more

engagement yet lower long-term satisfaction, while non-clickbaity

items have the opposite effect. The challenge lies in balancing the

two to achieve a long-term optimal trade-off under the partially

observable dynamics of the system, where satisfaction is a latent

variable that can only be inferred from the increase/decrease in en-

gagement. We follow the same way as mentioned in [14] to evaluate

models.

RecoGym is a small Open AI gym-based platform where users

have no long-term goals. Different from RecSim and VirtualTB,

RecoGym is designed for computational advertising. Similar to

RecSim, RecoGym uses clicks (or not) to represent the reward signal.

Moreover, similar to RecSim, users in those two environments do

not contain any dynamic interests.

Considering RecoGym and RecSim have limited data points and

do not consider users’ dynamic interests, we select VirtualTB as

the main platform for evaluations. Our model is implemented in

Pytorch [27], and all experiments are conducted on a server with

two Intel Xeon CPU E5-2697 v2 CPUs with 6 NVIDIA TITAN X

Pascal GPUs, 2 NVIDIA TITAN RTX, and 768 GB memory. We use

two two-hidden-layer neural networks with 128 hidden units as

the actor network and the critic network. 𝜏 , 𝛾 , and 𝑐 are set to 0.001,

0.99 and 1𝑒6, respectively, during experiments.

3.2 Evaluation Metrics and Baselines
The evaluation metrics are environment-specific. For VirtualTB

and RecoGym, click-through rate is used as the main evaluation

metric. For RecSim, we use the built-in metric, which is a quality

score, as the main evaluation metric.

The overall evaluations are two-fold. We first compare our pro-

posed LSER with the mainstream ER variants under DDPG frame-

works. Then we show the efficacy of LSER by replacing the original

ER in existing DRL-based recommender system methods: TPGR [3],

KGRL [5] and PGPR [35] with LSER. Firstly, we compare ourmethod
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Figure 4: Result comparison with four baseline methods on VirtualTB, RecSim and RecoGym. The experiments are repeated
five times, and mean values are reported. 95% confidence intervals are shown. (a) is the result for VirtualTB; (b) is the result
for long-term satisfaction in RecSim; (c) is the result for interest evolution in RecSim; (d) is the result for RecoGym; (e) is the
result for 𝜖 study; (f) is the ablation study to show the effectiveness of each component

with the following ER baselines and the backbone experiments are

shown in Section 3.7

• Prioritized Experience Replay (PER) [29]: an experience re-

play method for discrete control, which uses TD-error to

rank experience and a re-weighting method to conduct the

bias annealing.

• Dynamic Experience Replay (DER) [22]: an experience re-

play method designed for imitation learning, which stores

both human demonstrations and previous experience. Those

experiences are selected randomly without any priority.

• Attentive Experience Replay (AER) [33]: an experience re-

play method that uses attention to calculate the similarly for

boosting sample efficiency with PER.

• Selective Experience Replay (SER) [17]: an experience replay

method for lifelong machine learning, which employs LSTM

as the experience buffer and selectively stores experience.

• Hindsight Experience Replay (HER) [1]: an experience replay

method that replays two experiences (one successful, one

unsuccessful) each time.

For AER, PER, SER, and HER, we use the same training strategy

as LSER. For DER, we use its original structure to run experiments

without human demonstrations. The size of the replay buffer is set

to 1, 000, 000 for VirtualTB and 10, 000 for RecSim and RecoGym.

The number of episodes for our experiments is set to 90, 000 for

VirtualTB and 1, 000 for RecSim and RecoGym. Only PER, AER, and

SER contain a prioritized operation to rank or store experience.

3.3 Results and Evaluation
Results for the three platforms (Fig 4) demonstrate our method

(LSER) outperforms the baselines: LSER yields significant improve-

ments on VirtualTB, which is a large and sparse environment; while

AER, DER, PER, and SER find a correct policy within around 50, 000

episodes, ours takes around 30, 000 episodes; HER does not perform

well because it introduces too much failed experience and has a

slow learning process; DER introduces the human demonstration

into the vanilla ER, which is hard to acquire for recommendation

tasks.

Applying PER to DDPG slightly outperforms applying DER to

DDPG, which is consistent with observations by previous work [25,

33]. As PER was originally designed for Deep Q-learning, it uses

the high TD-error to indicate highly informative experience for

the value network. When applying PER into DDPG, an actor-critic-

based algorithm, the sampled experience is also used to update the

policy network. Those experiences with high TD-error normally

diverge far from the current policy and harm the updates of the

policy-network. In contrast, LSER selects experience according

to the similarity with the current state. This preference for on-

distribution states tends to discard experiences that contain old

states and stabilize the training process of the policy network. AER



does not perform as well as PER in VirtualTB because it heavily

relies on the attention mechanism to calculate the similarity score

between states. LSER’s 𝜖-greedy method can force agents to explore

more when users’ interests shift.

All methods gained similar results on RecSim and RecoGym

because all methods can iterate all possible combinations of states

and actions. Fig. 4b, 4c and 4d show that LSER is slightly better and

more stable than baselines on RecSim and RecoGym. Since the two

platforms are quite small
1
, similarity matching and 𝜖-greedy do not

significantly improve performance.

3.4 Computational Efficiency
We show the computational efficiency of our method, LSER, by com-

paring the running time of the selected experience replay methods

in Table 1.

While performing poorly on RecSim and RecoGym, LSER is

faster than most baselines. In comparison, LSER introduces extra

running time in small environments (e.g., RecSim and RecoGym)

than large environments. For VirutalTB, AER takes a much longer

time than all other methods, due to attention calculation [18].

Table 1: Comparison of running time for DER, PER, SER,
AER and LSER coupling with DDPG in three different envi-
ronments when running the experiments in 90, 000 episodes

Running Time (10
3
s)

RecSim(LTS) RecSim(IE) RecoGym VirtualTB

DER 5.63 5.42 4.53 95.22

PER 5.44 5.15 4.18 94.52

SER 5.31 5.05 4.21 90.05

AER 5.18 4.94 4.12 145.33

HER 5.33 5.11 4.20 120.33

LSER 5.23 5.04 4.15 85.12

3.5 Ablation Study
We further investigate the effect of LSER’s store and sampling

strategy by replacing our store strategy with the normal strategy

and our sampling strategy with random sampling. The results of

our ablation study are shown in Fig. 4f, where LSER-P denotes LSER

with the replaced store strategy and LSER-S denotes LSER with

the replaced sampling strategy. We found the sampling strategy

played the most critical role in achieving good performance, as

LSER-S underperformed LSER significantly. The store strategy also

contributed to better performance. LSER-Pwas less stable (indicated

by a wider error bar). but outperformed LSER at ∼ 30, 000 episodes

due to the occurrence of sub-optimal policies.

3.6 Impact of Number of Hyperplanes
In our method, the number of hyperplanes is critical to determine

the length of a given state’s hash-bits. Longer hash-bits can provide

more accurate similarity measurement results but low efficiency,

while shorter hash-bits can increase efficiency but decrease accu-

racy. This is a trade-off that balances efficiency and accuracy.

1
The default setting of RecoGym only contains 100 users and ten products; RecSim

contains 100 users and 20 products.

We report the experimental results in VirtualTB, where we eval-

uate the effect by varying the number hyperplanes in LSER (shown

in Fig 5a). The results on the other two platforms show a similar

pattern.

The performance gradually increases with more hyperplanes,

but it levels off or even drops when the number of hyperplanes

reaches 20.

3.7 Study of Different Backbone Algorithms
LSER is a kind of experience replay method which could be used

in any DRL-based method. Hence, in this section, we would like

to investigate the performance of LSER with existing DRL-based

recommendation methods. To investigate this, we conduct the ex-

periments on the following DRL RS benchmarks:

• TPGR [3] is a tree-structured reinforcement learning-based

method for large-scale recommendations.

• KGRL [5] is a reinforcement learning-based method that

utilizes a knowledge graph for recommendations.

• PGPR [35] is a knowledge graph reasoning-based method

for the explainable recommendation.

All of those three baselines use the normal experience replaymethod.

We will replace it with LSER to see the performance. Moreover,

those three methods are evaluated in different experimental set-

tings, which makes it hard to conduct a unified comparison. Hence,

we conduct such experiments in VirtualTB. The results can be found

in Figure 5b.

As we can find, all of those methods have a considerable improve-

ment when LSER replaces the experience replay method. PGPR

shows a significant improvement after the LSER is incorporated.

The possible reason is that PGPR is a knowledge graph reasoning-

based method that relies on path reasoning, which LSER’s similarity

measurement mechanism can benefit from as similar knowledge

paths could lead to the same result.

3.8 Discussion
Figure 4a shows LSER suffers instability after reaching the first

peak at episode ∼ 50, 000. Different from the other methods, LSER

can quickly reach the optimal policy but suffers from fluctuation.

That indicates 𝜖-greedy tends to lead the agent towards learning

from low-priority experiences after the optimal policy is reached.

We alleviate the issue by adjusting the value of 𝜖 .

Here, we tried 𝜖 = {0, 0.9, 0.99, 1} to determine the best choice

of the 𝜖 on VirtualTB. The results are shown in Fig. 4e, where 𝜖 = 1

corresponds to greedy sampling while 𝜖 = 0 refers to randomly

sampling. Besides, we provide an intervention strategy to stabilize

the training process—the agent will stop exploration once the test

reward is higher than a reward threshold𝑇𝑟 . This strategy allows the

agent to find a near-optimal policy at an early stage. We examined

the performance under 𝑇𝑟=0.95, which delivers a better training

process.

4 RELATEDWORK
Zheng et al. [42] first introduced DRL to recommender systems,

and Zhao et al. [40] further exploited by under page-wise recom-

mendation scenario. Both of these two works use DQN to embed

user and item information for news recommendations, whereas



(a) Performance Comparison of different number of hyperplanes (b) Results for different DRL RS with LSER

Figure 5: Results for ablations and different DRL agents.

Vanilla ER is used to help the agent learn from past experience.

The vanilla ER, which uniformly samples experiences from the

replay buffer. Among them, Zhao et al. [41] apply DQN to online

recommendation and RNN to generate state embeddings; Chen

et al. [4] point out that DQN receives unstable rewards in dynamic

environments such as online recommendation and may harm the

agent; Chen et al. [3] found those traditional methods like DQN be-

come intractable when the state becomes higher-dimensional; DPG

addresses the intractability by mapping high-dimensional discrete

state into low-dimensional continuous state [5, 38].

Intuitively, some instances are more important than others. So a

better experience replay strategy is to sample experiences according

to how much the current agent can learn from each of them. While

such a measure is not directly accessible, proxies propose to retain

experiences in the replay buffer or to sample experiences from the

buffer.

In simple continuous control tasks, experience replay should

contain experiences that are not close to the current policy to pre-

vent fitting to local minima, and the best replay distribution is in

between an on-policy distribution and uniform distribution [7].

However, De Bruin et al. [7] also note that such a heuristic is un-

suitable for complex tasks where policies are updated for many

iterations. In DRL problems, when the rewards are sparse, the agent

can learn from failed experiences by replacing the original goals

with states in reproduced successful artificial trajectories [1].

For complex control tasks, PER [29] measures the importance

of experiences using the TD-error and designs a customized im-

portance sampling strategy to avoid the effect of bias. Based on

that, Ref-ER [25] actively enforces the similarity between policy

and the experience in the replay buffer, considering on-policy tran-

sitions are more useful for training the current policy. AER [33] is

an experience replay method that combines the advantages of PER

and Ref-ER. It uses an attention score to indicate state similarity

and replays those experiences awarded high similarity with high

priority. All the work above focuses on optimizing the sampling

strategy, aiming to select the salient and relevant agent’s experi-

ences in the replay buffer. Selective experience replay (SER) [17], in

contrast, aims to optimize the storing process to store only valuable

experiences. The main idea is to use a Long-short term memory

(LSTM) network to store only useful experiences.

5 CONCLUSION
This paper proposes state-aware reward-driven experience replay

(LSER) to address the sub-optimality and training instability issues

with reinforcement learning for online recommender systems. In-

stead of focusing on improving the sample efficiency for discrete

tasks, LSER considers online recommendation as a continuous task;

it then uses locality-sensitive hashing to determine state similar-

ity and reward for efficient experience replay. Our evaluation of

LSER against several state-of-the-art experience-replay methods on

three benchmarks (VirtualTB, RecSim, and RecoGym) demonstrate

LSER’s feasibility and superior performance.

In the future, we will explore new solutions for improving sta-

bility, such as better optimizers to help the agent get rid of saddle

points, new algorithms to stabilize the training for DDPG, and trust

region policy optimization to increase training stability [30]. More-

over, more advanced reinforcement learning algorithms could be

used to replace the DDPG, such as soft actor-critic (SAC) [10] or

Twin Delayed Deep Deterministic (TD3) [9].
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