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ABSTRACT
Many websites o�er promotions in terms of bundled items that can
be purchased together, usually at a discounted rate. ‘Bundling’ may
be a means of increasing sales revenue, but may also be a means for
content creators to expose users to new items that they may not
have considered in isolation. In this paper, we seek to understand
the semantics of what constitutes a ‘good’ bundle, in order to rec-
ommend existing bundles to users on the basis of their constituent
products, as well the more di�cult task of generating new bundles
that are personalized to a user. To do so we collect a new dataset
from the Steam video game distribution platform, which is unique
in that it contains both ‘traditional’ recommendation data (rating
and purchase histories between users and items), as well as bundle
purchase information. We assess issues such as bundle size and
item compatibility, and show that these features, when combined
with traditional matrix factorization techniques, can lead to highly
e�ective bundle recommendation and generation.

1 INTRODUCTION
�e basic goal of a Recommender System is to understand relation-
ships between users and the items they consume. Typically, this is
cast as estimating compatible user/item (or item/item) pairs, and
surfacing these as recommendations. An inherently more challeng-
ing task is to understand the semantics that describe relationships
between sets of items, in terms of what factors make them mutually
compatible and mutually desirable to a user. One area where such
semantics are important is for recommending bundles, or sets of
items that can be simultaneously co-purchased.

In this paper, we seek to apply recommender systems techniques
to bundle generation and recommendation tasks. Bundles are ubiq-
uitous on e-commerce platforms, though the semantics of how to
compose and recommend them have rarely been studied. One rea-
son for the relative scarcity of work in this area may simply be
the lack of suitable data to explore users’ interactions with bun-
dles. Here we contribute a dataset extracted from the Steam video
game distribution platform, which o�ers detailed information both
in terms of user/item interactions (including what games users
purchased, whether they played them or not a�er purchase, and
how they rated them), as well bundle promotions, and su�cient
information to extract what bundles were purchased by each user.
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Together, the features of our data allow us to assess how the
semantics of bundle recommendation di�er from traditional item
recommendation problems. We build on traditional techniques for
item-to-user recommendation, in order to assess the extent to which
items that are bundled together should be mutually compatible,
desirable, or diverse in their features. Beyond personalized bundle
recommendation, we can use the learned objective to generate new
bundles, in order to surface personalized promotions to a user.

2 RELATEDWORK
We build upon latent factor models, and in particular Bayesian
Personalized Ranking (BPR) [11], which is trained using implicit
feedback (i.e., purchases vs. non-purchases) in order to estimate
rankings of items that are likely to be interacted with.

Also related are systems that recommend items to groups of users
(i.e., recommending items to sets of users, as opposed to recom-
mending sets of items to users). For example, group recommen-
dation can be addressed by developing techniques that aggregate
preferences of individuals within groups. [2, 3, 5, 7]. Bundling
products for groups is also considered in [10], though their main
focus is item-to-group compatibility. Although the formulations
vary, such methods essentially work by maximizing item relevance
while minimizing disagreements between group members.

We also build on systems that consider item aggregate diversity.
Adomavicius and Kwon [1] study the importance of balancing ac-
curacy and aggregate diversity for ranking tasks, and Nieman and
Wolpers [9] study the relationship between aggregate diversity and
item co-occurrence.

Finally, given that our goal is to generate sets of items, our work
is related to papers that study basket recommendation and item
compatibility. �is includes both classical works on market bas-
kets (and itemset/association rule mining), as well as more modern
works that learn substitute and complement relationships [6, 13].
Our work di�ers from typical bundling scenarios (e.g. grocery shop-
ping) where similar sets of items can be recommended repeatedly.
Few recent works consider related forms of ‘bundling’ [4, 12, 14],
though di�er in terms of problem formulation, or lack actual bundle
sales data and therefore rely on heuristics for evaluation.

3 DATASET AND ANALYSIS
We use data from the Steam video game distribution network for
training purposes.1 We focus on the Australian Steam community,
by crawling users from the ‘GameAus’ community. In total, this
resulted in a network of 88,310 gamers and 10,978 games they
purchased. Basic statistics are shown in Table 1.

Among the 615 bundles available on Steam at the time of our
experiments, we found that 29,634 gamers (around 33%) purchased
1All code and data is available at h�p://cseweb.ucsd.edu/∼jmcauley/

http://cseweb.ucsd.edu/~jmcauley/


Table 1: Australian Community Data

Users 88,310
Total games 10,978
Total game purchases 902,967
Total bundles 615
Total bundle purchases 87,565
Users who purchased at least one bundle 29,634
Games that appear in at least one bundle 2,819
Average bundle size 5.73

one or more bundles, among 87,565 bundles purchased. �is sug-
gests a signi�cant demand for bundles, and a high potential for
personalized recommendation and bundle creation. �e average
bundle size is 5.63 games, and 2,819 (around 25%) of games appeared
in at least one bundle. Typically the bundled items are more pop-
ular games: even though only 25% of items appear in any bundle,
around 70% of purchases are over items that appear in a bundle.
In practice, this means that users o�en purchase bundles contain-
ing some items they already own, suggesting a need to modify or
personalize bundles toward a particular user.

4 PROBLEM FORMULATION
Before describing our approach to bundle recommendation, we
introduce some basic notation. Let U = {u1, . . . ,u |U |} be a set of
users, I = {i1, . . . , i |I |} a set of items and B = {b1, . . . ,b |B |} a set
of bundles, such that each bi ⊆ I . Personalized item ranking (item
BPR) can then be cast as creating a personalized ranking >u⊂ I2

over all pairs of items for a user u. Similarly, personalized bundle
ranking can be formalized as >u⊂ B2 over all pairs of bundles.

5 BUNDLE RANKING
We �rst provide methods for personalized ranking of existing bun-
dles to Steam users via Bayesian Personalized Ranking (BPR) [11].
We use a graph sampling technique to create a balanced training set
(as described below), then learn users’ preferences over individual
items using an item BPR model. �e representation learned by the
item BPR model can be used to estimate user-to-item compatibility
when personalizing bundles in the following stage, i.e., they can be
used as parameters in a bundle BPR model. Both the item BPR and
bundle BPR models are evaluated by computing the AUC metric,
which BPR methods approximately optimize.

Data Sampling. �e training data for item BPR,Ditem, should be a
list of triplets (u, ip , in ), where ip is an item the user has purchased
(positive item) and in is an item the user hasn’t purchased (negative
item). Similarly, the training data for the bundle BPR model, Dbundle ,
should be a list of triplets (u,bp ,bn ), where bp and bn are positive
and negative bundles for the user u. Since our dataset follows a
power-law (i.e., a small number of items/bundles are purchased by
a large fraction of the users), uniformly sampling negative items
(or bundles) in results in a method that is heavily biased toward
popular items, both for recommendation and generation, and leads
to qualitatively poor results. To overcome this problem of data
skew, we use a graph sampling algorithm [8] that creates Ditem and
Dbundle such that their negative items and bundles follow the same

degree distribution as their positive items and bundles.2 What this
means in practice is that it is not possible to distinguish positive ver-
sus negative items/bundles based only on their popularity, forcing
the model to learn a richer notion of compatibility.

5.1 Bayesian Personalized Ranking (BPR)
�e goal of BPR is to derive a personalized ranking >u over items
(or bundles). To model the ranking, we assume an estimator x̂ :
U × I → R encoding the compatibility between a user and an item,
which is used to de�ne the ranking

ip >u in ↔ x̂u,ip >R x̂u,in .

�e optimization criterion for BPR, BPROpt, as derived in [11] is:

BPROpt(θ ) =
∑

(u,ip,in )∈D
log(σ (x̂u,ip (θ ) − x̂u,in (θ ))) − λ ‖(θ )‖2

where, σ is the sigmoid function, θ is the parameter vector of the
compatibility function, D represents the training set, λ is the regu-
larization hyper-parameter, x̂u,p and x̂u,n represent compatibility
estimates that the user u would purchase item p and n respectively.
Recall that ip and in are a positive and a negative item, so the expres-
sion σ (x̂u,ip (θ ) − x̂u,in (θ )) essentially captures the probability that
the purchased item is correctly identi�ed as being more compatible
than the non-purchased one.

We use di�erent predictors x̂u,i and x̂u,b when considering item
and bundle recommendation, as described below.

5.1.1 Item BPR. �e estimator function for the item BPR model
is based on matrix factorization:

x̂u,i = βi + Pu ·Qi

where βi is an item parameter, and Pu and Qi are k-dimensional
latent parameter vectors for user u and item i respectively, to be
learned by optimizing BPROpt over Ditem.

5.1.2 Bundle BPR. �e bundle BPR model makes use of the pa-
rameters learned through the item BPR model to estimate the pref-
erence of a user toward a bundle as shown below:

x̂u,b =
1
|Bb |

∑
i ∈Bb
[κβi + (µPu ).(ωQi )] +Ccb + Nb

where β , P , and Q are learned from the item BPR model. µ and
ω are k × k dimensional matrix adjustment parameters for P and
Q respectively. cb represents the bundle correlation, which is the
mean pair-wise Pearson correlation of the items, represented using
their latent features Qi , present in the bundle. N is a maxj ∈B |Bj |
dimensional parameter that rewards or penalizes bundles of certain
sizes (to prevent the system from generating arbitrarily large bun-
dles). �e remaining parameters are scalars that trade-o� various
terms. All parameters are learned by optimizing BPROpt on Dbundle.

2�e scheme itself is a simple randomized ‘rewiring’ procedure on the original user-
item or user-bundle purchase graphs, which has previously been used to correct skew
when training recommender systems [6].



5.1.3 Cold Bundle Problem. We de�ne ‘cold’ bundles as those
which contain at least one item i ∈ I which is not observed in any
of the existing bundles in the dataset. Because of the way we have
trained the bundle BPR model (as a function of parameters of the
item BPR model), our model is robust to cold bundles, i.e. it can
rank any bundle containing items I ′ ⊂ I .

5.2 Evaluation
We compute the AUC to evaluate both item BPR and bundle BPR.
�e AUC is given by:

AUC =
1
|T |

∑
(u,p,n)∈T

δ (x̂u,ip − x̂u,in > 0)

where δ is the indicator function and T is the fraction of the data
withheld for testing. In other words, we are counting the fraction
of times the model correctly ranks p higher than n.

6 PERSONALIZED BUNDLE GENERATION
So far, we have considered recommending bundles that already
exist within the system. Next, we present a greedy algorithm that
uses the learned parameters to generate new bundles.

6.1 Greedy Algorithm
�e algorithm is described below. We start with an initial bundle (of
size S = 3) and select k = 10 neighbors in every iteration. �e size
of the neighbor set, k , is inversely related to the aggregate diversity
of the generated bundle, i.e., as k increases the method will tend to
favor popular items in generated bundles.
(1) Start with a bundle b containing S randomly-chosen items.
(2) Randomly select a set of k items I∗ ⊂ I \ {i ∈ b} and form a set

of new bundles B∗ by adding, deleting, and substituting items
from I∗.

(3) Let b∗ be the most preferred bundle (by a user u) among all
bundles in B∗ and P be the corresponding preference score, i.e.,
b∗ = arg maxb′∈B∗ (x̂u,b′ − x̂u,b ), and P = max(x̂u,b′ − x̂u,b ).

(4) If P > 0, then accept b∗ as the new bundle, otherwise accept b∗
with diminishing probability (following an annealing schedule).

(5) Repeat steps 2 to 4 until convergence.

6.2 Evaluation
We evaluate the generated bundles for a set of users using two cri-
teria. First, we consider how the generated bundle ranks compared
to existing bundles, according to our bundle BPR model. Second, we
consider the aggregate diversity of the generated bundles, in order
to assess the coverage of items within the system:

aggregate diverstiy =
#of distinct items across generated bundles

# of items
�e former of these evaluation measures is a simple sanity check

to ensure the greedy approach �nds local minima with high com-
patibility; the la�er is a qualitative assessment to assess whether a
diverse variety of bundles are recommended.

7 EXPERIMENTS
We consider items that occur in at least one existing bundle, re-
sulting in an item set of size 2,819. Using the sampling method

Table 2: Comparison of di�erent bundle recommendation
models (le�), and comparison of bundle BPR on cold bundles
(right)

Model AUC

BPR 0.8624
I-BPR 0.82212
BR 0.8519
BR + N 0.89447
BR + N + C 0.90276

Model AUC

BR 0.81203
BR + N 0.81928
BR + N + C 0.84669

described in Section 5, we create bundle and item data samples of
sizes 1, 016, 646 and 26, 717, 059 (respectively) which we partition
into 70%/10%/20% training/validation/test splits. We report per-
formance on the test set for the model that performs best on the
validation set.

7.1 Bundle Ranking
We compare the performance of our bundle ranking model against
several baselines: (1) Regular BPR (BPR); (2) Bundle BPR using
item features (I-BPR); (3) Our ‘vanilla’ model without bundle size
and bundle correlation (BR); and (4) BR with bundle size (BR + N ).
Finally we report (5) our proposed model including size and bundle
correlation (BR + N + C).

Performance in terms of the AUC is shown in Table 2 (le�). BPR
performs well but cannot be used for bundle generation as it uses
only bundle features and not item features. I-BPR overcomes this
limitation by using the mean over the item features to estimate the
preference of a user towards a bundle at the cost of reduced AUC.
Our vanilla model (BR)—without bundle correlation and bundle size
terms—has AUC close to that of BPR while using only item features.
�e main di�erence between BR and BPR is that the parameters
β , P and Q in BR are constants learned from the item BPR model.
When we add bundle correlation and bundle size terms in BR it
substantially outperforms BPR.

Cold Bundles. In Section 5.1.3, we suggested that our model is
robust to the cold bundle problem. To validate this we create a
reduced item set, I∗, by randomly removing 219 items from I and re-
sampling the training data, Dbundle , such that bundles only contain
items present in the reduced item set, I∗, where |I∗ | = 2600. �e
test set then consists of triplets (u,bp ,bn ) such that bp is a ‘cold’
bundle (containing at least one of the removed items) and bn is not.
It should be noted that the data for the item BPR model remains
unaltered as we are dealing with the cold bundle problem and not
the cold item problem. We observe in Table 2 (right) that when we
test our bundle BPR model on the test set we observe only a modest
reduction in AUC in spite of the presence of cold bundles.

7.2 Bundle Generation
We generate new bundles using the greedy algorithm described
in Section 6.1 for 1000 randomly selected users (Table 3). �e BR
model doesn’t have bundle size and bundle correlation as features
and hence reduces to an average of item BPR features; for this model
we set the minimum bundle size to 2, otherwise the model tends to



Table 3: Comparison of models for bundle generation.

Average Rank Bundle Size Aggregate Diversity
Random 348.60 4.46 0.824
BR 1.49 2.00 0.505
BR + N 3.35 4.32 0.307
BR + N + C 2.66 4.49 0.374

Figure 1: t-SNE embedding of item latent factors. Some gen-
erated (blue) and purchased (red) bundles are highlighted.

generate bundles of size 1 (as the maximum compatibility is always
greater than or equal to the average). Once we add the bundle size
as a feature we start to observe a range of bundle sizes (generally
between 3 and 8), though this has the e�ect of increasing the average
rank. Average rank and aggregate diversity both improve slightly
a�er including bundle correlation as a feature.

Our �nal model with bundle correlation is able to generate bun-
dles that are qualitatively similar to those preferred by Steam users.
Figure 1 shows a t-SNE embedding of latent representations for all
items such that similar items are close to each other, as well as a
sample of real and generated bundles. Our generated bundles seem
to consist primarily of three types of bundles: those in which all
items are similar (e.g. the series of Half Life games); those consisting
of multiple series collected together (e.g. multiple Bioshock games
along with multiple Sid Meier games); and bundles of di�erent
games with similar types (e.g. Shadow Warrior, Grand �e� Auto,
Assasin’s Creed, and �e Witcher).

In general, bundles with correlated games (in terms of their
item BPR representations) receive higher scores than those with
uncorrelated or negatively correlated items (Figure 2). Each point
in Figure 2a represents the mean bundle score ( ¯̂xu,b ) for 500 users
and bundle correlation, whereas each point in Figure 2b represents
the bundle score and correlation of the top bundle generated for a
user. Both �gures suggest a positive relationship between bundle
correlation (cb ) and bundle score (x̂u,b ).

Surprisingly, we �nd that few of the generated (or real) bundles
are particularly diverse; rather they tend to consist of closely related

(a) Existing Bundles (b) Generated Bundles

Figure 2: Variation of estimated preference x̂u,b with bun-
dle correlation cb . Bundles with highly correlated items are
usually preferred.

games. Indeed, our best models identi�ed positive bundle correla-
tion terms, indicating that diversity is a feature that is penalized
when considering users’ preferences toward real bundles.

8 CONCLUSION
We have shown a method to generate and evaluate personalized
bundle recommendation on the Steam video game subscriber net-
work. We developed a bundle BPR model which used the trained
features of an item recommendation model in order to learn person-
alized rankings over bundles. We showed that our model is robust
to cold bundles, and that new bundles can be generated e�ectively
via a greedy algorithm.

As future work, we intend to adapt these approaches to generate
recommendations for user populations (rather than individuals),
and to investigate the role that pricing (and in particular, discount
rate) has on users’ preferences toward bundles.
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