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Abstract

Graph-based recommendation algorithms treat user-
item interactions as bipartite graphs, based on which
low-dimensional vector representations of users and
items seek to preserve the relationships among them.
Previous methods usually capture users’ preferences by
directly learning first-order neighborhood patterns for
each node, which limits their ability to exploit the simi-
larity between two distant users/items as well as a user’s
preferences toward distant items. To address this po-
tential weakness, in this paper, we propose SMOG-CF
(Stacked Mixed-Order Graph Convolutional Networks
for Collaborative Filtering), a GCN-based framework
that can directly capture high-order connectivity among
nodes. Instead of implicitly capturing high-order con-
nectivity through embedding propagation, SMOG-CF
facilitates ‘path-level’ information propagation between
neighboring nodes at any order. The matrix form of our
embedding propagation formulas yields a model that is
easy to deploy and can be extended to a general frame-
work by adopting various information construction and
aggregation equations. Experiments on several datasets
of varying scale demonstrate the efficacy of our model.

Keywords: Recommendation Systems, Network Em-
bedding, Graph Convolutional Networks, High-order
Connectivity.

1 Introduction

Recommender Systems play an important role in many
services including advertising, e-commerce, and social
media. Collaborative Filtering (CF) addresses recom-
mendation problems by assuming that similar users typ-
ically share similar interests over items. Users and items
can be embedded as low dimensional vectors according
to historical user-item interaction data, such that the
trained embeddings will be useful for predicting whether
a user will interact with an item.
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Figure 1: An example of high-order relationships in a
user-item recommendation scenario. Left is the user-
item interactions and right is the user-item graph. Blue
and green lines are two 4-hop paths connecting Anna
and Rita.

Following the development of Network Representa-
tion Learning, graph-based models have gained increas-
ing attention. For recommendation, interactions can be
modeled as a bipartite graph, where users and items are
two isolated node sets and edges denote interactions be-
tween users and items. Graph-based models explore the
local and global topological structure of the user-item
graph combined with other attributes, and aim to learn
efficient low-dimensional representations for each user
and item. Graph Convolutional Networks (GCNs) [7]
and their variants [4,19-21] extend deep learning algo-
rithms to graph-structured data by defining convolution
operators on graphs, and have proven powerful when
dealing with various downstream tasks [3,13,17,22], in-
cluding learning low-dimensional embeddings of users
and items in a recommender system [19,21,26]. How-
ever, such models struggle to capture higher-order con-
nectivity patterns among nodes, as they only aggregate
information from directly neighboring nodes (or first-
order neighbors), though it could be beneficial to take
high-order connectivity into account [8,15].

Fig. 1 illustrates the importance of high-order con-
nections when inferring users’ preferences toward items.
Consider the following scenario, where customers are
purchasing clothes. According to the user-item bipartite
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graph presented, Anna and Emily share similar prefer-
ences, as they both bought blue and green shoes; sim-
ilarly Rita shares preferences with Emily. Graph Con-
volutional Networks that exploit information from first-
order neighbors can easily capture this type of informa-
tion. However, consider the case where two users share
no items in common. In Fig. 1, Anna and Rita have no
common purchases but might still common share pref-
erences. As highlighted in Fig. 1, we could find two
paths between Anna and Rita: Anna — blue T-shirt —
Emily — blue shoes — Rita (blue line), and Anna —
green T-shirt — Emily — green shoes — Rita (green
line). These two paths indicate that although Anna and
Rita have no common items, there is a strong connec-
tion between these two users and they are likely to have
similar preference to these items. This example suggests
that multi-hop paths are vital for exploiting the high-
order connectivity between two nodes in a graph and
thus potentially helpful for inferring users’ high-order
preferences.

In this paper, we propose SMOG-CF, a framework
for directly aggregating information from high-order
neighbors of a target node in interaction graphs. We
start with pair-wise message propagation from a p-
order (p > 1) neighboring node to a target node, and
demonstrate how to transform the pair-wise message
propagation formula into a matrix form that can be
deployed on large graphs, based on which SMOG-
CF could be extended to other basic GCN models.
Experiments on both large and small recommendation
datasets with implicit feedback verify the effectiveness
of our model.

Our contributions can be summarized as follows:

1. We propose SMOG-CF, a new CF model that
seeks to learn the message propagation from a
node’s any-order neighbors in a user-item graph by
defining a pair-wise message construction formula
between two nodes that are not directly connected.

2. We present a derivation of the any-order embedding
propagation formulas in matrix form, which makes
our model straightforward and efficient to imple-
ment, based on which we could extend SMOG-CF
to other GCN-based models.

3. We deploy SMOG-CF on four benchmark datasets.
Our experiments verify the superiority of SMOG-
CF over state-of-the-art techniques and the effec-
tiveness of the proposed components.

2 Related Work

2.1 Network Representation Learning. Network
representation learning techniques aim to learn low-

dimensional latent representations of nodes in a net-
work. Low-dimensional representations can effectively
preserve local and global topological structures of a
graph as well as node features, and can be used on
downstream tasks, such as node classification and link
prediction. Random-walk based models [2,12, 18] were
first proposed to learn such embeddings. Graph Neu-
ral Networks [4, 10, 20, 23], which try to adopt neural
network methods on graph-structured data, have devel-
oped rapidly in recent years. Graph Convolutional Net-
works (GCNs) [7], which attempt to learn latent node
representations by defining convolutional operation on
graphs, were first proposed to solve semi-supervised
classifications, and soon other GCN-based models were
proposed for other tasks like social influence analy-
sis [13], text classification [25] and recommender sys-
tems [19,26]. Following previous studies [21,24], in this
paper we focus on learning user and item embeddings in
a recommender (interaction) graph with implicit feed-
back.

2.2 High-order Proximity Learning on Graphs.
Higher-order structure in graphs has proven beneficial in
many cases such as hierarchical object representations,
scene understanding, link prediction and recommender
systems [1,16,21]. Network Motifs [15] were first pro-
posed to learn such higher-order embeddings through
Random-Walk based models, and were extended to
Graph Neural Network structures by designing a con-
volutional layer with Motif attention that could ag-
gregate first-order neighborhood information as well as
high-order Motif information [8]. Based on GCNs, The
high-order normalized Laplacian matrix is leveraged to
aggregate information passed from any-order neighbor-
ing nodes [1,9], though they fail to give a reasonable
explanation as to why the high-order normalized Lapla-
cian matrix should work in capturing connections across
remote nodes. SMOG-CF directly captures the infor-
mation passed from any of a node’s p-order neighbors
through a specific directed path, and demonstrates that
the high-order normalized Laplacian matrix can be de-
rived through message aggregation.

2.3 Graph-based Recommendation. As user-
item interactions can be viewed as a bipartite graph,
and a variety of studies have focused on using network
embedding methods to learn user and item representa-
tions in recommender systems. [19] proposes a GCN-
based auto-encoder framework for completing the user-
item interaction matrix, though it only exploits first-
order connections between nodes. PinSage [26] devel-
ops a data-efficient GCN structure which combines ef-
ficient random walks and graph convolutions to gener-
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ate node embeddings. HOP-Rec [24] combines graph-
based models with factorization models by performing
random walks to enrich the interactions between high-
order neighboring nodes and considering different or-
ders of items simultaneously when decomposing the la-
tent factors of user preferences. The recently proposed
NGCF [21] stacks multiple Graph Convolution Layers
to perform high-order embedding propagation and con-
catenates the output of each layer as the final represen-
tation of users and items, as an indirect way to lever-
age high-order connections, because this method can-
not control the propagation strength between two nodes
that are not directly connected. SMOG-CF is based
on NGCF, though we devise a multi-hop information
propagation path, based on which we can control the
strength of message propagation between two high-order
neighbors at any distance in an explicit way.

3 Preliminaries

3.1 Notations. In this paper, we focus on recom-
mendation systems with implicit feedback, and we treat
the user-item interaction as a bipartite graph. Follow-
ing traditional recommendation models, we project each
user or item to a low-dimensional embedding vector.
Our task is to learn the best embedding vectors for each
user and item and use these embeddings to make predic-
tions. Table 1 introduces some of the most important
symbols in this paper, while other notations will be in-
troduced when mentioned.

Table 1: Notations

Symbol Definition
g user-item bipartite graph
u user set
1% item set
Yui interaction record of v and ¢
Ny user u’s neighboring items
N item ¢’s neighboring users
A = {yi;} adjacency matrix of graph G

D= diag(dii)
X =E" = {z;}
E® = {e"}

My

degree matrix of graph G
initialized embedding matrix
embedding matrix at layer [

message propagated from j to ¢

3.2 General Graph Convolutional Networks.
Here we introduce previous Graph Convolutional Net-
work structures.

Graph Convolutional Networks try to define convo-
lutional neural network structures on graph data, aim-
ing to aggregate information from the neighborhoods of
each node and propagate it to update the embedding of
itself. This operation usually contains two parts: mes-

sage construction and message aggregation. Message
construction aims at calculating the information that
each node receives from its neighboring nodes while mes-
sage aggregation is aimed at delivering the integrated
information as efficiently as possible so that the newly
learned representation can better preserve topological
information as well as the node’s inherent attributes.
Graph Convolutional Network is an effective frame-
work for representation learning on graphs, and many
variants of GCNs have been proposed for different tasks.
As introduced above, the representation of each node is
updated using a pre-defined construction and aggrega-
tion operator to recursively aggregate the representation
of its neighboring nodes. Formally, the [-th layer of a
graph neural network can be generally defined as:
(3.1)

1!V = AGGREGATE ({m{!

7]

:jeMU{i}}),

where ml(.ilj is the message constructed that node j

passed to node j at layer [, and can be formulated as:

(32)  m{, = CONSTRUCT (/™" eV, c;;),
where 61(-171) and eg-lfl) represent the embeddings of

node ¢ and node j respectively. c¢;; is a coefficient
that reflects the connection strength between i and
j. The choice of the function CONSTRUCT(*) and
AGGREGATE(*) is very important in the design of
Graph Convolutional Network models, which usually
focus on designing efficient functions for these two
operators.

4 Methodology

We first introduce the framework of SMOG-CF, which
can capture high-order connection information in a di-
rect way. Then, we extend our framework to other
Graph Convolutional Network based recommender sys-
tems, and provide the embedding update formula in ma-
trix form, so that it can be quickly adapted to other
basic models. Finally, we present various techniques to
improve the model performance.

4.1 Model Framework. Fig.4.1 provides an
overview of SMOG-CF, which we describe in detail
below.

4.1.1 Raw Input and Embedding Initialization.
Our model requires a user-item bipartite interaction
graph G as input. As the raw input of each user
(resp. item) is a one-hot vector with a high-dimensional
representation, each user and item are embedded into
low-dimensional vectors z,, and x;.
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Figure 2: Framework of SMOG-CF.

4.1.2 Stacked Mixed-Order GCN layer. The
Stacked Mixed-Order GCNs (SMOG) layer takes the
initialized user/item embeddings as input and outputs
the final embeddings that take advantage of the infor-
mation propagated from the neighboring nodes at any
order.

In order to better illustrate our method, we first
introduce the path used for information propagation.
Then we present the equations used to calculate the
message propagated from a node to its neighboring
nodes at any order. Finally, we sum up all the messages
passed from a node’s neighbors from any distance and
present the embedding update formula for each user and
item.

Message Construction. Given a node 7, node
j € N;, for any node k € Nj (including node i), we
define k as the second-order neighbors of . Similarly,
we can define any p-order neighborhood connection: if
there exists a connection path from node i to node j
through p hops ¢ = ny — -+ = n,_1 — j, we call node
j a p-order neighboring node of node j, and the path is
a p-hop path connecting ¢ and j.

For a p-hop path [, form node i to node j, following
the message construction formula presented by [21], we
define the message constructed from j to ¢ through this

path as:

s m{?), =CONSTRUCT (e;, ¢;, ")
' =c§§’fk (Wl(p)ej + W (e © 6j)> :
where ij is the weight vector for distilling the p-
order neighboring node j’s information and e; and e;
are the initialized vectors of node 7 and j respectively.

® denotes the element-wise product and cg)k is the
connection strength between node ¢ and j through path

(®)

;.. Here Cijk 18 set as:

1
C(p) _

TE NN VTN

where |V;| denotes the number of first-order neighboring
nodes of ¢. This definition is similar to that in vanilla
GCNs [7], but we consider all nodes on the path instead
of the end nodes only, so that the connection strength
will decay as the length of the path increases.
Message Aggregation. If we use nyi))] to rep-

resent the number of paths from node i to its p-order

(4.4)

neighboring node j, and Ifi)j to represent the sum of
the messages passed from node j to ¢ through all of the
p-hop paths, we can conclude that:

(p)

i—3

_ ()
= Z Mk
k=1

n

I(P)

i—J

(4.5)
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Then we aggregate the messages propagated from
all of node i’s p-order neighboring nodes:

(4.6)
n(®
I(p - Z Z mljk+mlz
jEN»(p) k=1
n®
- Z Z Ef)k ( e —I—WQ(p)(ez@ej))
jEN(P)U{ 1 k=1
(p)
N T n A "
- Z Zj Alnkl = nktnk(“rl) Anka
J=1 k=1 \/7 nktnkt"' D]]
(Wl(p)ej + Wz(p)& © ej) .
where N = |U| + |V| represents the number of nodes

in the graph. In the derivation process, we use the
equation |[N;| = D;;, where D is the degree matrix of
the graph G. Then we transform the formula above into
a matrix form

(4.7)

N
Iz(p) _ Z(D 1/2AD 1/2) <W(P)€j 4 V[/'p(eZ ® 6j))
j=1
- p
- KD—WAD—W) (EW@ +(E6 E)ng))} .
3
where the subscript i, j represents the element at the -
th row and j-th column of the matrix, and the subscript
i represents the vector at the i-th row. Now we
can conclude the matrix form embedding formula by

concatenating all nodes’ embeddings as a matrix and
adopt the ReLU activation:

), ..I,f”)...I{p)D

— ReLU (ﬁp (Ewgp) +(EO E)Wé”))) :

s H® = ReLU ({I{P

where £ = D~Y/2AD~1/2 is the symmetric normalized
Laplacian matrix of graph G, H® is the hidden em-
bedding matrix that focuses on the p-order connections
between nodes. If we take up to p-order connection
into consideration, there would be p different hidden
embedding matrixes representing different levels of in-
formation. In order to fuse this information together,
we devise a pooling operation.

4.1.3 Embedding Pooling. We stack multiple
SMOG layers to better exploiting the rich information
in the graph. The initialized embedding matrix X could
be regarded as the embedding of 0-th layer E(®) then

we use the output of the [-the layer as the input of layer
I+ 1. Given p hidden embedding matrices from layer I:
HGY ... H®P) we use Average Pooling, which means
using the average of the hidden embedding aggregated
from different order nodes as the output embedding of
layer [ as well as the input of layer [ + 1:

E(*Y = MEANH®Y ...
P
= Z H(““)/p.
k=1

Other pooling methods like Max Pooling [9], might also
be used. However, in our model, we adopt average
pooling because max pooling might focus on low-order
hidden embeddings.

,HEP)
(4.9)

4.2 Model Prediction. Following [21], we concate-
nate the output of each layer in order to enhance the
representation capability. For a user u, the representa-
tions from [ layers are denoted as {eq(}), e ,eg)}. As
such, we concatenate them to constitute the final em-
bedding for a user; we do the same operation on items,
concatenating the item representations learned by dif-
ferent layers to get the final item embedding:

(4.10) e = eld)

“ Hj:1,2,---,l

*

er and e are the final representation of user u and
item ¢ respectively. Finally, we take the inner product
to estimate the preference of user u toward item i:

*T %

(4.11) J(u,i) = e er.

A higher §(u,4) indicates that user v is more likely to
have an interaction with item ¢. Other more complex in-
teraction functions such as multi-layer neural networks
could also be leveraged to make predictions.

4.3 SMOG-CF as a Framework. As mentioned
above, different GCN-based algorithms vary in their de-
sign of message construction and aggregation functions.
As the proposed SMOG-CF does not depend on a spe-
cific basic model, we could extend it to a generalized
framework by adopting other message construction and
aggregation functions. Here we present the p-order hid-
den embedding formulas of theses variants in Table 2.
The ‘vanilla’ column of Table 2 represents the
embedding propagation equation from layer [ to layer
(I + 1) while the p-order column represents the p-order
hidden embedding H?) of layer I. Node embeddings
of layer (I +1) E® can be calculated using Eq. 4.9.
Derivations for other models follow similarly. Noting
that the symmetric normalized Laplacian matrix plays
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Table 2: High-Order Embedding propagation formulas for different GCNs

Model ‘Vanilla formula: E¢HD =

p-order formula: HUH1P) =

GCN [7] ReLU(ZEVOW®)
GC-MC [19] |ReLU ReLU(£E<l>W§”)wgl>)

ReLU(LPEOWE:P)
ReLU ReLU(ﬁpE(l)ngvp))Wél,p))

PinSage [26] | ReLU (CONCAT (ReLU(zEE“>W§”),E<”)wg”) ReLU (CONCAT ReLU(ﬁPE<l>w§”P>),E<”)wgl’m)

NGCF'[21] |ReLU (£ (EWWﬁ” +(HO ®H(”)Wé)>

ReLU (£ (EOW{™ + (B® 0 BO)W{™) )

1 NGCF is the basic model of SMOG-CF.

an important role in the propagation formula (in matrix
form), the p-order connection can be easily acquired by
L multiplied by itself p—1 times, which can be computed
efficiently.

4.4 Training Strategies Here we introduce the
strategies adopted when training our model.

Loss Function. The loss function used in SMOG-
CF is expressed as
(412) L=L1+ )Mo
where £ is the pair-wise BPR loss function widely used
in binary classification problems, and Lo is the mini-
batch aware regularization loss [28]. A is the trade-off
parameter between accuracy and complexity.

L1 and L9 can be defined as follows:

(4.13) Ly=— Y logo(fui — fus)
(u,i,j)€O
(4.14) Lo= > lleull + llell + lles -

(u,i,5)€0

where O = {(u,4,j)|(u,i) € RY,(u,j) € R~} repre-
sents the pairwise training data, R denotes the posi-
tive samples while R~ denotes the negative samples.

Node Dropout. In our model we also adopt
dropout to alleviate overfitting. Following prior work on
GCNs, we propose to adopt node dropout, which is an
extension of dropout in MLP. Specifically, we randomly
block a particular node with probability p and discard
its outgoing messages. In practice, we randomly drop
(|| + |V|)p nodes of the Laplacian matrix.

5 Experiments

We conduct experiments on multiple real-world datasets
to evaluate the proposed model. We aim to answer the
following research questions:

e RQ1 How does SMOG-CF perform compared with
state-of-the-art collaborative filtering models?

e RQ2 Is the higher-order connection learned di-
rectly in our model necessary for improving per-
formance?

e RQ3 How do different hyper-parameter settings
affect model performance?

5.1 Experiment Setup

5.1.1 Data sets. We apply our model to four
datasets: Gowalla, Amazon-Books, MovieLens-latest,
and MovieLens-1m. All datasets are treated as implicit
feedback (i.e., we only consider the presence of an inter-
action). We provide statistic of the datasets in Table 3.
These datasets are summarized as follows:

Table 3: Dataset statistics

Datasets #Users #ltems #Clicks Density
Gowalla 29,858 40,981 1,027,370 0.00084
Amazon-Books 18,343 30,001 805,885 0.00146
Movielens-1m 6,040 3,706 1,000,209 0.04468
MovieLens-latest 610 9,724 100,836  0.01700

Gowalla: This dataset is derived from gowalla!, a
location-based social network where users share their
locations by checking-in. We use the cleaned version
provided by [21], where only users and items with over
10 interactions are preserved.

Amazon-books: This is a subset of the Amazon-books
dataset derived from the Amazon-Review dataset [11].
Movielens-latest €& Movielens-1m [5]:  These two
datasets contain explicit movie rating data collected
by GroupLens Research from the Movielens website?.
The Moivelens-1m dataset is a classical recommenda-
tion dataset, while Moivelens-latest a regularly updated
version. The version of the Movielens-latest dataset
used in our experiments is from September 2018.

5.1.2 Implementation Details We use Tensorflow
to implement our model and deploy it on an Nvidia

Twww.gowalla.com

2https://grouplens.org/datasets/movielens/
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Table 4: Experimental Results

Gowalla Amazon-books Movielens-latest Movielens-1m

Name Recall NDCG Recall NDCG Recall NDCG Recall NDCG
BPR 0.1291 0.1878 0.0261 0.0533 0.2128 0.3384 0.1972 0.3687
NeuMF [6] 0.1326 0.1985 0.0273 0.0551 0.2163 0.3443 0.2009 0.3703
GCN 0.1443 0.2125 0.0301 0.0596 0.2314 0.3607 0.2154 0.3897
GC-MC [19] 0.1480 0.2147 0.0317 0.0606 0.2325 0.3663 0.2187 0.3934
PinSage [26] 0.1491 0.2160 0.0320 0.0615 0.2338 0.3694 0.2195 0.3958
HOP-Rec [24] 0.1499 0.2188 0.0335 0.0642 0.2371 0.3771 0.2235 0.4018
NGCEF [21] 0.1547 0.2237 0.0364 0.0672 0.2418 0.3822 0.2277 0.4082
SMOG-CF 0.1574 0.2268 0.0383 0.0691 0.2453 0.3874 0.2301 0.4133

TiTan X GPU with 11G memory. The batch size B is
fixed to 64 for all datasets. The embedding dimension
D is set to 64 for Gowalla and Amazon-Books, and 22
for Movielens-latest and Movielens-1m. The learning
rate is set to 10~% for Gowalla, 5 * 10~* for Amazon-
Books and 5% 1073 for Movielens-latest and Movielens-
1m. The number of layers and hops is fixed at three if
not specified, and the default dropout ratio is 0.2 for all
datasets.

5.1.3 Baselines. We choose several comparative
methods, including some state-of-the-art models for rec-
ommendation, to evaluate the performance of our pro-
posed model. The optimal hyper-parameter settings for
each method are determined either by our experiments
or as suggested in the original papers.

e BPR [14]: This is a basic model-based recom-
mendation method which uses both user-specific
and item-based user embeddings to represent users’
preferences.

NeuMF [6]: This is one of the first models proposed
to use deep neural networks to model the interac-
tions between user embeddings and item embed-
dings. User embeddings and item embeddings are
directly learned via back propagation.

GC-MC [19]: This model considers recommenda-
tion as a matrix completion problem, and adopt
GCN as a graph auto-encoder framework to gener-
ate the representations for users and items.

PinSage [26]: This model is designed to employ
GraphSAGE [4] on item-item graph of pictures
on Pinterest!. We adopt this model on user-item
graph in this paper.

Twww.pinterest.com

e HOP-Rec [24]: This is a unified method that in-
corporates factorization with graph-based models.
The high-order information is harvest from random
surfing among neighborhood items for each user.

NGCF [21]: This is a recent model that proposed
to use Graph Convolution to capture user-item
collaborative filtering signals. One contribution of
NGCF is that it proposes to stack all layers of
GCNs to take high-order user-item connections into
consideration.

5.1.4 Evaluation Protocol. We adopt different
metrics to evaluate recommendation performance:
Recall@k and NDCGQE, two widely used metrics for
top-k ranking. By default, we set k¥ = 20. The de-
tailed introduction of these metrics are presented in the
supplementary material.

5.2 Comparative Results: RQ1. The experimen-
tal results of the proposed model and other comparative
models are shown in Table 4. Results show that SMOG-
CF outperforms other comparative models on these four
datasets for top-k recommendation. This is because the
proposed SMOG-CF can better exploit high-order con-
nections in user-item graphs through multi-hop paths.
Experiments also verify the effectiveness of the proposed
model on both medium-scale and small-scale datasets.

5.3 Study of SMOG-CF: RQ2. In order to verify
the effectiveness of various components in our model,
we conduct an ablation study. As the order of neighbors
(or the number of hops taken into consideration) plays
an important role, we first study how the performance
changes as a function of hop number. In Section 4,
we showed that the SMOG-CF framework could be
generalized to other GCN models by redefining the
message reconstruction and aggregation function, so we
extend our SMOG-CF framework to other GCN models

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited



and would like to study their performance.

5.3.1 Effect of Hop Numbers. To investigate how
the order of neighbors affects model performance, we
change the depth of neighbors considered in the mes-
sage propagation step. In particular, we consider hop
numbers from 1 to 4. Table 5 summarizes experimental
results, where SMOG-CF-p indicates the model consid-
ering up to p-order neighbors. In each experiment, we
set the number of embedding propagation layers to 3.
Note that SMOG-CF-1 is the same as NGCF, as we
do not consider high-order connectivity information at
each layer, but directly stack all layers together.

Table 5: Effect of hop number.

Gowalla Movielens-latest

Name Recall NDCG Recall NDCG
SMOG-CF-1 0.1547 0.2237 0.2418 0.3822
SMOG-CF-2 0.1563  0.2256  0.2435  0.3845
SMOG-CF-3 0.1574  0.2268  0.2453  0.3874
SMOG-CF-4 0.1580 0.2276 0.2462 0.3883

We find that when we increase the number of
hops, SMOG-CF achieves better performance on both
datasets. This is because we can directly uncover
the information propagated from high-order neighbor-
ing nodes at every layer. Another finding is that the
marginal improvements decrease as the number of hops
increases. This is due to: 1) the farther the distance be-
tween two nodes in a graph, the weaker the connection
between them. 2) applying a too deep architecture will
cause overfitting. Considering the balance between per-
formance and model complexity, we set the hop number
as 3 by default.

5.3.2 SMOG-CF as a framework: extension to
other GCN models. Here, we apply SMOG-CF to
other embedding propagation layers as variants of our
models. In particular, we replace the message con-
struction and aggregation functions used in SMOG-CF
(the same as that of NGCF, termed SMOG-CFngcer)
with that of GCNs (termed SMOG-CFgcn), PinSage
(SMOG—CFPinSage) and GC-MC (SMOG—CFgc_Mc). In
all experiments, the number of hops and layers is set to
three. Results are shown in Table 6.

Experiments show that when extending our archi-
tecture to other GCN models, they achieve better per-
formances on both medium and small datasets, com-
pared with the original model performance presented
in Table 4. This is because the proposed path-level in-
formation propagation for exploiting high-order connec-
tions works in different basic GCN models by redefining

Table 6: Performance of different embedding propaga-
tion techniques.

Gowalla Movielens-latest

Name Recall NDCG Recall NDCG
SMOG-CFgen 0.1493 0.2197 0.2391  0.3798
SMOG-CFgc-mc 0.1533  0.2229  0.2418 0.3831
SMOG-CFpinsag 0.1537  0.2232  0.2427 0.3842
SMOG-CFnger  0.1574  0.2268 0.2453 0.3874

the information construction and aggregation equations.
Also, SMOG-CFnccr outperforms other variants as we
leverage the direct user-item information interaction as
is shown in Eq. 4.3.

5.4 Parameter Sensitivity: RQ3. We study the
performance variation for our model on the MovieLens-
latest dataset with respect to the embedding dimension
D. Results are shown in Fig. 3. Our findings are as

0.245 | =@ Recall pglﬁ - 0.390
0240 | &~ NDCG -0380
b o
® 02351 -0370 Q
T‘, =
9 0.230 - L0360 ©
o )
0.225 4 L 0.350
0.220 - -0.340
0.215 - 0.330

8 12 16 20 24 28
Embedding Dimension (D)

Figure 3: Recall@20 and NDCG@20 of SMOG-CF on
MovieLens-latest under different embedding dimension
settings. The vertical dotted lines mark the values set
in this paper.

follows: The embedding dimension plays an important
role. When D is too small, the embedding vectors’ rep-
resentation capacity is restricted and cannot fully ex-
ploit the abundant information in the user-item graph.
When the embedding dimension increases, the perfor-
mance improves rapidly at the very beginning, but soon
the growth slows down and even declines after reaching
the best setting due to overfitting.

6 Conclusion

In this paper, we propose SMOG-CF, a GCN-based
model for learning low-dimensional representations of
users and items in a recommender system which can

Copyright © 2020 by SIAM
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directly capture higher-order connections in the user-
item graph. The crucial point of our method is that we
consider information propagation between neighboring
nodes at any order by designing path-level information
construction and aggregation formulas, and the concise
form of the corresponding embedding update formula
in matrix form ensures the simplicity and feasibility of
our method. We also extended our method to various
basic GCN models to make SMOG-CF a general frame-
work. Our comparative experiments and ablation stud-
ies showed that our method can learn effective represen-
tations of mixed-order user-item collaborative informa-
tion and thus improve recommendation performance.
As future work, we would like to extend our method
to recommender systems with explicit feedback, mean-
ing that the user-item graph would be weighted. We are
also interested in applying our method to other graph-
structured datasets such as knowledge graph learning.
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