Recommendation on Live-Streaming Platforms: Dynamic
Availability and Repeat Consumption

Jérémie Rappaz Julian McAuley Karl Aberer
EPFL University of California, San Diego EPFL
Lausanne, Switzerland CA, USA Lausanne, Switzerland

jeremie.rappaz@epfl.ch
ABSTRACT

Live-streaming platforms broadcast user-generated video in real-
time. Recommendation on these platforms shares similarities with
traditional settings, such as a large volume of heterogeneous con-
tent and highly skewed interaction distributions. However, several
challenges must be overcome to adapt recommendation algorithms
to live-streaming platforms: first, content availability is dynamic
which restricts users to choose from only a subset of items at any
given time; during training and inference we must carefully handle
this factor in order to properly account for such signals, where
‘non-interactions’ reflect availability as much as implicit preference.
Streamers are also fundamentally different from ‘items’ in tradi-
tional settings: repeat consumption of specific channels plays a sig-
nificant role, though the content itself is fundamentally ephemeral.

In this work, we study recommendation in this setting of a dy-
namically evolving set of available items. We propose LiveRec, a
self-attentive model that personalizes item ranking based on both
historical interactions and current availability. We also show that
carefully modelling repeat consumption plays a significant role
in model performance. To validate our approach, and to inspire
further research on this setting, we release a dataset containing
475M user interactions on Twitch over a 43-day period. We evaluate
our approach on a recommendation task and show our method
to outperform various strong baselines in ranking the currently
available content.

CCS CONCEPTS

+ Information systems — Recommender systems; Social net-
works; Multimedia streaming.

KEYWORDS

recommender systems, ranking methods, datasets, live-streaming,
repeat consumption

ACM Reference Format:

Jérémie Rappaz, Julian McAuley, and Karl Aberer. 2021. Recommendation on
Live-Streaming Platforms: Dynamic Availability and Repeat Consumption.
In Fifteenth ACM Conference on Recommender Systems (RecSys *21), September

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RecSys °21, September 27-October 1, 2021, Amsterdam, Netherlands

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8458-2/21/09...$15.00
https://doi.org/10.1145/3460231.3474267

jmcauley@eng.ucsd.edu

karl.aberer@epfl.ch

27-October 1, 2021, Amsterdam, Netherlands. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3460231.3474267

1 INTRODUCTION

Video streaming platforms, such as Twitch or Youtube Live, are
increasingly becoming a major part of people’s daily lives. As of
February 2020, Twitch reported 3 million broadcasters monthly and
15 million daily active users.! The increasing volume of concurrent
broadcasts, the growing audience, as well as the long-tail of niche
content, suggest the need for systems designed specifically for such
platforms.

On live-streaming platforms, content creators broadcast video
in real-time on their respective channels. The broadcast of real-
time content? implies that videos can only be consumed at specific
points in time. This dynamically evolving availability of streams
presents challenges for traditional methods. Implicit feedback meth-
ods, trained to capture preference signals from positive interactions,
make an underlying assumption that positive observations outrank
those items the user never interacted with; when availability is
dynamic this assumption no longer holds. Therefore, the explicit
modelling of availability signals is required to distinguish between
‘non-interaction’ resulting from implicit preferences and from un-
available items.

A live-streaming model should also account for repeat consump-
tion that represents a large portion of observed interactions, since
users repeatedly consume content produced by the same streamers.
This contrasts with typical recommendation domains (e.g. movies,
e-commerce) that generally assume one-off user-item interactions.
At the same time, it contrasts with existing lines of work on repeat
consumption [1], since the content of channels is dynamic and
differs at each new interaction.

In this work, we introduce the task of live-streaming recommen-
dation with temporally evolving availability. We first provide pre-
liminary experiments that demonstrate why existing methods are
unsuited to this setting and, in particular, why naive sampling
strategies are insufficient to capture user preferences. In light of
these experiments, we introduce a self-attentive model, LiveRec,
that learns to recommend live-streaming channels under availabil-
ity constraints. Our model first selects candidates from the pool of
available items at a specific point in time. These candidates are fed
into a self-attention block that parametrizes relationships among
available items. Historical interactions are modelled using a se-
quence encoder that is both used to select candidates and compute
the final predictions, thus making the approach fully end-to-end.

Uhttps://en.wikipedia.org/wiki/Twitch_(service)
20n some platforms, the content is also available on-demand, but we only consider
the strict live-streaming setting in this work.

https://doi.org/10.1145/3460231.3474267
https://doi.org/10.1145/3460231.3474267
https://en.wikipedia.org/wiki/Twitch_(service)

RecSys "21, September 27-October 1, 2021, Amsterdam, Netherlands

Jérémie Rappaz, Julian McAuley, and Karl Aberer

Figure 1 Figure 2 Figure 3
10v
60 80
2 2
1.1% O
.2 1.0% 260 g g 10-1
“d 40 “O’ - 11.5%
© 0.6%0.6% 0 59 © 8.3%
o 0.6%0.5% <40 6.7% a
b= + 4.1%
L2 £ 1072
X —_— X 20 —_—_—
0 1 2 3 4 0 1 2 3 4 I I
Top-5 streamers -
0 P 0 Top-5 games 103 I I -
0 2000 4000 6000 8000 10000 0 20 60 80 100 1234567 891011121314
Top-10k streamers Top-100 games # user-item repetitions

Left: CDF percentage of the top-1k streamers (items) in the dataset. The top-5 most popular streamers account for around 4% of the dataset.
Center: CDF percentage of the top-100 games in the dataset. Right: Count of individual user-item pairs in the dataset.

In order to validate our approach, we introduce a large dataset of
interactions from Twitch containing the consumption of logged-in
users over a 43 day period. We identify key characteristics that
differentiate our data from traditional settings, such as the high
prevalence of recurring consumption, that we incorporate in our
approach. To the best of our knowledge, this is the first publicly
available dataset of content consumption detailing individual users’
watching habits. We show that strong sequential baselines don’t
apply straightforwardly to this setting, and that our adaptations
are necessary to achieve substantially better performance. We con-
clude with an in-depth analysis of the results and a discussion of
the dynamics of live-streaming platforms.

2 RELATED WORK

In this section, we first review relevant lines of work from the liter-
ature on streaming platforms. Then, we describe relevant lines of
work in the field of recommendation with an emphasis on sequen-
tial methods.

Streaming Platforms have been studied from a social dynamics
perspective. The work from Hamilton et al. [6] investigates user
motivations in joining live streaming channels. They conclude that,
similar to on-demand video services, users are interested in a partic-
ular type of content, but also engage with the interactive character-
istics of the service. Hilvert-Bruce et al. [10] report that compared
to mass media, motivations of viewers on Twitch have a stronger so-
cial and community basis. They also suggest that viewers preferring
small channels are more motivated by social engagement than users
preferring large channels. Kaytoue et al. [13] characterize audience
dynamics on the Twitch platform. Pires et al. [20] highlight the
difficulty of identifying popular segments early on and show that
there is no trivial solution to this problem. Nascimento et al. [19]
identify several characteristic behaviors, such as the large audience
drop at the end of a stream, investigate spectators assiduity and
characterize the volume of comments in stream chats.

Temporal dynamics play a key role in the analysis of content
consumption and have been studied in different scenarios. Early
attempts focus on the modelling of long-term preference drifts [14,
36]. More recent approaches model evolving trends within the
community of users in the context of fashion recommendation [7].

Another line of work focus on learning and inferring from tem-
porally ordered data streams [2]. Several lines of work study the
impact absolute position in the sequence and relative time intervals
on performance [17, 38]. The CTA model [32] captures both tem-
poral and contextual information by incorporating users’ browsing
activity. Wang et al. [29] incorporate various temporal patterns of
repeat consumption using Hawkes processes. Wan et al. [28] model
complementarity, compatibility and loyalty towards products in
the grocery shopping domain. They propose AdaLoyal, a learning
algorithm that explicitly account for users’ must-buy purchases in
addition to their overall preferences and needs. Anderson et al. [1]
analyze the repeat consumption patterns on different social plat-
forms. They propose a hybrid model that predicts user choice based
on a combination of recency and quality. In this study, we consider
repeat consumption of the same channel broadcasting new content,
which differs from what past work has considered.

Recommendation systems model relationships between users
and items [11, 15, 23] for explicit [16] and implicit feedback set-
tings [21]. Sequential approaches infer user preferences from se-
quences of interactions. Recently, neural approaches have become
popular for they high expressivity. Various research lines have
attempted linear [8], recurrent [9], convolutional and graph ap-
proaches [31, 34, 37]. More recently, self-attention mechanisms,
inspired by the field of natural language processing [27], have been
investigated in the context of recommendation [3, 12, 25, 30, 35].
They generally do not model users explicitly and only learn from
sequences of items. In Section 5.2, we discuss ranking refinement
techniques that have been explored in the context of entity link-
ing [4, 33].

3 DATA

In this section, we describe our data collection on Twitch in July
2019 over a 43-day period and give general statistics about the re-
sulting dataset. In order to discover available channels, we queried
the public Twitch API in rounds to list all available streams. The
number of live streams ranged from around 20k to 75k for a single
round during data collection. In each round, we also queried each
available stream to get a list of connected users and the currently
played game. In order to have sufficient time to query each stream in
a single round, we set a 10 minute interval between each round. The

Recommendation on Live-Streaming Platforms RecSys "21, September 27-October 1, 2021, Amsterdam, Netherlands

Figure 5

Figure 4 Table 1
12.5K 1 — Full 1.0 4 led

glO'OK 1 0.8 Bench. Full
8 7K 06 #Users 100k 15.5M
3 SO0K- ' #Streamers 162.6k 465k
L 14Ky Benchmark 0.4 .
S Lok | . #Interactions 3M 474.7TM
“ 021 ‘ Watch time [h] 800k~ 124M

0.6K 1 : X

0.2 | 00 L‘LLA‘L Density 9.2e-5 1.9e-5

0 200 400 600 800 1000 "1d 3d 5d 1w 2w

Left: Number of available items for the first 1000 time steps of 10 minutes. Center: Time interval distribution (normalized) of repeated
user-item interactions. Right: Datasets statistics. Watch time is estimated by considering periods of 5 minutes (half the duration of a round).

final dataset was collected over 6,148 rounds. Our dataset will be
released in two formats: the full version, that contains all collected
data and is more suited to data analysis tasks; and a benchmark
version, that contains all interactions from 100k uniformly sampled
users and that is used to compare the performance of different
methods. All performance evaluations reported in this work use
the benchmark version. Statistics before and after pre-processing
can be found in Table 1. Both anonymized versions shall be made
available at publication time. Both datasets exhibit skewed inter-
action distributions over items. For example, in the full version of
the dataset, the most popular streamer drives more than 1% of the
total interactions (see Fig. 1) and the most popular game drives
14.6% of the total interactions (see Fig. 2). Datasets contain absolute
timestamps but we only consider relative time intervals in this
work, thus mitigating time zones related side effects.

Repeat consumption is a common scenario in our dataset (see
Fig. 3). Since Twitch is a social platform, content providers aim
to grow and retain their respective audiences. We measure time
intervals between any two interactions for the same user with the
same streamer. We observe both daily and weekly dynamics, as
seen in Fig. 5. We also observe short-term repeated interactions to
be prevalent in our dataset.

4 WHAT IS DIFFERENT IN LIVE-STREAMING
RECOMMENDATION?

Live-streaming differs from traditional scenarios in terms of the
semantics of both positive and negative interactions. In this setting,
negative examples can reflect either latent preferences, or simply
the unavailability of a particular item (streamer) at interaction time.
Additionally, several items appearing in a user history could become
available simultaneously, which requires one to rank positive in-
teractions among themselves. This differs from traditional settings
where positive interactions included in the training set are dis-
carded from the testing set. In this section, we present preliminary
experiments that demonstrate the limitations of existing methods
in this particular setting. Then, we propose an availability-aware
sampling strategy that accounts for these observations.

4.1 Defining Items

On a streaming platform, items could have different definitions:
one could define items as streams, that are unique segments during
which a streamer broadcasts uninterruptedly. The main problem
of this case is the fact that streams only happen at a single point
in time which lets the model learn in extremely sparse regimes.
Alternatively, one could define items as streamers, that typically
broadcast content multiple times. The main problem of this case is
the fact that the model has to learn from multiple occurrences of the
same user-item interaction, even if a streamer constantly broadcasts
new content and evolves over time. In this work, we consider items
representing streamers and discuss on how to account for repeat
consumption during training and evaluation.

4.2 Preliminary Experiment: Repeat
Consumption

When splitting our dataset in the temporal dimension,> around 65%
of user-item interactions observed in the testing period are also
present in the training set. In such a setting, a model shall not only
learn to accurately predict novel interactions but also to balance
between novel and repeated interactions. Without yet consider-
ing extra features for distinguishing among repeated interactions
(e.g. time, content), a simple model could balance interactions by
their frequency, by favoring interactions occurring more often dur-
ing training. A natural way to incorporate repetition information
into a model is to develop a sampling strategy accounting for item
frequencies.

We demonstrate the challenge of balancing between novel and
repeat interactions through a preliminary experiment: we train a
simple matrix factorization model with 20 latent dimensions using
aranking criterion [22] in a non-sequential setting. During training,
for a user u and a positive item i, we sample negative examples from
the pool of items consumed by u in the training set with a proba-
bility Prepeqr and from a uniform distribution over all items with
probability (1 — Prepeat), excluding i in both cases. During testing,
we evaluate the model on its capacity to rank interactions with new
streamers (Fig. 6), as well as its capacity to rank streamers appearing
in the training sequence of the considered user (Fig. 7). We evaluate

3Considering the same setting as the experiments in Section 6, the last 250 rounds of
10 minutes (4%) of the dataset are withheld for testing.

RecSys "21, September 27-October 1, 2021, Amsterdam, Netherlands

Jérémie Rappaz, Julian McAuley, and Karl Aberer

Figure 8
Figure 6 Figure 7 £t ot o6 oLt
0.08 1 0.30 1 e
0.06 1 0.25 1
— . —
©0.04 - ©0.20 1
I T
0.02 1 0159 — availability sampling R .
s uniform sampling Observed Iy Iy s
0.00 - _, . . . : 0.10 - _ interactions @ \ u
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 Negatives o
Prepeat Prepeat drawn from : {iy i3} {iy,i5}

Left: Performance for novel interactions, i.e. user-item pairs never seen among training sequences. Center: Performance for repeat
interactions, i.e. user-item pairs present in training sequences. Uniform sampling experiments are repeated 3 times for each value of Prepear
and shown with a polynomial fit (95% CI). Right: Illustration of the availability matrix from which availability sampling is performed.

the model with the Hit@1 metric by ranking all available items at
the time of the last interaction of each user in the testing set. The
best overall performance (0.157) is obtained at Prepeqr = 0.5. This
score represents a relative improvement of 16.1% over a uniform
sampling strategy (0.135). This observation shows the importance
of accounting for repeat consumption in the considered setting. We
also observe that our sampling strategy deteriorates predictions for
novel items as Prepeqr increases, which demonstrates the difficulty
of balancing between novelty and repetition.

4.3 Preliminary Experiment: Availability

Availability signals are important to capture the meaning of ‘non-
interactions’; most recommendation systems relying on implicit
feedback assume that the choice of item i over item j only reflects an
implicit preference for i, since they also assume all items being avail-
able at all times. In a live-streaming setting, non-interaction with
item j can reflect a preference for item i as much as item j simply
being unavailable at interaction time. Similar to repeat consump-
tion, availability signals can be accounted for through sampling,
as we demonstrate in an additional experiment: we precompute
availability from observed interactions as a matrix of size n X tpqy,
where n is the total number of items and ¢y, is the total number
of time steps of 10 minutes in our dataset (see in Fig. 8). Instead of
sampling negative examples from all items, we sample a negative
example j from the pool of available items at interaction time, ex-
cluding i. As such, we provide to the model additional context in
which the interaction occurred. We also mitigate the impact of re-
peat interactions since multiple observations of the same user-item
pair generally occur in different contexts. We evaluate this strategy
on temporally disjoint training and testing sets, in order to avoid
the model learning the availability matrix directly. We observed
this strategy to provide 21.3% (0.190) of relative improvement over
the best performing sampling strategy presented in the last section.
We select this strategy in all further experiments.

5 METHODS

Until now, we discussed ways to incorporate repeat consumption
and availability information implicitly, through different sampling

strategies. In this section, we discuss how to account for those
signals by specific changes in model architecture.

5.1 Sequence Encoder

Lets = (spl,spz, o ,sp(;) be a fixed-length user sequence, where
sp represents the p-th item entry. Sequences shorter than £ are
padded with a null token and sequences longer than ¢ are cropped.
The first key component of our model is a sequence encoder that
converts each step s, into a hidden representation vector hs,. We
use vector hsp—l’ that represents all previous entries in the sequence,
for predicting the p-th item entry. We use an existing encoding
technique, SASREC [12], even though our framework is not tied
to this specific encoding scheme. First, we embed each item in s
using an embedding matrix M of size R™" where n is the number of
items and h is the dimensionality of our latent space. We also encode
positions in the sequence with an embedding matrix P of size RExR
that we learn during training. The resulting matrix E is computed
as the sum of item embeddings and positional embeddings:

Mg + Py
E _ M, +P2
Mg + P2

Then, we pass the embeddings E into two query-key-value self-
attention layers in order to learn a relationship between elements
of the sequence. Similar to the original implementation [12], we
use layer normalization and apply a causality mask that prevents
the model from learning from future interactions.

5.2 Modelling Availability

We seek a method that learns from the set of available items at the
time of an interaction. Considering a user interacting with item i
at time ¢, we learn from a set H; containing all available items at
t. Attention-based methods are typically of quadratic complexity;
computing an attention function over the set Hy would generally be
impractical, due to the large number of concurrently available items
on a streaming platform. Therefore, we restrict this computation
to a limited set of candidate items. Candidates are dynamically

Recommendation on Live-Streaming Platforms

Sequence vector

RecSys *21, September 27-October 1, 2021, Amsterdam, Netherlands

Available Dot product ranking iz sz
= items = 2)
535 la S
o
QKV encoder embedding K g 3 .
= g Ss
embedding is s,

Sequence embedding

Top-k pre-ranking

Self-attention over available items

Figure 9: lllustration of the LiveRec architecture. First, the model encodes an input sequence of user interactions (left). Then, the model
ranks, for each step of the sequence, all available items at the time of the interaction (center). Last, the model draws a dependency between a
top-k selection of available items using a self-attention mechanism (right).

retrieved by computing a relevance score s(-) for each available
item in H;. For predicting the p-th item entry, this score is obtained
from a dot product operation between the sequence embedding and
the item embedding vector.

s(i,p,t) = hp_1 - Mj, i€ H
Then, we sort all items in H; by their score s(-), select the
top-k highest scoring items and represent them as a sequence
(r1,72,...,r;). We use matrix M to embed each of the top-k el-
ements into a matrix M,y € R¥*h Our objective is to learn an
attention function f : RkXh y REXE gyer My, in order to draw
a dependency between each of the k-selected items. We adopt the
widely used query-key-value form of self-attention and use the

matrix Muy as input for queries, keys and values.

Attention(Q,K,V) = softmaX(Q—KT)V
K, v

M;,
Q=K=V=My=| "
My,

The factor Vd is introduced to avoid overly large values of the
inner product QK [27]. We use layer normalization, residual con-
nections and dropout similar to SASREC [12]. We experimented
with this approach with one and two layers of attention (see sec-
tion 6). Because the absolute position in the sequence (r1, g, . . ., i)
is irrelevant to the task, we do not encode positions and do not use
any masking in this attention stage.

5.3 Modelling Repeat Consumption

We design an encoding scheme that distinguishes between novel
and repeated interactions. In the repeat case, our scheme also en-
codes recency: for an item i € H;, we retrieve the time t; of its last
occurrence prior to t. We define q; € {0,1}*%1, a one-hot encoded
vector that represents a mapping from the time interval [t — t;| to
a bucket index in the range [1, z]. Based on our observations in
Section 3, we divide time intervals into buckets of 24 hours and clip
the maximum time interval to 20 days. We keep index zero of q; for

representing novel item entries with no previous occurrences in the
sequence. We embed time intervals represented by q; using an em-
bedding matrix T € R(Z+DXh Then, we combine the corresponding
time interval embedding vector to the candidate item vector using
element-wise addition (see Fig. 10). We use this new representation
for the selection of candidates and the attention stage.

s(i,p,t) =hp_1 - (Mj + ¢;T), i€H;

M, +qr,T
Q=K=V=Mayirep = Mr, + .(]rzT
My, +qrT
Time interval embeddings are added prior to the self-attention
stage for the model to learn from temporal dependencies among can-
didates. The self-attention module outputs, for each candidate item,
a new representation that encodes a relationship with other candi-
dates. We compute the final score Xy, ;, for each of the k candidates
by computing a dot product between hy,_1 and each of the k rows
of matrix O = Attention(May+rep, Mav+rep, Mav+rep), O € RFxh

iy de dg 1y g 1 Candidate items: { iy, iy, is, ig }

] 1] .
P L

T T T .

i — i

1 1 . +

:q_pl i6

time interval embedding

interaction sequence item embedding

Figure 10: Illustration of the time interval embedding module.
Items iz and i5 are novel entries. Embeddings for items i4 and i¢ are
based on the time difference with their last respective occurrences.

5.4 Training

Following existing sequential recommendation approaches, we com-
pute predictions using mini-batches of sequences. During training,

RecSys "21, September 27-October 1, 2021, Amsterdam, Netherlands

the model predicts the next item of each sequence step in a single
forward pass. We train the model to maximize the difference in
score between positive and negative instances through negative
sampling. Instead of sampling items uniformly, and according to
our observations in Section 4, we draw negative examples from a
set H; ; for a positive item i at time .

Hir={j € As Aj # i}
Given a positive i and a negative items j that fulfill the constraint

described above, we adopt the following cross entropy loss to train
the model.

=3 D log(oGui)) + Y. log(l = 0(u,j,0))

s (i,t)es jeH;

During training, we use vector hy_ for both selecting candidates
and predicting the next entry in the sequence which makes the
approach fully end-to-end.

6 EXPERIMENTS
6.1 Evaluation

In order to avoid learning from future interactions, we split the
dataset in three distinct time intervals. We withhold 250 time steps
for validation and 250 time steps for testing, both by splitting from
the end of the dataset. We evaluate all approaches using the met-
rics hit@1, hit@10 and NDCG@10 on the last interaction of each
sequence s in the testing period.

Additionally, we break down this score into a Hit-new score and
a Hit-rep score in Table 2. By doing so, we evaluate the model on
its capacity to repeat an interaction from the input sequence, as
well as its capacity to recommend serendipitous content. A testing
interaction falls into rep if the item appears in the testing input
sequence, and in new otherwise. For a sequence length of 16, the
percentage of repeat consumption is equal to 51%.

Our experiments are conducted with different variants of our
model: LiveRec + rep is a variant that only uses time interval em-
beddings on top of a sequence encoder. LiveRec + av is a variant
including self-attention over a top-k selection of items. LiveRec +
rep + av is our final model, as described in Section 5, using both
self-attention and time interval embedding. LiveRec + rep does not
use any candidate selection strategy and ranks all available items
H; instead of a top-k selection.

6.2 Baselines

In this section, we compare various baselines with our approach in
order to evaluate existing methods in a live-streaming setting (see
Section 4) and demonstrate the benefits of the proposed architec-
ture.

e REP is a simple model that predicts a score equal to the
number of appearances of an item in the input sequence.
REP is a strong predictor of repeated interactions but it is
unable to recommend new items.

e POP this model gives a score equal to the popularity of an
item in the training set. It does not consider the interaction
sequence to compute predictions.

Jérémie Rappaz, Julian McAuley, and Karl Aberer

e MF-BPR [21] is a matrix factorization model trained with a
ranking criterion. This model does not account for sequential
or temporal dynamics.

e FPMC [22] is a sequential recommendation method that
models transitions in terms of the last entry in the sequence.
The model is trained using a BPR loss [21].

e SASREC [12] is a self-attentive recommendation method.
Multiple query-key-value attention layers are stacked to-
gether to capture relevant information from the interaction
sequences. Positional encoding is used to help the model
encoding temporal information. We referred to as SASREC -
uniform a model trained with negative samples drawn uni-
formly over all items.

e BERT4REC [25] is a recent adaptation of the BERT lan-
guage model. We modified a publicly available implementa-
tion? in order to run the model using the same experimental
setting. Similar to the original training environment, we de-
fine the masking probability p and predict masked items only.
In order to be fair towards other approaches, we implement
a masked cross-entropy loss that only backpropagates over
available items.

6.3 Experimental Setting

We train all models until the score does not improve for 10 epochs on
the validation set and store the model at each epoch. Then, we test
with the checkpoint having the highest (validation) hit@1 and eval-
uate performance on the testing set. We consider {2-regularization
in the range ¢, = {0.0001,0.001,0.01,0.1,1.0}. All models are im-
plemented in Pytorch and trained using the Adam optimizer with a
learning rate of 0.0005. All attention-based approaches are trained
with a fixed dimensionality of 128. Other methods are trained with
a dimensionality in the range {16, 32, 64, 128}. Batch size is fixed to
100. For BERT4REC, we consider p in the range {0.25,0.5,0.75} and
results are reported with p = 0.25. We filter out users with fewer
than 5 interactions and streamers with fewer than 3 interactions.
If the input testing sequence is shorter than the maximum length
I, we append interactions from the validation and the training set.
All code and data shall be released at publication time .

6.4 Overall Performance Comparison

In this section, we discuss the results obtained by various architec-
ture in Table 2.

We first notice that REP, which only predicts future interactions
by repeating elements from the input sequence, provides a rea-
sonably competitive score. Since repeated interactions account for
more than 50% of the testing data, REP represents an effective strat-
egy for recommending content without a parametrized method,
despite its inability to recommend new content. This result also
shows the importance of measuring the two metrics Hit-new and
Hit-rep individually.

LiveRec rep + av provides the best overall score. However, we no-
tice that SASREC leads to a higher Hit@1-new and that LiveRec + av
leads to a higher Hit@10-new. This result shows that there is still
margin for improvement in balancing between novel and repeated

“https://github.com/jaywonchung/BERT4Rec-VAE-Pytorch
Shttps://github.com/JRappaz/liverec

Recommendation on Live-Streaming Platforms

RecSys "21, September 27-October 1, 2021, Amsterdam, Netherlands

Model H@1 H@l-new H@Il-rep. | H@10 H@10-new H@10-rep. | NDCG@10
POP 0.0317 0.0237 0.0387 0.1350 0.1006 0.1650 0.0754
REP 0.3698 0.0166 0.6776 0.5347 0.0424 0.9637 0.4630
MF-BPR 0.0363 0.0279 0.0436 0.1537 0.1182 0.1848 0.0879
FPMC 0.0690 0.0372 0.0968 0.2515 0.1662 0.3258 0.1529
SASREC - uniform | 0.1994 0.0721 0.3103 0.5827 0.3888 0.7517 0.3733
SASREC 0.3004 0.1180 0.4593 0.7221 0.5156 0.9021 0.5014
BERT4REC 0.3517 0.1018 0.5694 0.7089 0.4668 0.9199 0.5237
LiveRec + rep 0.3655 0.0686 0.6241 0.7581 0.4907 0.9912 0.5615
LiveRec + av 0.3357 0.1067 0.5352 0.7363 0.5222 0.9229 0.5303
LiveRec + rep + av | 0.4122 0.0920 0.6913 0.7655 0.4998 0.9970 0.5893

Table 2: Results for all considered approaches. The best performing method in each column is boldfaced.

interactions. Compared to the sequence encoder alone (SASREC),
the additional modelling of repeat consumption (rep) and availabil-
ity (av) lead to a relative improvement of 21.7% and 11.8%, respec-
tively. The combination of the two leads to a relative improvement
of 37.2% over the sequence encoder alone (SASREC). The introduc-
tion of the time interval embedding (rep) encourages the model to
favor repeated interactions which hurts novelty (Hit@1-new). How-
ever, incorporating self-attention (rep + av) over available items
mitigates this effect. Compared to REP, LiveRec scores a higher
Hit@1-rep, which suggests a better capacity to rank multiple repeat
consumption options than a simple frequency-based ranking.
BERTH4REC provides higher performances than SASREC. This
observation in accordance with the original paper [25]. We notice
that the gain in performance comes primarily from a better capac-
ity to model repeat consumption. We also emphasize that masking
unavailable items in the loss function is critical to obtain this result.
In order to compare results with our observations from Section 4,
we trained SASREC with two different sampling strategies: uni-
form sampling and availability sampling. We observe a significant
improvement by sampling negative interactions from the set of cur-
rently available items, in accordance with our preliminary results.

6.5 Analysis

In light of the results presented in Table 2, we seek to further elab-
orate on the influence of various factors on performance through
the following questions.

Question 1: What is the influence of the number of candidates k on
performance?

The number of candidates k is a critical parameter of our ap-
proach since only candidate items are considered in the final rank-
ing. Therefore, this parameter should be sufficiently large to cover
a broad spectrum of candidate items, the ranking of which will be
refined by the self-attention module. We obtain the best results with
k = 128 © (see Fig. 12). We also experiment with 1 and 2 attention
layers. A single layer module performs better for small values of
k but fails to scale to a larger number of candidates. We hypothe-
size this phenomenon to be due to the self-attention module being
only distantly personalized: it is trained on a selection of candidate

%In our case, the maximum value that can fit on a single GPU

items instead of raw interactions, a complex mapping that could be
successfully captured with multiple layers of attention.

Question 2: What is the influence of sequence length on perfor-
mance?

Increasing sequence lengths monotonically increases perfor-
mance for our model (see Fig. 13). This gain diminishes, as we
increase sequence length, since the average sequence length of
the training dataset is equal to 28 and sequences shorter than this
maximum length are padded. The results presented in Table 2 are
consistent over all sequence lengths in Fig. 13. However, as we
increase sequence length, we also increase the percentage of re-
peated interactions between users and streamers. For simplicity,
we perform the full evaluation, presented in Table 2, at around 50%
of repeated interactions and leave as future work a more in-depth
analysis of the impact of this ratio on performance.

Question 3: What is the popularity distribution of recommended
items with LiveRec?

Mitigating popularity bias has become a concern in the recom-
mender systems literature [5, 18, 24]; recommendation algorithms
are known for recommending popular items frequently while ig-
noring items in the long tail. This situation could be problematic
in a live-streaming setting, where the interaction distribution over
items is already extremely skewed (see Fig. 1). Therefore, we investi-
gate the relationship between the introduction of the self-attention
mechanism presented in Section 5.2 and the popularity of recom-
mended items.

In general, the introduction of the attention mechanism leads to
a decrease in popularity of the recommended content. Specifically,
we observe a reduction in the average popularity of recommended
items of 17.1% with the introduction of self-attention (av) and
20.3% with time interval embedding (av + rep), compared to the
sequence encoder alone (SASREC). As one can observe in Fig. 15,
the introduction of rep + av leads to a popularity distribution of
recommended items that matches the observed distribution of in-
teractions more closely.

Question 4: What types of dynamics are captured by time interval
embeddings?

In order to characterize temporal patterns captured by LiveRec,
we compute the similarity matrix between embedding vectors after

RecSys "21, September 27-October 1, 2021, Amsterdam, Netherlands

Jérémie Rappaz, Julian McAuley, and Karl Aberer

Figure 11 Figure 12 Figure 13
12h 7 days 14 days 21 days 0.42 7 0.8 4
12 - \ \ \ . S . ./——‘
Qoaod - @
e D T 061 —8— sas-uniform
7 days = 0.38 - - ias
0.80 1 X -0 live
______ o B i
s | == - -(,—5,0-5' ,—5;-]‘ 62.9 64.0%
| e o
14 days - 90'70 - -== layer E ~~750.9%
T . 2-layers 0041 &
05604 _, : : : : L : : :
8 16 32 64 128 8 16 32 64 128
21 days - # Candidates seq. length

Left: Cosine similarity between time interval embeddings. Center: Performance with different numbers of pre-ranking candidates with 1
and 2 layers of attention. Right: Impact of sequence length on performance (top) and percentage of repeat interactions (bottom).

a full training phase (see Fig. 10). First, in accordance with our
observations in Section 3, the first bucket, representing a time
interval of less than 12 hours, is different from all other vectors.
This observation suggests the dynamics of repeated interactions
during the same day to be governed by distinct temporal dynamics
(e.g. users returning to the same stream after a few minutes). Second,
we observe a visible pattern for intervals of less than one week. This
observation is in keeping with the weekly dynamics observed in
Section 3. Finally, vectors representing time intervals of more than
one week become increasingly similar as time intervals increase,
which suggests that the model captures a unified representation of
long-term repeat patterns.

Question 5: What types of dynamics are captured by the attention
module over available items ?.

We compare item embeddings, learned from user sequences,
and attention weights (av), learned from the context of available
items. We embed the top-1k most popular items using matrix M and
provide those items as (query, key, value) inputs of the self-attention
module. The attention weights between query and key items are
shown in Fig. 14 (left). In order to observe the semantic relatedness
of those items, we also show a 2D projection (t-SNE [26]) of their
embedding vectors and select 4 clusters (center). We observe each
cluster of items exhibiting a distinct patterns of attention: attention
weights are consistent within clusters but strongly vary from one
cluster to another. We also observe the model being able to give
attention weight to query and key items with low content similarity
(i.e. belonging to different clusters), which shows the ability of the
model to learn this relationship between semantically unrelated
items. Considering that the attention module (av) is only distantly
supervised, since it only learns from a candidate selection of items,
our observations suggest that it captures a different, and more
global availability context compared to the sequence embedding
module.

7 DISCUSSION AND FUTURE WORK

The growing audiences of live-streaming platforms emphasize the
need for efficient retrieval and recommendation methods. In this
work, we focused our modelling efforts on a dataset of limited
size. Scaling our approach, especially to a production environment,

would require extra considerations. First, the fast retrieval of avail-
able items represents a barrier to large scale studies. For the training
on the benchmark dataset, we maintained availability sets in mem-
ory but this approach might reach its limits with larger applications
and would require a more scalable design for retrieving and sam-
pling available items. Second, the additional attention module (av)
increases the complexity of the model, even though the module has
the same architecture as the sequence encoder, making the addi-
tional complexity a constant factor. For example, introducing av in
the model” reduces the training speed from 8.5 it/s to 5 it/s. In order
to account for this observation, one must carefully select sequence
length, as well as the number of candidate items, in order to balance
between accuracy and training time. Finally, scaling the approach
to larger datasets might require more complex training strategies.
For example, semi-supervised learning could be employed to first
learn item representations on a large dataset, before fine-tuning a
more costly approach on a smaller subset of data.

To the best of our knowledge, our work is the first attempt at
modelling view dynamics on live-streaming platforms and many
challenges remain. First, content-based methods have not yet been
investigated. For example, visual features could potentially be ex-
ploited to characterize the various segments of a stream. Second, we
believe that user dynamics could be further exploited. In this work,
we focused on sequential methods that model item-to-item relation-
ships. The dual scenario, the modelling of user-to-user interactions,
remains unexplored. In particular, we believe that the modelling
of users currently watching a stream could help improving per-
formance. Since the number of users is, by an order of magnitude,
higher than the number of streamers, future research should design
efficient methods to learn from user interactions. Third, during our
analysis, we noticed bursts of activity around specific channels. We
believe that the traditionally static notion of item popularity could
be adapted to a dynamic setting. For example, the number of concur-
rent users watching a stream could be exploited at inference time.
Fourth, while we focus on SASREC for encoding historical data,
our framework is not tied to any specific method for learning from
interaction sequences. Future research could swap the encoder with
a different encoding method (e.g. graph-based) to capture a richer

7For a sequence length of 16 and a 16 candidate items.

Recommendation on Live-Streaming Platforms

RecSys "21, September 27-October 1, 2021, Amsterdam, Netherlands

Figure 14
Figure 15
0.6 1
1 --=- sasrec P
0.5 1 ; !
—— liverecav+rep _/ |
o S |
------ liverec av El
0.4 1 i
2 F true i
2031
a
3 0.2 4
0.1 -
4 OO b r T T T 1
1074 1073 1072 107t 10°

Normalized popularity

Left: Example of self-attention over available items: the top-1k most popular items are projected using t-SNE and are used as an input for
the attention module; the attention weights are displayed after the softmax operation. The four selected clusters shown in the projection
correspond to the rows (queries) and columns (keys) of the weight matrix. Right: Normalized popularity distribution of recommender

items, alongside with the true popularity of consumed items.

context. Finally, many social aspects on live-streaming platforms
remain to be explored. Our dataset could help to better understand
the social dynamics taking place on a streaming platform. Going
beyond the live-streaming setting, we believe that our approach
could be leveraged for other types of applications, such as digital
TV, and in settings where items only remain available for a limited
period of time, such as the front page of a news website.

8 CONCLUSION

In this work, we introduced live-streaming recommendation, a sce-
nario in which items are not always available for users to consume.
We showed that a sampling strategy simulating this evolving avail-
ability is crucial to capture user preferences. Moreover, we described
how to incorporate the notion of availability into our model archi-
tecture by performing an explicit comparison among available items.
In order to account for the large number of concurrent broadcasts,
we made this process efficient by comparing only on a subset of
candidate streams. We also investigated repeated user interactions
with streamers and proposed a way to model this phenomenon with
time interval embeddings, which we show to improve performance.
With the release of a large dataset of user interactions on Twitch,
the various improvement over existing methods, our study paves
the way for new research in live-streaming recommendation.

REFERENCES

[1] Ashton Anderson, Ravi Kumar, Andrew Tomkins, and Sergei Vassilvitskii. 2014.
The dynamics of repeat consumption. In Proceedings of the 23rd international
conference on World wide web. 419-430.

Shiyu Chang, Yang Zhang, Jiliang Tang, Dawei Yin, Yi Chang, Mark A Hasegawa-

Johnson, and Thomas S Huang. 2017. Streaming recommender systems. In

Proceedings of the 26th international conference on world wide web. 381-389.

[3] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Ligiang Nie, Wei Liu, and Tat-
Seng Chua. 2017. Attentive collaborative filtering: Multimedia recommendation
with item-and component-level attention. In Proceedings of the 40th International
ACM SIGIR conference on Research and Development in Information Retrieval.
335-344.

[4] Nicola De Cao, Ledell Wu, Kashyap Popat, Mikel Artetxe, Naman Goyal, Mikhail
Plekhanov, Luke Zettlemoyer, Nicola Cancedda, Sebastian Riedel, and Fabio

[2

=

Petroni. 2021. Multilingual Autoregressive Entity Linking. arXiv preprint
arXiv:2103.12528 (2021).

Priyanka Gupta, Diksha Garg, Pankaj Malhotra, Lovekesh Vig, and Gautam Shroff.
2019. NISER: Normalized item and session representations to handle popularity
bias. arXiv preprint arXiv:1909.04276 (2019).

William A Hamilton, Oliver Garretson, and Andruid Kerne. 2014. Streaming on
twitch: fostering participatory communities of play within live mixed media. In
Proceedings of the 32nd annual ACM conference on Human factors in computing
systems. ACM, 1315-1324.

Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. 507-517.

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173-182.

Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

Zorah Hilvert-Bruce, James T Neill, Max Sjoblom, and Juho Hamari. 2018. Social
motivations of live-streaming viewer engagement on Twitch. Computers in
Human Behavior 84 (2018), 58—67.

Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In 2008 Eighth IEEE International Conference on Data
Mining. leee, 263-272.

Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197-206.

Mehdi Kaytoue, Arlei Silva, Loic Cerf, Wagner Meira Jr, and Chedy Raissi. 2012.
Watch me playing, i am a professional: a first study on video game live streaming.
In Proceedings of the 21st International Conference on World Wide Web. ACM,
1181-1188.

Yehuda Koren. 2009. Collaborative filtering with temporal dynamics. In Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining. 447-456.

Yehuda Koren and Robert Bell. 2015. Advances in collaborative filtering. Recom-
mender systems handbook (2015), 77-118.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30-37.

Jiacheng Li, Yujie Wang, and Julian McAuley. 2020. Time interval aware self-
attention for sequential recommendation. In Proceedings of the 13th International
Conference on Web Search and Data Mining. 322-330.

Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad
Mobasher, and Robin Burke. 2020. Feedback loop and bias amplification in
recommender systems. In Proceedings of the 29th ACM International Conference
on Information & Knowledge Management. 2145-2148.

Gustavo Nascimento, Manoel Ribeiro, Loic Cerf, Natalia Cesario, Mehdi Kaytoue,
Chedy Raissi, Thiago Vasconcelos, and Wagner Meira. 2014. Modeling and

RecSys "21, September 27-October 1, 2021, Amsterdam, Netherlands

analyzing the video game live-streaming community. In 2014 9th Latin American
Web Congress. IEEE, 1-9.

Karine Pires and Gwendal Simon. 2015. YouTube live and Twitch: a tour of
user-generated live streaming systems. In Proceedings of the 6th ACM multimedia
systems conference. ACM, 225-230.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalized markov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. 811-820.

Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to rec-
ommender systems handbook. In Recommender systems handbook. Springer,
1-35.

Ana-Andreea Stoica, Christopher Riederer, and Augustin Chaintreau. 2018. Algo-
rithmic Glass Ceiling in Social Networks: The effects of social recommendations
on network diversity. In Proceedings of the 2018 World Wide Web Conference.
923-932.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441-1450.

Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762 (2017).

Mengting Wan, Di Wang, Jie Liu, Paul Bennett, and Julian McAuley. 2018. Rep-
resenting and recommending shopping baskets with complementarity, compat-
ibility and loyalty. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management. 1133-1142.

Chenyang Wang, Min Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. 2019. Mod-
eling item-specific temporal dynamics of repeat consumption for recommender

Jérémie Rappaz, Julian McAuley, and Karl Aberer

systems. In The World Wide Web Conference. 1977-1987.

Shoujin Wang, Liang Hu, Longbing Cao, Xiaoshui Huang, Defu Lian, and Wei
Liu. 2018. Attention-based transactional context embedding for next-item rec-
ommendation. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 32.

Wen Wang, Wei Zhang, Shukai Liu, Qi Liu, Bo Zhang, Leyu Lin, and Hongyuan
Zha. 2020. Beyond clicks: Modeling multi-relational item graph for session-based
target behavior prediction. In Proceedings of The Web Conference 2020. 3056-3062.

[32] Jibang Wu, Renqin Cai, and Hongning Wang. 2020. Déja vu: A contextualized

temporal attention mechanism for sequential recommendation. In Proceedings of
The Web Conference 2020. 2199-2209.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer.
2020. Zero-shot Entity Linking with Dense Entity Retrieval. In EMNLP.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based recommendation with graph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 33. 346-353.

Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua.
2017. Attentional factorization machines: Learning the weight of feature interac-
tions via attention networks. arXiv preprint arXiv:1708.04617 (2017).

Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff Schneider, and Jaime G Carbonell.
2010. Temporal collaborative filtering with bayesian probabilistic tensor factor-
ization. In Proceedings of the 2010 SIAM international conference on data mining.
SIAM, 211-222.

Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Fuzhen
Zhuang, Junhua Fang, and Xiaofang Zhou. 2019. Graph Contextualized Self-
Attention Network for Session-based Recommendation.. In IJCAL Vol. 19. 3940—
3946.

Wenwen Ye, Shuaigiang Wang, Xu Chen, Xuepeng Wang, Zheng Qin, and Dawei
Yin. 2020. Time matters: Sequential recommendation with complex temporal
information. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval. 1459-1468.

	Abstract
	1 Introduction
	2 Related Work
	3 Data
	4 What is different in Live-Streaming Recommendation?
	4.1 Defining Items
	4.2 Preliminary Experiment: Repeat Consumption
	4.3 Preliminary Experiment: Availability

	5 Methods
	5.1 Sequence Encoder
	5.2 Modelling Availability
	5.3 Modelling Repeat Consumption
	5.4 Training

	6 Experiments
	6.1 Evaluation
	6.2 Baselines
	6.3 Experimental Setting
	6.4 Overall Performance Comparison
	6.5 Analysis

	7 Discussion and Future Work
	8 Conclusion
	References

