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Product size recommendation and fit prediction are critical in order
to improve customers’ shopping experiences and to reduce product
return rates. Modeling customers’ fit feedback is challenging due to
its subtle semantics, arising from the subjective evaluation of prod-
ucts, and imbalanced label distribution. In this paper, we propose a
new predictive framework to tackle the product fit problem, which
captures the semantics behind customers’ fit feedback, and employs
a metric learning technique to resolve label imbalance issues. We
also contribute two public datasets collected from online clothing
retailers.

1 INTRODUCTION

With the growth of the online fashion industry and the wide size
variations across different clothing products, automatically provid-
ing accurate and personalized fit guidance is worthy of interest. As
retailers often allow customers to provide fit feedback (e.g. “small”,
“fit”, “large”) during the product return process or when leaving
reviews, predictive models have been recently developed based on
this kind of data [1, 8, 9]. A few recent approaches to this problem
use two sets of latent variables to recover products’ and customers’
“true” sizes, and model the fit as a function of the difference between
the two variables [8, 9].

However, we notice that customers’ fit feedback reflects not only
the objective match/mismatch between a product’s true size and
a customer’s measurements, but also depends on other subjective
characteristics of a product’s style and properties. For example,
in Fig. 1 we see two customers expressing concerns that a jacket
seems ‘baggy, but both have different feedback regarding this fit
shortcoming. Additionally, such fit feedback is ordinal in nature
and is unevenly distributed (most transactions are reported as “fit”),
which differs from general item recommendation tasks and requires
domain-specific techniques.

In this paper, we pose product size recommendation problem as
fit prediction problem and tackle the aforementioned challenges in
the following ways: First, unlike previous work which focuses on
recovering “true” sizes, we develop a new model to factorize the
semantics of customers’ fit feedback, so that representations can
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Figure 1: Workflow of the proposed framework. In Step 1,
we learn customers’ and products’ embeddings from transac-
tions containing fit feedback. Using these latent representa-
tions, in Step 2 we learn good representations for each class
by applying prototyping and metric learning techniques.

capture customers’ fit preferences on various product aspects (like
shoulders, waist etc.). We apply an ordinal regression procedure
to learn these representations such that the order of labels is pre-
served (Step 1 in Fig. 1). Second, using a heuristic we sample good
representations from each class and project them to a metric space
to address label imbalance issues (Step 2 in Fig. 1).

We collect customers’ fit feedback from two different clothing
websites and contribute two public datasets. Through experiments
on these datasets, we show the effectiveness of uncovering fine-
grained aspects of fit feedback and highlight the ability of metric
learning approaches with prototyping in handling label imbalance
issues.

2 RELATED WORK

The product size recommendation problem is fairly recent with a
only few studies proposed so far [1, 8, 9]. One approach recovers
products’ and customers’ “true” sizes and uses these as features in
a standard classifier for fit prediction [8]. In parallel to our work,
another approach extends the above method and proposes Bayesian
logit and probit regression models with ordinal categories to model
fit [9]. Our approach differs from these studies in that we focus
on capturing fit semantics and handle label imbalance issues using
metric learning approaches with prototyping. Another recent ap-
proach uses skip-gram models to learn customers’ and products’
latent features [1]. However, this approach assumes the availability
of platform-specific features whereas our model works on more
limited (and thus more readily available) transaction data.
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Metric learning has previously been applied to several recom-
mendation problems. For music recommendation, one study en-
codes songs by their implicit feedback and employs metric learn-
ing to retrieve songs similar to a query song [6]. Another study
uses users’ meta-data to build representations and employs metric
learning to retrieve suitable partners for online dating recommen-
dation [7]. In contrast, we learn representations of transactions that
capture the ordinal nature of fit. Recently, collaborative filtering
was combined with metric learning and its effectiveness was shown
on various recommendation tasks [3]. However, the approach (that
relies on binary implicit feedback data) does not translate directly
to the ordinal nature of the product size recommendation problem.

Many studies have used prototyping techniques with Nearest
Neighbor based classification methods. Késtinger et al. [5] propose
to jointly identify good prototypes and learn a distance metric,
and also show that this leads to better generalization compared to
k-Nearest Neighbor (k-NN) classification. Another study proposes
a novel algorithm for deriving optimal prototypes, specifically for
the 1-NN setting [11]. Following these lines, we develop a simple,
fast and effective heuristic to choose relevant prototypes for Large
Margin Nearest Neighbor (LMNN).

3 METHODOLOGY

3.1 Learning Fit Semantics

To model fit semantics, we adopt a latent factor formulation. We
assign a score to each transaction which is indicative of the fitness
of a corresponding product on the corresponding customer. In
particular, if a customer ¢ buys a product p (e.g. a medium jacket)
which is a specific size of the parent product pp (the corresponding
jacket), then the fitness score of this transaction t is modeled as

fit bias terms
——

,a®by, @by, ® (u, Ovy,) (1)
———
fit compatibility

fw®) = < >

weight vector

where ut, and Vi, are K-dimensional latent features, « is a global
bias term, @ denotes concatenation and ® denotes element-wise
product. The bias term by, captures the notion that certain prod-
ucts tend to be reported more ‘unfit’ because of their inherent
features/build, while by, captures the notion that certain customers
are highly sensitive to fit while others are more accommodating (as
shown in Fig. 1).

In order to recommend appropriate sizes to customers, our model
should preserve fit ordering. That is, if a product size is small
(resp. large) for a customer, all smaller (larger) sizes of the cor-
responding parent product should also be small (large). We achieve
this behavior by enforcing an order in fitness scores of different
size variants of a parent product. To that end, we require that for
each product p, all its latent factors are strictly larger (smaller)
than the next smaller (larger) catalog product p~ (p™), if a smaller
(larger) size exists. This works since for a given customer and parent
product, fitness scores vary only based on p’s parameters.

We tune the parameters of the scoring function such that for each
transaction ¢, the Hinge loss, defined as follows, of an ordinal re-
gression problem is minimized subject to monotonicity constraints:
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max{0,1 — fi,(t) + b2}
max{0, 1+ fi,(t) — b2}
+max{0,1— f,,(t)+ b1} ifY; =Fit 2)
max{0,1+ fi,(t)— b1} if Y; = Small

s.t. Vi, < Vi, < Vi

if Y; = Large

min L(t) =

Here by and by are the thresholds of an ordinal regression problem
(with by > b1). The overall loss is simply the sum of losses for
each transaction and is minimized when, for any transaction ¢
with fit outcome Y;, fi,(t) > by when Y; = Large, fi,(t) < b1
when Y; = Small and b; < f,,(t) < bp when Y; = Fit, subject to
monotonicity constraints on t,’s latent factors. We use Projected
Gradient Descent for optimization.

3.2 Metric Learning Approach

We propose the use of metric learning with prototyping to handle
the issue of label imbalance. To that end, our prototyping tech-
nique first alters the training data distribution by re-sampling from
different classes, which is shown to be effective in handling label
imbalance issues [4]. Secondly, LMNN [10] improves the local data
neighborhood by moving transactions having same fit feedback
closer and having different fit feedback farther (see Fig. 1), which is
shown to improve the overall k-NN classification [10]. We describe
our approach in detail in the following subsections.

3.2.1 Metric Learning. The goal of metric learning is to learn
a distance metric D such that D(k,[) > D(k, m) for any training
instance (k, I, m) where transactions k and [ are in the same class
and k and m are in different classes. In this work, we use an LMNN
metric learning approach which, apart from bringing transactions
of the same class closer, also aims at maintaining a margin between
transactions of different classes. LMNN does this by (1) identifying
the target neighbors for each transaction, where target neighbors
are those transactions that are desired to be closest to the transaction
under consideration (that is, few transactions of the same class) (2)
learning a linear transformation of the input space such that the
resulting nearest neighbors of a point are indeed its target neighbors.
The final classification in LMNN is given by k-NN in a metric space.
The distance measure D used by LMNN is the Mahalanobis distance
which is parameterized by matrix L.

If the vector representation of a transaction ¥ is a function of
corresponding latent factors and biases (details in Algorithm 1), then
mathematically LMNN aims to optimize the following objective for
all (k, I, m) triplets in the training data:

Minimize (1-p) > [ILG—=F)5+1 Y. (1=Yim)ékim
k, I~k k,I~k,m

st LGk = Xm)ll3 — LGk = XDII3 2 1= Exims Ekim 20 (3)

where L is a real-valued transformation matrix,  ~» k denotes
the target neighbors of k, Y, is 1 if k and m belong to the same
class (otherwise 0), & ) are slack variables for each (k, I, m) triplet
and p is a trade-off parameter. The first part of the objective tries
to minimize the distance between transactions and their target
neighbors whereas the second part tries to minimize the margin
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Algorithm 1: FitPredictionAlgorithm

Initialization:
for each customer ¢ do
| ue ~ N(0,0.1), be ~ N(0,0.1)
for each parent product pp do
Set r = 1 and L = list of sizes in pp in increasing order
for each product p in L do
vp ~ N(r,0.1)
Setr=r+1

Seta =1, w=11g,3, b1 = -5and by =5

Optimization 1:
while NOT CONVERGED do
Tune parameters ucs, vps, @, bes, bpps, w, by and by using
Projected Gradient Descent such that the sum of Hinge
losses ( eq. (2)) over all transactions is minimized.

Prototyping:
(1) For each transaction ¢, create representation of t as
[w[1].b;, ® W[2].bs,, ® (W[3 :] O uy, O vt,)]
(2) Find the centroid for each class cls
(3) Sort distances of all points from the respective class’s

centroid in increasing order and store them in X
_ #transactions in cls

(4) For each class cls, set interval el

(5) for each class cls do
Set Xcgs = Xegslres ¢
fori=1tondo
(a) Select X, [i * interval,js] as a prototype
L (b) interval s+ = g5

Optimization 2:
while NOT CONVERGED do

Tune L on the selected prototypes using L-BFGS to
| optimize the objective given in eq. (3).

Predict:

for each test transaction t do

(1) Project X; in the metric space using L

(2) Apply k-NN in the metric space to classify ¢

violations from the transactions of different classes and the hyper-
parameter y trades-off between the two. The constraints enforce
a margin between transactions of different classes while allowing
for a non-negative slack of § ). We use the PyLMNN package! for
the implementation of LMNN which tunes the parameters using
L-BFGS.

3.22  Prototyping. LMNN fixes the k target neighbors for each
transaction before it runs, which allows constraints to be defined
locally. However, this also makes the method very sensitive to the
ability of the Euclidean distance to select relevant target neigh-
bors [2]. Prototyping techniques, which aim to select a few rep-
resentative examples from the data, have been shown to increase
processing speed while providing generalizability [5]. Additionally,
re-sampling methods are shown to tackle label imbalance issues

!https://pypi.org/project/PyLMNN/1.5.2/
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[4]. Thus, to mitigate the aforementioned limitation of Euclidean
distances and tackle label imbalance issues, we develop a heuris-
tic that provides a good representation for each class by reducing
noise from outliers and other non-contributing transactions (like
the ones which are too close to the centroid of their respective class
or to already selected prototypes; details in Algorithm 1) by care-
fully sampling prototypes. Furthermore, since the time-complexity
of LMNN is linear in the size of the data [5], training LMNN on
selected prototypes incurs only constant time if the number of se-
lected prototypes (~ 300 in our experiments) is much less than the
size of the original training data.

4 DATASETS

We introduce? two datasets obtained from the websites ModCloth®
and RentTheRunWay.* ModCloth sells women’s vintage clothing
and accessories, from which we collected data from three cate-
gories: dresses, tops, and bottoms. RentTheRunWay is a unique
platform that allows women to rent clothes for various occasions;
we collected data from several categories. These datasets contain
self-reported fit feedback from customers as well as other side in-
formation like reviews, ratings, product categories, catalog sizes,
customers’ measurements (etc.). In both datasets, fit feedback be-
longs to one of three classes: ‘Small, ‘Fit, and ‘Large’

Statistic/Dataset ModCloth RentTheRunWay
# Transactions 82,790 192,544
# Customers 47,958 105,571
# Products 5,012 30,815
Fraction Small 0.157 0.134
Fraction Large 0.158 0.128
# Customers with 1 Transaction 31,858 71,824
# Products with 1 Transaction 2,034 8,023

Table 1: General dataset statistics.

General statistics of the datasets are provided in Table 1. Note
that a ‘product’ refers to a specific size of a product, as our goal is
to predict fitness for associated catalog sizes. Also, since different
items use different sizing conventions, we standardize sizes into a
single numerical scale preserving the order. Note that these datasets
are highly sparse, with most products and customers having only a
single transaction.

5 EXPERIMENTS
5.1 Comparison Methods

We compare the performance of the following five methods:

e 1-LV-LR: This method assumes a single latent variable for each
customer and product and uses fi,(t) = w(uz, — vy,) as the
scoring function. The learned features are then used in Logistic
Regression (LR) for final classification, as is done in [8].

e K-LV-LR: This method assumes K latent variables and one bias
term for each customer and product and has a scoring function of

2Code and datasets are available at https://rishabhmisra.github.io/
3https://modcloth.com
*https://renttherunway.com
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(a) (b) (c) (d) (e) improvement improvement improvement
Dataset/Method v/ p KIV-LR K-LF-LR K-LV-ML K-LE-ML  (e) vs. (a) (e) vs. (b) () vs (c)
ModCloth 0.615 0.617 0.626 0.621 0.657 6.8% 6.5% 4.9%
RentTheRunWay 0.61 0.676 0.672 0.681 0.719 17.9% 6.4% 7%

Table 2: Performance of various methods in terms of average AUC.

the form f,,(t) = <W, (br, = be,,) @ (ug, — th)>- This is a simple
extension of 1-LV.

o K-LF-LR: The method proposed in Section 3.1. This method also
uses LR for final classification.

e K-LV-ML: Uses the metric learning approach, instead of LR,
with K-LV to produce the final classification.

o K-LF-ML (proposed method): Uses the metric learning ap-
proach, instead of LR, with K-LF to produce the final classifica-
tion.

These methods are designed to evaluate (a) the effectiveness of cap-
turing fit semantics over “true” sizes; (b) the importance of learning
good latent representations; and (c) the effectiveness of the pro-
posed metric learning approach in handling label imbalance issues.
The AUC is used to evaluate the performance of these methods,
following the protocol from [8].

5.2 Experimental Setup

Training, validation and test sets are created using an 80:10:10
random split of the data. For ordinal regression optimization, we
apply {2 regularization. The hyper-parameters (learning rate and
regularization constant in ordinal regression; n, {r¢}, {p.} and
{qc1s} in prototyping; and k of k-NN and output dimensionality
of L in LMNN) are tuned on the validation set using grid search.
The PyLMNN package uses Bayesian optimization to find hyper-
parameters internal to LMNN optimization. For the 1-LV method,
we used the setting described in [8].

6 RESULTS AND ANALYSIS

Our results are summarized in Table 2. We find that models with K-
dimensional latent variables outperform the method with one latent
variable. Furthermore, we observe that improvements on ModCloth
are relatively smaller than improvements on RentTheRunWay. This
could be due to ModCloth having relatively more cold products and
customers (products and customers with very few transactions)
compared to RentTheRunWay (Table 1). Of note is that metric learn-
ing approaches do not significantly improve performance when
using representations from the K-LV method. The reason for this
could be that K-LV does not capture biases from data, as bias terms
merely act as an extra latent dimension, and learns representations
which are not easily separable in the metric space. This underscores
the importance of learning good representations for metric learning.
Finally, we see that K-LF-ML substantially outperforms all other
methods on both datasets. Besides learning good representations,
this could be ascribed to the ability of the proposed metric learning
approach in handling label imbalance issues (Fig. 2a).

Next we analyze how our method performs in cold-start and
warm-start scenarios (Fig. 2b). For cold products, we notice that
K-LF-ML consistently performs better than 1-LV-LR, although their
performances are slightly worse overall. As we consider products
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(a) Effectiveness of metric learn- (b) Average test AUC for prod-
ing approach in classifying infre- ucts with given number of trans-
quent labels. actions in training data.

Figure 2: Effectiveness of the proposed method in handling
label imbalance and cold-start issues on RentTheRunWay.

with more transactions, K-LF-ML improves quickly. The perfor-
mance of 1-LV-LR improves significantly given sufficiently many
samples. We observe the same pattern for cold customers.

Finally we perform a neighborhood analysis of transactions in
our learned metric space to see if there are any pattens in terms
of fit semantics. By looking at reviews, we found that neighboring
transactions generally capture fitness along similar body regions
(Fig. 3). We also report cosine similarities to give a sense of how
similar vector representations are.

“dress runs very large.. had to

15 ® Large
i adjust the bust every so often

Fit
® Small

“tight on the rib cage and
stomach and smaller up top”

[just a little too snug in:
the posterior region’

» .
= PERE T

Figure 3: Neighborhood analysis of t-SNE embeddings of a
selection of transactions from RentTheRunWay.

7 CONCLUSION

In this study, we propose a new predictive framework for the prod-
uct size recommendation problem. Specifically, we adopt a latent
factor formulation to decompose the semantics of customers’ fit
feedback and employ a metric learning approach to address label
imbalance issues. Furthermore, we contribute two public datasets
which contain customers’ self-reported fit feedback. Quantitative
and qualitative results on these datasets show the effectiveness of
the proposed framework.
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