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ABSTRACT

Sequential recommendation algorithms aim to predict users’ future
behavior given their historical interactions. A recent line of work
has achieved state-of-the-art performance on sequential recommen-
dation tasks by adapting ideas from metric learning and knowledge-
graph completion. These algorithms replace inner products with
low-dimensional embeddings and distance functions, employing a
simple translation dynamic to model user behavior over time.

In this paper, we propose TransFM, a model that combines trans-
lation and metric-based approaches for sequential recommendation
with Factorization Machines (FMs). Doing so allows us to reap
the benefits of FMs (in particular, the ability to straightforwardly
incorporate content-based features), while enhancing the state-
of-the-art performance of translation-based models in sequential
settings. Specifically, we learn an embedding and translation space
for each feature dimension, replacing the inner product with the
squared Euclidean distance to measure the interaction strength
between features. Like FMs, we show that the model equation for
TransFM can be computed in linear time and optimized using clas-
sical techniques. As TransFM operates on arbitrary feature vectors,
additional content information can be easily incorporated without
significant changes to the model itself. Empirically, the performance
of TransFM significantly increases when taking content features
into account, outperforming state-of-the-art models on sequential
recommendation tasks for a wide variety of datasets.

1 INTRODUCTION

From e-commerce sites such as Amazon [18] to online multimedia
sites such as Netflix [4] and YouTube [7], recommendation algo-
rithms have become critical to the design and implementation of
a successful online platform. Many traditional approaches seek to
model ‘global’ interactions, e.g. by learning low-dimensional user
and item embeddings and computing interactions in this space.
These algorithms, such as Matrix Factorization [17] and derived
models, are able to effectively model user preferences but fail to
account for sequential dynamics, providing a static list of recom-
mendations regardless of a user’s sequence of recent interactions.

Sequential recommender systems add an additional dynamic:
taking the order of previous interactions into account. Successfully
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Figure 1: The general-purpose TransEM model. Unlike stan-
dard sequential and metric-based algorithms, TransFM mod-
els interactions between all observed features. For each fea-
ture i, the model learns two entities: a low-dimensional
embedding 7; and a translation vector o]. The interaction
strength between pairs of features is then measured using
the squared Euclidean distance d2(-, -). In the example above,
we plot the embeddings and translation vectors for a user
(feature 1), an item e.g. a movie or book (feature 2), and a
temporal feature (feature 3). Interaction weights are given
by the distance between the ending and starting points of
the respective features.

modeling these third order interactions (between a user, an item
under consideration, and the previous item consumed) facilitates
a more engaging user experience, resulting in recommendations
that are more responsive to recent user and item dynamics [27, 28].
A recent approach to sequential recommendation is TransRec [13],
which operates by learning a latent item embedding space within
which users are modeled as linear translation vectors. TransRec
operates in a metric space, replacing inner products with distance
functions (d(-, -)). This follows a line of work that adapts ideas
from metric learning [23] and knowledge-graph completion [30,
38] into recommender systems, which has led to state-of-the-art
performance on a variety of tasks.

A natural avenue to extending this recent work is to adapt such
metric and translation-based methods to incorporate content fea-
tures. A few specific approaches have been proposed, most notably
from the domain of music recommendation. For example, [33] in-
corporates audio features using a specialized Convolutional Neural
Network, and [3] proposes a variational Bayes technique for playlist
generation using both collaborative and content features. However,
offering a general-purpose technique to incorporate content fea-
tures into metric-based approaches remains open.
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Factorization Machines achieve this goal in inner-product spaces,
incorporating additional features without sacrificing model sim-
plicity [25]. FMs operate on arbitrary real-valued feature vectors,
and model higher-order interactions between pairs of features via
factorized parameters. They can be applied to general prediction
tasks and are able to replicate a variety of common recommender
system models, such as matrix factorization and FPMC [27], simply
by selecting appropriate feature representations.

In this paper, we propose TransFM, which adapts ideas from
FMs into translation-based sequential recommenders. Doing so al-
lows us to straightforwardly model complex interactions between
features (as in FMs), while extending the state-of-the-art perfor-
mance of metric/translation-based approaches.!

Specifically, we replace the inner product in the FM interaction
term with a translation component between feature embeddings,
employing the squared Euclidean distance to compare compatibility
between pairs of feature dimensions (see Figure 1). As with Factor-
ization Machines, we show that the TransFM model equation can be
computed in linear time in both the feature and parameter dimen-
sions, making it efficient to implement for large-scale sequential
recommendation datasets.

The translation component of the model effectively learns re-
lationships among collaborative and content-based features with
minimal preprocessing and feature engineering. Quantitatively, we
evaluate TransFM on datasets from Amazon [22], Google Local [13],
and MovieLens [12], and find that TransFM with content features
provides significant improvements over state-of-the-art baselines
with and without additional features included.

We present a generalization of this approach and derive related
models by merging FMs with similar baseline models. This leads to
general-purpose recommendation approaches that incorporate the
intuitions of other baseline approaches, consistently outperforming
vanilla Factorization Machines.

2 RELATED WORK

2.1 Sequential Recommendation

Many sequential recommendation algorithms adapt Markov Chains
to model sequential dynamics. Factorized Personalized Markov
Chains (FPMC) factorizes a third-order transition ‘cube’ to predict
a user’s next basket of purchases, using independent factorization
matrices to model pairwise interactions [27]. [9] introduces Person-
alized Ranking Metric Embedding (PRME), which replaces inner
products with Euclidean distances to model user-item interactions.

TransRec [13] is also a sequential recommendation approach,
modeling users as translation vectors through a shared item em-
bedding space. This gives the following probability of observing a
next item j given user u and previous item i:

P(jlu, i) o< B = d(7i + Tu, 7))- 1)

These models perform well given historical user sequences, but
cannot take temporal, geographical, or other content features into
account without significant changes to the model forms. Sequential
recommenders that do take features into account (e.g. [19, 21])
involve specialized models derived for specific tasks and datasets.

ISource code: https://github.com/rpasricha/TransFM
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2.2 Factorization Machines

Factorization Machines [25] are a general-purpose predictive frame-
work for arbitrary machine learning tasks. They model all second-
order interactions between features and can naturally be extended
to handle arbitrary higher-order interactions. Each feature interac-
tion is weighted according to the inner product between factorized
parameters, resulting in the following model equation:

n n n
Q(J_C)) =wp + Z wix; + Z Z <5i5j>xixj- (2)
i=1

i=1 j=i+1

FMs can be applied to arbitrary regression, classification, or
ranking tasks by selecting an appropriate loss function. In this work,
we focus on the implicit feedback setting, applying the Bayesian
Personalized Ranking (BPR) framework to optimize the ranking of
predicted items [26].

Given their simplicity and applicability to a variety of machine
learning tasks, FMs have been extended in a variety of ways since
their introduction. [37] incorporates features of skip-gram and other
text mining algorithms to apply FMs to sentiment classification,
and [29] includes FMs in a multi-stage predictive model to extract
relevant reviews for recommendation. Finally, [29] propose domain-
specific models applying FMs to content modeling on Twitter and
CTR prediction in advertising.

2.3 Hybrid Recommendation

Hybrid recommendation algorithms merge aspects of collaborative
filtering and content-based approaches, aiming to improve perfor-
mance and make useful recommendations to users and items with
few observed interactions. Potential additional sources of infor-
mation include temporal [10, 16], social [5, 11], and geographical
[24, 34] features. Recent hybrid approaches have incorporated im-
age features to improve content or next POI recommendation [36],
and applied deep learning techniques to automatically generate use-
ful content features [31] or introduce additional modeling flexibility
[14]. While these approaches achieve state-of-the-art performance
compared to relevant baselines, they all rely on specialized models
and techniques to incorporate additional features. In contrast, we
present a generalized approach, which operates on arbitrary feature
vectors and prediction tasks. With appropriate feature engineering,
our model can incorporate temporal, geographical, demographic,
and other content features without changing the model form itself.

3 THE TRANSFM MODEL

3.1 Problem Formulation

TransFM combines the distance and translation components of the
TransRec model with the ability of FMs to incorporate arbitrary
real-valued features for the purpose of sequential recommendation.

Table 1 includes notation used throughout the paper. As with
Factorization Machines, TransFM operates on real-valued feature
vectors X. In the sequential recommendation setting, X includes
feature representations for the user u, the previous item i, and next
item j, along with any additional content features.

Each dimension in ¥ is associated with both an embedding and
a translation vector. Formally, for feature x;, we learn two vectors:
an embedding vector 3; € R and a translation vector vl € RK. We
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Figure 2: A visual comparison of translation, metric, and factorization-based recommender system models.

Table 1: Notation

Notation Explanation

Uu, 1 User set, item set

St Historical interaction sequence for user u

)_c'u, ij Feature vector for user u, previous item i, and next
item j
Dimensionality of embedding and translation spaces

n Dimensionality of ¥, ; j

wo Global bias term

w Linear terms; w € R"

\% Feature embedding space; V € R7xk

\'A Feature translation space; V' € Rnxk

d%(@,b) Squared Euclidean distance between d and b

apply the translation operation to the previous item embedding
and measure the distance to the next item embedding 9; by the
squared Euclidean distance. The resulting distance gives the weight
assigned to the corresponding feature interaction.

The model equation of TransFM is given by:

n n n

&) = wo + Y wixi + >0 > dHG; + B, opxinj,  (3)
i=1 i=1 j=i+1

where wy is a global bias term and w; is the linear term for feature

x;. 0; and ] are the embedding and translation vectors (resp.) for

feature x;, and d?(@, l;) represents the squared Euclidean distance
between the vectors d and b:

k
d(@,b) = @-b)-(@-b) = ) (a - bp)*.
f=1

Like other metric-based models, TransFM replaces the inner
product term with the (squared) Euclidean distance. This leads to
improved generalization performance, more effectively capturing
the transitive property between feature embeddings. For example,
if the feature pairs (a, b) and (b, ¢) exhibit high interaction weights,
then features a and ¢ will be closely related as well, even if there
are few or no observed interactions between them.

Figure 2 provides a comparison of the prediction methods used
by TransFM and various baseline models. PRME (2a) learns a per-
sonalized metric space in which the distance between embeddings
measures user-item compatibility (the corresponding item-item se-
quential space is not shown); Factorization Machines (2b) measure

interactions between arbitrary features with the inner product be-
tween corresponding factorized parameters; TransRec (2c) learns an
embedding y; for each item, and a translation vector 7, for each user
traversing their interaction sequence. Finally TransFM (2d) learns
an embedding 9; and translation vector o for each feature, using
the squared Euclidean distance to measure feature interactions.

3.2 Computation
The model equation for Factorization Machines can be computed
in linear time O(kn), where k is the dimensionality of the model
parameter vectors and n is the dimensionality of the input feature
vectors [25]. In this section, we show that the same result applies
to TransFM.

In order to simplify the squared Euclidean distance d?, we take
advantage of the ability to write d2 in terms of inner products:

2/ S o - S o - S o
d“(0; + 90,95) = (0; + 0; — 05) - (0 + U; — Uj).
This allows us to rewrite the interaction term as follows:

dz(l_}i + 5;, 5j)xin
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n
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The first sum above can be split into six individual sums, each
of which multiplies the feature product x;x; with one of the corre-
sponding inner products. We present a simplified version of one of
the six sums below:

1
2 4

n n
i=1

n n
. 1 .
Z(Ui SN = 5 (z;(vi 'Ui)xi) jZ;xj

j=1 i=

(others are similar and omitted for brevity).

Thus we see that all terms in Equation 3 can be computed with
at most two sums over the input features, and at most one inner
product between corresponding parameter vectors. Given input
features of dimensionality n and parameters of dimensionality k,
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this shows that the TransFM model can be computed in linear
complexity in both k and n, or O(kn).

As with FMs, the above feature vectors are sparse (e.g. one-hot
user/item encodings), and the above sums need to be computed
only over the nonzero elements of the input feature vectors. We
denote by X, ; ; the feature vector consisting of one-hot encodings
for the (u, i, j) user, previous item, next item triplet.

3.3 Optimization

We consider the sequential recommendation setting with implicit
feedback, i.e. rather than optimizing the precise output value of
our model equation, we instead aim to rank the observed next
item j ahead of all other items j’ € T\j in the dataset. To this end,
we adopt the Sequential Bayesian Personalized Ranking (S-BPR)
optimization criterion [27].

Applying S-BPR, we optimize the total order >, ; given a user u
and previous item i:

0= argénaxln 1_[ l_[ l—[ Pr(j >4,i j'|©) Pr(©)

ueU jeS* j'¢gS*

= argmax DD M@ )) - §Gu,i ) - A6),

uell jeSu j/gSu

where i is the item immediately preceding j in the consumption
sequence. Accordingly, we also restrict j from being the first item
in the sequence as it has no associated previous item. §(X) is the
TransFM model described in Equation 3, © is the set of parameters
{wo, w, V,V’} to be learned by the model and Q(®) is a standard
L5 regularization term.

3.4 Implementation and Inference

We implement the TransFM model in TensorFlow [1] and use mini-
batch gradient descent with Adam Optimization to train our models
[15]. Adam is effective for learning models with many parameters
on sparse datasets and was the most effective optimization algo-
rithm in our experiments.

We apply the standard BPR optimization process, based on sto-
chastic gradient descent with bootstrap sampling [26]. For every
positive triple (u, i, j), we randomly sample a negative item j’ € 1
on every iteration to add to our mini batch. This set of positive and
negative triples is then used to update the parameters of the model.

All model parameters are randomly initialized within the interval
[-0.1,0.1], and regularization parameter values are optimized using
a grid search over the values {0.0,0.001,0.01,0.1, 1.0, 10.0, 100.0}.
We iterate until convergence, as measured by performance on a
held-out validation set.

4 EXPERIMENTS
4.1 Datasets and Statistics

In order to evaluate the quantitative performance of the proposed
TransFM model, we perform experiments using a variety of publicly
available datasets that vary significantly in terms of size and sparsity.
As we are concerned with learning models from implicit feedback,
we first convert all observed ratings to be positive feedback, discard-
ing the observed star ratings if present. We then remove all users

Rajiv Pasricha and Julian McAuley

Table 2: Dataset Statistics (after preprocessing)

#users #items . ave: ave.
Dataset U 00 #actions | #actions #actions
/ user / item
Office 16,716 22,357 128,070 7.66 5.73
Automotive 34,316 40,287 138,573 5.35 4.56

Video Games 31,013 23,715
Toys and Games | 57,617 69,147

287,107 | 9.26 12.11
410,920 | 7.13 5.94

Cell Phones 68,330 60,083 429231 | 6.28 7.14
North Carolina 4573 7,846 31,167 | 6.82 3.97
Colorado 4,586 7,989 34,880 | 7.61 437
Washington 4,453 7,196 39,316 | 8.83 5.46
Florida 12,096 21,388 77,145 | 6.38 3.61
Texas 16,066 24,729 136,930 | 8.52 5.54
California 23,644 35252 237,051 | 10.03  6.72
MovieLens 943 1,349 99,287 | 105.29  73.60
Total \ 274k 321k 2.05M \ - -

and items with fewer than five observed interactions. Statistics of
the datasets under consideration are included in Table 2.

Amazon?: This dataset, originally introduced by [22], contains a
large corpus of product ratings, reviews, and metadata, collected
from Amazon.com from May 1996 to July 2014. The full dataset con-
sists of 83 million ratings and reviews collected during this period,
along with additional features including item metadata and visual
features. Notable for its high sparsity, the Amazon dataset provides
a useful benchmark to evaluate recommender system algorithms
on sparse input data. The additional available metadata also makes
it an appealing choice to evaluate algorithms combining collabo-
rative filtering techniques with additional sources of information.
We use purchases from five top-level categories covering a variety
of distinct purchase domains.

Google Local®: This dataset contains a large collection of business
ratings and reviews and was originally introduced by [13]. The
dataset also includes many associated content features, including
user demographics and business locations. The availability of GPS
coordinates facilitates evaluating TransFM in a geographical recom-
mendation setting. In this work, we evaluate datasets containing
businesses from six U.S. states of varying sizes and populations.

MovieLens*: The MovieLens dataset has been used for many years
to evaluate a large variety of recommendation algorithms [12]. Cre-
ated by the GroupLens research group at the University of Min-
nesota, MovieLens allows its users to submit ratings and reviews
for movies they have watched and recommends movies that those
users may enjoy. From its inception, MovieLens and its associated
datasets have been vital to the development of improved recommen-
dation algorithms as well as related studies in psychology and other
domains [2, 6, 20, 39]. In this work, we use the MovieLens-100k
benchmark dataset. Compared to the Amazon datasets, this dataset
exhibits a much higher degree of user and item density.

Zhttps://jmcauley.ucsd.edu/data/amazon/
3http://jmcauley.ucsd.edu/data/googlelocal/
“https://grouplens.org/datasets/movielens/


https://jmcauley.ucsd.edu/data/amazon/
http://jmcauley.ucsd.edu/data/googlelocal/
https://grouplens.org/datasets/movielens/

Translation-based Factorization Machines for Sequential Recommendation

4.2 Features

TransFM is intended to be a ‘feature-agnostic’ general-purpose
model that can yield significant performance improvements when
incorporating additional features, with no other changes to the
model format. Thus our focus is not on complex feature design
techniques, but rather to show that significant performance im-
provements can be achieved with minimal feature preprocessing.
To that end, we extract the following content-based features from
each dataset to evaluate our model:

Temporal Features: Temporal data has been widely used to im-
prove recommendation performance [8, 16, 32]. Each of our datasets
contain temporal information, specifically the time ¢, ; for each
rating between user u and item i.

For the implicit feedback recommendation task with a ranking
loss, each training example consists of a triplet (u, i, j) of a user,
previous item, and next item. As a result, we add two additional
features to Xy, ; j: the time t, ; of user u’s rating of previous item i,
and the time t,, j of u’s rating of next item j. All timestamps for each
dataset are first normalized to have zero mean and unit variance.

During training, corresponding positive and negative instances
are both associated with the same timestamp, so that we are opti-
mizing a time-specific ranking loss.

Item Category Features: The Amazon datasets also provide a list
of categories for each item. These categories form a hierarchical list
of labels, which are useful as item features to improve performance
and generalizability, especially in sparse settings. We convert the
observed category labels into binary indicator vectors for previous
and next items, and add them to the feature vector X, ; ;.

User and Item Content Features: MovieLens provides a variety
of content features for both users and items. We use the following
features in our models: user age, user gender, user occupation, user
zip code, and movie genre. Movie genre, user occupation, and user
zip code are encoded into binary features. We convert the user
gender to a single binary feature and leave the user age unchanged.

Geographical Features: As the Google Local datasets capture
ratings for various businesses, each ‘item’ is associated with corre-
sponding latitude and longitude coordinates. We add these coordi-
nates to TransFM to evaluate the model in a geographical setting.
For each state, we first round the coordinates to a single decimal
place, and then create binary feature vectors with one feature for
each bin. For example, from the Google Washington dataset, we
observe 38 and 78 latitude and longitude features respectively.

4.3 Evaluation Methodology

In the sequential recommendation setting, the prediction for each
item depends on the previous items in the user’s consumption
sequence. As a result, we first partition the consumption sequence
for user u into three sub-sequences. The most recent item S \uS"| is

added to the test set, the previous item S* to the validation

[S*]-1
set, and the remaining |S¥| — 2 items are kept in the training set.
We report the performance of each model according to the Area

Under the ROC Curve, or AUC, defined below.

1 1
AUC= o 3 e > 1(Ruyg, < Ruj),
Ul S NS s
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where gy, is the ground truth item for user u in the test set, and Ry, ;
is the rank of item i for user u in the output list of recommendations.
Finally, 1(-) is the indicator function that returns 1 if the ground
truth item is ranked ahead of the unobserved item j'.

4.4 Models

We compare TransFM against the following baselines:

PopRec: This is a naive popularity baseline that ranks items in
order of their overall popularity in the dataset. It is not personalized,
so it provides the same list of recommendations to all users.

BPR-MF: This model uses the Bayesian Personalized Ranking (BPR)
framework with Matrix Factorization (MF) as the underlying model
[26]. It learns global personalized user-item dynamics but does not
take sequential signals into account.

Factorized Markov Chain (FMC): This is a non-personalized
sequential model that factorizes the global item-to-item transition
matrix. It does not take personalized user interactions into account.

Factorized Personalized Markov Chain (FPMC): A combina-
tion of the MF and FMC models, FPMC factorizes the three dimen-
sional sequential interaction tensor [27]. Predictions are computed
by taking inner products between factorized parameter vectors:

g -U,J] -J,U SI,] =)0
P(jlu,i) o< (3,0, 517y + @1 8, (4)

where VU-J V.U VLT ‘and V/-T are the four embedding spaces
learned by the model.

Personalized Ranking Metric Embedding (PRME): This model
replaces the inner products in FPMC with Euclidean distances, em-
bedding users and items into two latent spaces to model personal-
ized and sequential dynamics respectively [9]. The hyperparameter
a modulates the relative importance between these two spaces:

P(jlu, i) o« —(a - d(Dy, 0j) + (1 — ) - d(wi, wj)). (5)

Hierarchical Representation Model (HRM): This model intro-
duces an aggregation component to FPMC to allow more flexibility
in modeling interactions between users and items [35]:

P(jlu, i) o< (f (Tu. i), Tj)- (6)
We test average and max pooling for the aggregation function f.

TransRec: This is the model proposed in [13], which embeds each
item in a shared embedding space and learns personalized transla-
tion vectors through this space for each user (see Equation 1). This
allows the TransRec model to achieve state-of-the-art performance,
excelling on datasets with the highest levels of sparsity.

CatCos: This is a naive extension to TransRec that incorporates
content features. We follow the intuition that items with similar
content features should have similar embeddings. This is enforced
by adding a regularization term that computes the distance between
consecutive pairs of item embeddings y; and ¥;, weighted by the
cosine similarity of their corresponding content vectors. Formally,
we add the following regularization term:

R= D, D s %5 )i -7’ )

uelU jeSu
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Table 3: Results of our baseline and proposed models on different datasets, with respect to the AUC (higher is better). The
best performing baseline and proposed models for each dataset are bolded. The final row shows the percent improvement of

TransFM ontent Over the best baseline.

Amazon Google Local
Model Conten; Office Auto. Video  Toysand _Cell — Amazon N.C. Colo. Wash. Fla. Tex.  Calif. Google MovieLens
aware? | Products Games  Games Phones Average Average

PopRec 0.6427 0.5870 0.7497 0.6240 0.6959 0.6599 | 0.4888 0.5085 0.5123 0.4722 0.5612 0.5785 0.5203 0.7413
BPR-MF 0.6979 0.6307 0.8551 0.7289 0.7611 0.7347 | 0.7096 0.6826 0.6994 0.7275 0.7657 0.7969 0.7303 0.8602
FMC 0.6865 0.6442 0.8423 0.6948 0.7548 0.7245 | 0.6542 0.6164 0.6491 0.6432 0.7153 0.7284 0.6678 0.8515
FPMC 0.6859 0.6415 0.8523 0.7198 0.7376 0.7274 | 0.6698 0.6463 0.6662 0.6619 0.7239 0.7462 0.6857 0.8858
PRME 0.7006 0.6473 0.8601 0.7264 0.7887 0.7446 | 0.7064 0.6602 0.6837 0.7107 0.7532 0.7750 0.7149 0.8851
HRMan 0.6985 0.6703 0.8779 0.7581 0.7891 0.7588 | 0.7691 0.7219 0.7440 0.7812 0.8207 0.8346 0.7786 0.8856
HRMpax 0.6983 0.6560 0.8566 0.7263 0.7656 0.7406 | 0.7067 0.6666 0.6941 0.7109 0.7506 0.7692 0.7164 0.8844
TransRec 0.7383 0.6953 0.8885 0.7643 0.8080 0.7789 | 0.7507 0.7161 0.7313 0.7685 0.8030 0.8215 0.7652 0.8873
CatCos v 0.7402 0.7048 0.8878 0.7762 0.8099 0.7838 | 0.7524 0.7177 0.7352 0.7639 0.8021 0.8221 0.7656 0.8678
M 0.7075 0.6572 0.8523 0.6994 0.7558 0.7344 | 0.6787 0.6504 0.6812 0.7057 0.7435 0.7732 0.7055 0.8575
FMiime v 0.7426 0.6671 0.8866 0.7488 0.8153 0.7721 | 0.6554 0.6392 0.6761 0.6757 0.7251 0.7608 0.6887 0.8617
FMcontent v 0.7586 0.7328 0.8912 0.7761 0.7611 0.7840 | 0.7673 0.7345 0.7352 0.7821 0.8025 0.8107 0.7721 0.8660
TransFM 0.7169 0.6675 0.8584 0.7203 0.7767 0.7480 | 0.6454 0.6327 0.6498 0.6507 0.7072 0.7341 0.6700 0.8611
TransFMiime v 0.7430 0.6776 0.8778 0.7583  0.8209 0.7755 | 0.6257 0.6203 0.6289 0.6233 0.6857 0.7157 0.6499 0.8722
TransFMcontent v 0.8463 0.8319 0.9587 0.8673 0.8406 0.8690 | 0.7947 0.7535 0.7586 0.8095 0.8371 0.8379 0.7986 0.9381
Vi‘if;;fa“;:l‘l‘;e 11.6% 135% 7.6% 117% 31% 108% | 33%  2.6%  2.0% 3.5% 2.0% 04%  2.6% 5.7%

where i is the item in S* immediately preceding j, X ; is the
content feature vector for user u and item i, and s(:, -) is the cosine

similarity function:

s(@,7) = —2_.
izl
For MovieLens, we only take the movie genre into account and do
not add user features. As we compare sequential item embeddings
in a single consumption sequence, the user features of the previous

and next item will always be identical.

FM: This is the standard Factorization Machine model, which mod-
els interactions between all pairs of features by using an inner
product between corresponding parameter vectors:

n n n
§(X) = wo + Zwixi + Z Z (D, Dj)xix;.
i=1 i=1 j=i+1
We evaluate the FM model in three cases: (1) without additional
features, (2) with temporal features, and (3) with category / content
features. These are represented in the results as ‘FM, ‘FMyjp., and
‘FMcontent” respectively.

TransFM: This is the TransFM model proposed in this paper. This
model replaces the inner product of Factorization Machines with a
translation operation followed by the computation of the squared
Euclidean distance:

n n n
g()_C') =wo + Zwixi + Z Z dz(z_)'i + 5;,5j)xin.
i=1 i=1 j=i+1
As with FMs, we evaluate TransFM in three cases: (1) without
additional features, (2) with temporal features, and (3) with con-
tent features. These are represented in the results as ‘TransFM,
‘TransFMiime, and ‘TransFMcontent” respectively.

The goal of our baselines is to compare (1) standard recommen-
dation baselines, (2) specialized models for sequential recommen-
dation (TransRec), (3) incorporating content features by adding
additional constraints (CatCos), (4) general-purpose models with
inner product interaction terms (FM), and (5) general-purpose
metric/translation-based interaction models (TransFM). We also
evaluate the relative performance improvements attained by adding
temporal, category, or content features.

4.5 Performance and Quantitative Analysis

Results from our experiments are collected in Table 3. The number
of factor dimensions k for all models is set to 10; we analyze the
impact of changing the dimensionality later. For all datasets, the
best performing model is TransFM with content features. The final
row of Table 3 shows the improvement of TransFM over the best
performing baseline. Our main findings are summarized below:

Baseline Models: As expected, all models outperform the simple
popularity-based baseline. BPR-MF and FMC respectively model
personalized and sequential components, and their respective per-
formance shows that both components play a significant role in
making successful recommendations. By adding a personalization
component, FPMC outperforms FMC for all datasets and is among
the best baselines for the (dense) MovieLens dataset. However, it
loses to BPR-MF for most datasets, suggesting that learning multiple
independent embeddings is not well-suited to sparse domains.

By replacing inner products with metric distances, PRME outper-
forms FPMC for all Amazon and Google datasets. HRMayg outper-
forms PRME in most cases, demonstrating the effectiveness of an
appropriate aggregation term. This contrasts with [35], in which the
nonlinear max pooling operation performed best. We expect that
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the increased sparsity of our data inhibits the ability of HRMpax to
uncover appropriate nonlinear dynamics.

TransRec is the best performing content-agnostic method for
Amazon and MovieLens but loses to HRM,y, for all Google Local
datasets. This suggests that the translation vector intuition of Tran-
sRec does not effectively model interactions in Google Local as well
as the simpler HRM model.

CatCos: The CatCos baseline model outperforms the non-content
aware baselines for Amazon but loses to solely collaborative ap-
proaches for the other datasets, despite the addition of useful con-
tent features. This indicates that more specialized models or feature
representations would be necessary to fully incorporate content
information into the TransRec framework.

FMs: The standard FM model performs worse than more specialized
sequential baseline models for all datasets. As opposed to many
other baseline approaches, FMs do not explicitly model personalized
sequential dynamics, and use inner products to model arbitrary
feature interactions. Compared to the metric-based approach, these
inner products are less effectively able to extract useful dynamics
from extremely sparse datasets.

FMs with features: Factorization Machines are effectively able to
incorporate content features and achieve significant performance
benefits, without requiring any changes to the model format itself.
Adding temporal data to FMs leads to significant performance im-
provements for Amazon and MovieLens, despite only adding two
additional features to Xy, ;, ;.

This highlights the importance of effectively modeling temporal
data to improve recommendation performance and shows that
strong temporal effects are present in these datasets. However,
adding temporal features causes performance for Google Local to
decline, as temporal dynamics do not play as significant a role in
modeling review sequences for local businesses.

Adding content features also results in substantial improvements,
especially for datasets with the highest sparsity. FM¢ontent Outper-
formed FMtjpme in most cases, demonstrating the importance of
content features to compensate for insufficient interaction data.

TransFM: Although TransFM (without features) does not outper-
form all baseline models, it does exceed standard FMs for the Ama-
zon and MovieLens datasets. However, FMs perform better for the
Google Local datasets, suggesting that without any additional fea-
tures, inner products more effectively model interactions in this
setting. This matches our observations of TransRec, which is out-
performed by the inner product-based HRMayg baseline.

TransFM with features: Adding temporal data to TransFM has a
similar effect as the corresponding FMjpe baseline. When temporal
features play a significant role in the datasets (e.g. for Amazon and
MovieLens), TransFM is able to extract these dynamics.

The TransFMcontent approach achieves the highest AUC for all
datasets. The translation technique is effective at modeling both
content and collaborative feature interactions, resulting in more sig-
nificant improvements over vanilla TransFM than the correspond-
ing FMcontent approach. These improvements hold for all datasets:
Amazon (with category features), Google Local (with geographical
features), and MovieLens (with user/item content features). Despite
the increased density of MovieLens, TransFM is still able to extract
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Figure 3: AUC of TransFM and various baselines with re-
spect to increasing dimensionality k.

additional value from user and item content features to improve
recommendation performance.

For the Google Local dataset, geographical features play a more
significant role in user-item interactions than temporal data. The
performance of TransFMcontent On this dataset indicates the trans-
lation component is effectively able to model interactions between
arbitrary user, item, and geographical features.

4.6 Sensitivity to Dimensionality

To analyze the sensitivity of TransFM to the parameter dimension-
ality, We adjust k in the set k € {5, 10, 20, 40} and plot the resulting
AUC values for Office Products and MovieLens datasets in Figure 3
(other datasets exhibited similar performance and are withheld for
brevity). We observe that in most cases, performance does not in-
crease significantly with dimensionality. However, TransFMcontent
significantly outperforms all other models for all values of k.

4.7 Sign of the Interaction Term

Like FMs, TransFM adds the interaction term in the prediction equa-
tion (see Equation 3). This assigns features that are farther apart
a higher interaction strength. In order to more closely match the
intuition of standard metric-based models, where smaller distances
correspond to higher interaction weights, we also tested a variant
of TransFM with a negative interaction term. The resulting model
displayed similar performance with no additional features or with
temporal data but had significantly reduced performance with con-
tent features. This suggests that an additive distance term increases
the model’s flexibility to appropriately model interactions between
users, items, and content features, with the £, regularization term
constraining the feasible set of embedding locations.

5 FMS APPLIED TO RELATED
RECOMMENDATION APPROACHES

TransFM is a general-purpose model which adds elements from
translation and metric-based sequential algorithms to the FM frame-
work. TransRec, a similar translation-based model, was applied in
[13] to the sequential recommendation task but lacked the ability
to be natively extended with content features. In this section, we
present related extensions of FMs that draw inspiration from sim-
ilar baseline algorithms to achieve improved performance while
retaining compatibility with arbitrary feature vectors.

We apply a similar approach to two baseline models: PRME
and HRM, specialized sequential recommendation models simi-
lar to TransRec. PRME models sequential recommendations with
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embeddings in a metric space, using single embedding locations
rather than translation vectors. HRM, specifically HRMayg, models
a similar vector addition operation but relies on inner products
rather than metric spaces. By incorporating both translation and
metric-space intuitions, TransRec is able to outperform PRME for
all datasets and HRMayg for Amazon and MovieLens. We observe
similar results for their FM-inspired counterparts, with the trans-
lation and distance components of TransFM providing improved
performance over related models.

5.1 Personalized Ranking Metric Embedding
(PRME)

PRME [9] extends FPMC by learning personalized and sequential
embeddings and replacing inner products with Euclidean distances
(see Equation 5). To apply the PRME approach to FMs, we replace
the inner product with the squared Euclidean distance between
corresponding features. This gives the following PRME-FM model:

n n n
IE =wo+ Yy wixi+ y. Y dA@ Gy ()
i=1 i=1 j=it1

Note that PRME-FM is simply TransFM without the translation
space. The model learns a single embedding and computes interac-
tion weights according to the (squared) distance between embed-
dings. This model also retains the general-purpose nature of FMs
and TransFM and can be simplified (similar to Section 3.2) to be
computed in linear time.

5.2 Hierarchical Representation Model (HRM)

We next present a combined model between FMs and HRM [35].
HRM aggregates user and item representations (see Equation 6)
prior to taking the inner product. We found above that average
pooling is more effective, and HRMayy is the best performing base-
line for most Google Local datasets. We apply a similar intuition to
the FM framework. Specifically, we adapt the first term of the inner
product to take the sum of both embeddings, giving the following
HRM-FM model:

n n n
g()_f) =wgy + Z wix; + Z Z (V; + 5j,z7i)xixj. 9)
i=1 i=1 j=i+1
The sum o; +9; is the aggregation term that combines the learned
representations for features i and j prior to taking the inner product.
This model is also a general-purpose algorithm and can be computed
in linear time with a similar simplification as in Section 3.2.

5.3 Experiments

We compare PRME-FM and HRM-FM against standard FMs and
TransFM. We evaluate these models against three datasets: ‘Amazon
Automotive, ‘Google Florida, and ‘MovieLens’. As in our previous
experiments, models are evaluated according to the AUC in the
following settings: (1) without features, (2) with temporal features,
and (3) with content features. Results are presented in Table 4.
The overall trends for PRME-FM and HRM-FM are similar to
FMs and TransFM. TransFM outperforms both PRME-FM and HRM-
FM on Automotive and MovieLens, indicating that the increased
expressiveness of the translation space more effectively models
feature interactions. The models are similar in performance on
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Table 4: Results for alternative FM-derived approaches. Mod-
els are evaluated according to the AUC (higher is better).

Model Az‘:;ﬁ?ve g?)‘;i}; MovieLens
FM 0.6572 0.7057 0.8575
FMiime 06671  0.6757  0.8617
FMcontent 0.7328 0.7821 0.8660
TransFM 0.6675 0.6507 0.8611
TransFMgie 0.6776  0.6233  0.8722
TransFMcontent 0.8319 0.8095 0.9381
PRME-FM 0.6674 0.6501 0.8639
PRME-FMyime 0.6749 0.6240 0.8701
PRME-FMcontent 0.7422 0.8115 0.8557
HRM-FM 0.6662 0.6521 0.8581
HRM-FMjime 0.6720 0.6281 0.8744
HRM-FMcontent 0.7411 0.8160 0.8606

the Florida dataset, potentially indicating a simpler relationship
between features that is captured by all three approaches.

We do not observe a significant difference between PRME-FM
and HRM-FM in terms of AUC. The sum and distance operations
both improve on the inner product operation of standard FMs, and
both capture a similar amount of signal in all evaluated datasets.

Compared to standard Factorization Machines, HRM-FM, PRME-
FM, and TransFM all provide significantly improved AUC perfor-
mance with content features. This demonstrates that merging FMs
with specialized sequential algorithms can consistently lead to ef-
fective general-purpose recommendation models.

6 CONCLUSIONS AND FUTURE WORK

We introduced TransFM, which combines translation and metric-
based approaches for sequential recommendation with Factoriza-
tion Machines. This model learns an embedding and translation
space for each feature and replaces the inner product of FMs with a
translation term and distance metric. This general-purpose model
natively supports the addition of content features without requiring
specialized constraints or adjustments. We evaluated TransFM on a
variety of datasets and found that it achieves state-of-the-art per-
formance when incorporating content features. We also found that
applying a similar intuition, combining FMs with other baselines,
consistently leads to improved general-purpose models.

Future research directions include (1) applying TransFM to arbi-
trary machine learning tasks besides sequential recommendation,
(2) determining the impact of additional features or feature rep-
resentations on the model’s performance, (3) performing a user
study to further validate the results of TransFM, and (4) further
investigating the relationship between TransFM and the simpler
HRMayg model, which performed well on the Google Local dataset.
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