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ABSTRACT
In implicit feedback datasets, non-interaction of a user with
an item does not necessarily indicate that an item is irrel-
evant for the user. Thus, evaluation measures computed
on the observed feedback may not accurately reflect per-
formance on the complete data. In this paper, we discuss a
missing data model for implicit feedback and propose a novel
evaluation measure oriented towards Top-N recommenda-
tion. Our evaluation measure admits unbiased estimation
under our missing data model, unlike the popular Normal-
ized Discounted Cumulative Gain (NDCG) measure. We
also derive an efficient algorithm to optimize the measure
on the training data. We run several experiments which
demonstrate the utility of our proposed measure.

Categories and Subject Descriptors:
H.3.3 [Information Search and Retrieval]

Keywords: Recommender Systems; Ranking; Evaluation

1. INTRODUCTION
Personalized recommendation of relevant content is a com-

mon task in many retrieval systems. Many collaborative
filtering approaches [3] attempt to identify user preferences
based on explicit feedback such as user ratings. However, im-
plicit feedback [1], in which a user’s preferences are expressed
through item interactions such as views or purchases, is of-
ten more common than explicit feedback.

In both explicit and implicit feedback systems, the pres-
ence of missing data poses a challenge to the evaluation of a
recommendation system. In explicit feedback datasets, rat-
ings can be Missing-not-at-Random (MNAR)[8], so systems
trained only on observed ratings may give biased predic-
tions. On the other hand, in implicit feedback datasets, non-
interaction of a user with an item does not necessarily indi-
cate that the item is irrelevant for the user. If we view un-
observed but relevant user-item pairs as missing data, then
measures which do not take the missing data mechanism
into consideration may also exhibit bias when evaluated on
the complete data.
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To address the MNAR problem in explicit feedback sys-
tems, a missing data model was proposed in [8], and it was
shown that the Top-N recall and the Area-under-the-Top-
N-curve(ATOP) measures evaluated on the observed data
provided an unbiased estimate of performance on the com-
plete data under the missing data model. Due to the close
relationship between ATOP and AUC, surrogate loss func-
tions to minimize AUC on the training data were proposed.

However, the Top-N recall is known to be difficult to maxi-
mize directly, while it has been shown in several recent works
([10, 7, 4]) that optimizing for AUC may not yield the best
results on performance measures such as NDCG or MAP
which focus on the top of the ranking. Thus, there is a need
for a performance measure which admits efficient optimiza-
tion and is aligned with top-of-the-ranking metrics.

In this work, we first present a missing observation model
for implicit feedback data. Next, we present a new perfor-
mance measure, the Average Discounted Gain (ADG), which
focuses on top-of-the-ranking performance and can be esti-
mated without bias on the observed relevance data under
our missing data model. Finally, we present an efficient op-
timization algorithm to optimize the ADG, and evaluate our
proposed method on several datasets.

2. DATA MODEL
In our setting, we assume that we are given a set of

users U = {u1, u2 · · ·um} and a set of candidate items I =
{i1, i2 · · · in}. We are also given implicit feedback in the

form of a user-item relevance matrix X ∈ R|U|×|I| where

X(j, k) =

{
1, ik is relevant to uj

0, otherwise

Accordingly, we can define the lists of relevant and irrelevant
items for each user:

O+
u = {ik : X(u, ik) = 1}; O−u = I \ O+

u .

2.1 Generation of observed ratings
Due to the scarcity of resources (for example, time, money

or both), users may not be able to consume all items in I
in which they are interested. We therefore assume that each
user has a partially observed prior relevant set P+

u ⊆ I,
which contains all items in I which are relevant to the user.
We can then view O+

u ⊆ P+
u as a subset of items that a user

has chosen to consume (i.e., interact sufficiently with so that
it is identified as relevant). In our model, we will assume
that the observed items O+

u are a simple random sample of
unknown size drawn from P+

u . Equivalently, for a given user



u, each item in P+
u has the same (but unknown) probability

of being in O+
u . It may be argued that in real-world settings,

such a missing data model may be unrealistic; however, se-
lecting test-set items uniformly from O+

u to evaluate implicit
feedback methods is a common practice (e.g. [6, 1]).

Our model has close connections to the model in [8] which
was originally proposed for explicit data. In fact, when the
non-relevant explicit feedback is discarded, the model in [8]
is mathematically equivalent to our model, albeit with a
different underlying interpretation.

3. AVERAGE DISCOUNTED GAIN (ADG)
In this section, we will present the Average Discounted

Gain, a new evaluation measure which can give us an unbi-
ased estimate of performance on P+

u under our missing data
model. We first assume that we are given user and item
sets U and I, and for each user are given relevant/irrelevant
item sets R+

u and R−u . We also assume a prediction func-
tion fθ(u, i) parameterized by θ which assigns a score to each
user-item pair (u, i). In this paper, we learn a k-dimensional
vector for each user and item, as well as a per-item bias:

θ = {θuser ∈ R|U|×k, θitem ∈ R|I|×k, θbias ∈ R|I|}

and define

fθ(u, i) = θuseru · θitemi + θbiasi . (1)

For a given user u, we define the rank of item i under the
prediction function fθ(u, i) as

rank(i) =
∑
i′∈I\i

I(fθ(u, i
′)− fθ(u, i)),

where I(k) = 1 if k > 0 and 0 otherwise. Essentially, rank(i)
is the number of items (both relevant and irrelevant) with a
higher predicted score than item i for a given u. Then, we
can define the ADG:

Definition 1. The Average Discounted Gain (ADG) is de-
fined as

1

|R+
u |

∑
i+∈R+

u

1

log2(rank(i+) + 2)
(2)

where R+
u is the set of all relevant items to the user u.

Using this definition, we define the ADG on the observed
and complete data respectively:

ADGobs =
1

|O+
u |

∑
i+∈O+

u

1

log2(rank(i+) + 2)

ADGcomp =
1

|P+
u |

∑
i+∈P+

u

1

log2(rank(i+) + 2)

Theorem 1. Under the assumption that O+
u is a simple

random sample from P+
u , ADGobs is an unbiased estimator

of ADGcomp.

Proof. Given a fixed θ, each relevant item ip ∈ P+
u is

associated with a discounted gain value 1
log2(rank(ip)

+)+2)
,

which depends only on the rank of ip. Now note that every
observed item io ∈ O+

u has the same rank, and therefore
the same discount value, as the corresponding item in P+

u .
Thus if O+

u is a random sample from P+
u , then the mean dis-

counted gain (i.e. ADG) can be estimated without bias.

In the next section, we show how ADG is related to the
NDCG measure, and also show that under our missing data
model, NDCGobs is a biased estimator of NDCGcomp.

3.1 Comparison with NDCG
The (binary) NDCG with logarithmic discount factor for

a user u can be defined as

1

IDCG(R+
u )

∑
i+∈R+

u

1

log2(rank(i+) + 2)

where IDCG(k) =
∑k
j=1

1
log2(j+2)

. We can see that the ADG

is equivalent to the NDCG with a different per-user weight-
ing function; thus, we expect that the ADG will focus on
the top of the ranking just like the NDCG.

Theorem 2. Under the assumption that |O+
u | is a simple

random sample from P+
u , NDCGobs is an unbiased estimator

of NDCGcomp only when |O+
u | = |P+

u |.
Proof. First note that

NDCGcomp =
1

IDCG(|P+
u |)

∑
i+∈P+

u

1

log2(rank(i+) + 2)
,

then

E
[
NDCGobs

]
=
|O+

u | · E
[

1

|O+
u |

∑
i∈O+

u

1
log2(rank(i

+)+2)

]
IDCG(|O+

u |)

=
|O+

u |
IDCG(|O+

u |)
ADGcomp (from Theorem 1)

=
|O+

u | · IDCG(|P+
u |)

|P+
u | · IDCG(|O+

u |)
NDCGcomp

which is only unbiased when |O+
u | = |P+

u |.

Since O+
u ⊆ P+

u , this means that NDCGobs will always be a
biased estimate of NDCGcomp unless the user consumes all
items in P+

u .

4. OPTIMIZATION
We now present an efficient algorithm to optimize the

ADG for a given dataset. Since the ADG is bounded be-
tween 0 and 1, instead of maximizing the ADG, we will
minimize (1−ADG). First, we note that

1−ADG = 1− 1

|O+
u |

∑
i+∈O+

u

1

log2(rank(i+) + 2)

=
1

|O+
u |

∑
i+∈O+

u

C(rank(i+)) (3)

where

C(k) = 1− 1

log2(k + 2)
. (4)

It can be shown (omitted for brevity) that ∀k ∈ {1 · · · |I|},

C(k) =

k∑
1

αk, ∃ ~α ∈ {~α ∈ R|I| : α1 > α2 · · · > α|I| > 0}.

Thus, we can transform rank(i+) into a loss, and use the
approximation

C(rank(i+)) ≈
∑

i−∈V
u,i+

C(|Vu,i+ |)
fθ(u, i

−)− fθ(u, i+) + 1

|Vu,i+ |
(5)



(see [10] for a related derivation) where

Vu,i+ = {i− ∈ (I \ i+) : fθ(u, i
−)− fθ(u, i+) + 1 > 0}.

Finally, we substitute Eq. (5) into Eq. (3), to get the final
optimization problem:

min
θ

1

|U|
∑
U

∑
i+∈O+

u

i−∈V
u,i+

C(|Vu,i+ |)
fθ(u, i

−)− fθ(u, i+) + 1

|O+
u ||Vu,i+ |

.

We follow a similar procedure to [10] to derive a stochastic
gradient descent algorithm, and also use the early-stopping
technique in [4] to speed up the optimization process. The
pseudocode for the full algorithm is given in Algorithm 1.

Algorithm 1 The OPT-ADG algorithm

Input: user set U , item set I, relevance sets {O+
u : u ∈ U}

1: repeat
2: Sample u uniformly from U , i+ uniformly from O+

u

3: N = 0
4: violatorFound = False
5: repeat
6: Sample i− uniformly from I \ i+
7: if fθ(u, i

+)− fθ(u, i−) < 1 then
8: violatorFound = True; v = i−

9: break
10: end if
11: N = N + 1
12: until N >= |I|−1

γ
13: if violatorFound then
14: Take gradient step on

C
(⌊
|I|−1
N

⌋)
(fθ(u, v)− fθ(u, i+) + 1) (Eq. (4))

15: end if
16: until max iterations exceeded

5. DISCUSSION
One purported advantage of measures like the ATOP and

the ADG is that their performance on O+
u gives us an un-

biased estimate of performance on P+
u (henceforth, we shall

refer to them as unbiased-to-missing-data (UBM) measures).
However, in practice, we cannot directly make use of this

property if the ranking model to be evaluated is trained
on data in O+

u , since items in O+
u are no longer a random

sample with respect to the ranking model. Thus, we cannot
extrapolate performance on P+

u by measuring performance
on O+

u , as this is analogous to guessing test set performance
based on training performance in a classification setting.

Nevertheless, we note that UBM measures still retain a
nice property: if a priori, some relevant items per user are
held out (i.e. not used for training by the ranking model)
in disjoint test and validation sets which are both uniform
random samples from O+

u , then we can expect the valida-
tion and test set performance to be similar regardless of the
number of validation or test items held out.

Our claim is easy to prove: If we denote the relevant items
in the validation set as R+

u,val and the relevant items in the

test set as R+
u,test, then we can view both R+

u,val and R+
u,test

as uniform random samples from the set R+
u,val ∪ R

+
u,test.

Therefore from Theorem 1, we can expect that if we eval-
uate the validation and test sets with respect to any UBM

measure, they would both yield unbiased estimates of perfor-
mance onR+

u,val∪R
+
u,test, regardless of |R+

u,val| and |R+
u,test|.

Using the same logic, if we are given an observation set O+
u

and prior observation set P+
u , then splittingO+

u intoOu,train
and Ou,test, training a ranker on Ou,train then evaluating
Ou,test on any UBM measure should yield similar perfor-
mance to the same UBM measures given to {P+

u \ O+
u },

which are exactly the unknown but relevant items we want
to predict. Here, the intuition is somewhat analagous to the
generalization ability of classifiers in classical machine learn-
ing settings when the validation and test set come from the
same distribution.

Another desirable property of UBM methods is allowing
us to make statements about the absolute performance of
ranking models: For example, ADG can be interpreted as
the mean discounted gain of relevant items. In contrast, we
cannot predict the absolute performance of a ranking model
on non-UBM measures such as NDCG on {P+

u \O+
u } without

knowing |{P+
u \ O+

u }|.

6. EXPERIMENTS
To evaluate the performance of our proposed measure, we

conducted experiments on 3 datasets: Amazon Games, a
subset of customer reviews from the Video Games category
on Amazon, MovieLens 10M data, and last.FM listening
data for 110000 users from the Million Song Dataset Chal-
lenge hosted on Kaggle. For the Amazon Games and Movie-
Lens data, we binarized the data and treated the 4 and 5
star reviews as relevant and the rest as irrelevant. For the
last.FM data, we considered a song relevant to a user if the
user listened to it at least 3 times, and irrelevant otherwise.
Due to the sparsity of each dataset, we also densified the
data by retaining the most popular items and users with
the most reviews. Our datasets are summarized below.

Dataset Users Items Interactions Sparsity
last.FM 10000 10000 97727 0.097%

MovieLens 9888 5000 711084 1.44%
Amazon Games 17437 17915 201154 0.064%

To show the utility of optimizing for ADG over AUC, we
implemented two similar matrix factorization methods, MF-
ADG and MF-AUC, both with fθ(u, i) defined as in Eq. (1).
MF-ADG uses Algorithm 1, while MF-AUC tries to optimize
the empirical AUC for each user by solving

min
θ

1

|U|
∑
U

1

|O+
u ||O−u |

∑
i+∈O+

u

∑
i−∈O−u

[fθ(u, i
−)− fθ(u, i+) + 1]+

where [·]+ = max(0, ·).
For each user, 10% of the relevant items were used for the

validation set, while 20% of the relevant items were used
for the test set, and both were uniformly sampled from O+

u .
This process was repeated four times to create four folds
and the mean performance was reported. For fairness, both
methods were initialized with the same random parameters,
and each algorithm was run for 1000000 iterations. We reg-
ularized the `2−norms of both the user and item latent vec-
tors, and used a single regularization parameter λ whose
optimal value was determined by performance on the vali-
dation set. The number of latent factors per item and user
was fixed at 50, and for MF-ADG, the value of γ was fixed
at 100. For each method, we report three UBM measures,



ATOP, ADG, Recall@10) and also two popular ranking mea-
sures, Mean Average Precision (MAP) and NDCG. As there
was negligible difference between ATOP and AUC in our
experiments (<0.1%) we chose to only report ATOP in the
paper. As a baseline, we also computed the rank-k SVD on
the user-item relevance matrix for different values of k for
each dataset, but do not report the results as the perfor-
mance even for the best value of k was significantly worse
than both MF-ADG and MF-AUC on all metrics.

6.1 Results
Table 1 shows the performance of both methods on all

experiments. For each dataset, MF-ADG performed better
than MF-AUC on all ranking measures except ATOP, which
is expected because of the close link between the ATOP ob-
jective and AUC optimization. This supports our claim that
optimizing ADG on the training set improves performance
at the top of the ranking.

Amazon Games last.FM MovieLens
MF-AUC MF-ADG MF-AUC MF-ADG MF-AUC MF-ADG

ATOP
0.7584

(0.0014)
0.7546

(0.0049)
0.7490

(0.0064)
0.7449

(0.0028)
0.8855

(0.0018)
0.8821

(0.0042)

MAP
0.0104

(0.0003)
0.0124

(0.0003)
0.0242

(0.0006)
0.0281

(0.0006)
0.0775

(0.0007)
0.0858

(0.0003)

NDCG
0.1460

(0.0006)
0.1501

(0.0004)
0.1701

(0.0007)
0.1750

(0.0008)
0.3718

(0.0010)
0.3820

(0.0002)

rec@10
0.0170

(0.0004)
0.0211

(0.0007)
0.0473

(0.0010)
0.0539

(0.0019)
0.0945

(0.0011)
0.1025

(0.0013)

ADG
0.1080

(0.0005)
0.1110

(0.0003)
0.1294

(0.0005)
0.1332

(0.0006)
0.1714

(0.0004)
0.1768

(0.0001)

Table 1: Mean performance on all datasets across 4
folds. The number in brackets is the standard error
of the mean. Methods which performed significantly
better are bolded.

Table 2 shows the mean performance of both methods on
the test and validation subsets of the MovieLens dataset re-
spectively. As discussed in Section 5, we can see that the
UBM measures (ATOP, REC@10 and ADG) show broadly
consistent performance across the test and validation sets,
while the MAP and NDCG measures vary greatly. Similar
observations were made for the other two datasets which we
have omitted due to space constraints. This supports our
claim that measuring these performance measures on a val-
idation set can allow us to make confident predictive state-
ments about the performance of the model on the unseen
test data, even when the number of test items is unknown.

7. RELATED WORK
Many predictive models have been proposed for both ex-

plicit feedback [3] and implicit feedback [1, 6]. [5, 2] have
studied the MNAR assumption in terms of model fitting
with different missing data models but the evaluations do
not take the missing data models into account. Further-
more, to the best of our knowledge, no one has formally
proposed a missing data model for implicit feedback mod-
els. Our work is most closely related to [8, 9].

8. CONCLUSION
In this work, we proposed a missing data model for im-

plicit feedback and a novel evaluation measure which allows
unbiased estimation with respect to our missing data model.

We also showed that ranking models trained to maximise
our evaluation measure have improved performance on top-
of-the-ranking measures. In future work, we plan to explore
different models of missing data generation.

MF-AUC MF-ADG
Measure Test Valid Diff% Test Valid Diff%
ATOP 0.8855 0.8849 -0.06 0.8821 0.8817 -0.05
ADG 0.1714 0.1709 -0.29 0.1768 0.1768 -0.00

REC@10 0.0945 0.0945 0.00 0.1025 0.1030 0.49

MAP 0.0775 0.0586 -24.38 0.0858 0.0657 -23.43
NDCG 0.3718 0.2957 -20.47 0.3820 0.3046 -20.42

Table 2: Test vs. validation performance on Movie-
Lens dataset. Performance on UBM measures is
consistent across test and validation sets.
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