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Introduction Proposed method

Main Contribution Average Discounted Gain (ADG) Dataset Statistics

We propose the Average Discounted Gain

We discuss a missing data model for implicit eacure which has the UBM probert Dataset Users | Ttems | Interactions | Sparsity
feedback and Propose a novel evaluation Prop Y last. FM 10000 | 10000 97797 0.097%
measure which is unbiased with respect to the Let fo(u,?) be the prediction function for a MovieLens 9888 | 5000 711084 1.44%
missing data. We also present an efficient (user, item) pair, and Z be the set of all items. Amazon Games | 17437 | 17915 | 201154 0.0647%

algorithm to optimize our measure.
Let rank(i) = >y cp; L(fo(u, ) — fo(u,i))
Data Model

For each user, assume that observed relevant
items are a simple random sample from some

Performance of various measures
Average Discounted Gain (ADG):

Amazon Games

1 1
. | Z MF-AUC MF-ADG
unknown ground truth prior relevant set: \R;,f | log, (rank(zT) + 2) ATOP || 0.7584 (0.0014) | 0.7546 (0.0049)
iteRY MAP || 0.0104 (0.0003) | 0.0124 (0.0003)
All items NDCG || 0.1460 (0.0006) | 0.1501 (0.0004)
, rec@10 || 0.0170 (0.0004) | 0.0211 (0.0007)
.. - AD 1 . 0.1110 (0.0003
Ground truth IS o, timization G| 0.1050 (0.000) (0.0003)
Observations I NN . last M
, In org:ler t.o maximize ADG perfqrmance, we opt T ATC TNIE
to minimize 1-ADG on the tralnlng set. ATOP 0.7490 (0.0064) 0.7449 (0.0028)
+ Ar MAP || 0.0242 (0.0006) | 0.0281 (0.0006)
, prior relevant set 1 1
| Py 1 - ADG =1 — ) 1 R NDCG || 0.1701 (0.0007) | 0.1750 (0.0008)
B P, priorirrelevant set O |z’+er{ 0gy (rank(i™) + 2) rec@10 || 0.0473 (0.0010) | 0.0539 (0.0019)
U | ADG || 0.1294 (0.0005) | 0.1332 (0.0006)
+ = Z C(rank(i™))
O.", observed relevant set O7]
drawn from T iteOy MovieLens
( P’“ ) where MF-AUC MF-ADG
] C’),; , observed irrelevant set 1 ATOP || 0.8854 (0.0018) | 0.7449 (0.0028)
C(k) =1 MAP || 0.0242 (0.0006) | 0.0281 (0.0006)
log, (k + 2)
NDCG || 0.1701 (0.0007) | 0.1750 (0.0008)
rec@10 || 0.0473 (0.0010) | 0.0539 (0.0019)
To evaluate a given predicted ranking, we would ADG || 0.1294 (0.0005) | 0.1332 (0.0006)
like to have an evaluation measure that, when Algorithm 1 The OPT-ADG algorithm
evaluated on the observed relevant/irrelevant Require: user set U, item set Z,
set, returns the same value in expectation relevance sets {O, : u € U}
over all possible patterns of observations.as I regeatl e from U 4 wniformlv from OF lidati £
when evaluated on the prior relevant/irrelevant Z Nznfpoe u uniformly from ¢, ¢+ uniformly from O} Test vs validation performance
(grognd ;cjrutth) SS’ICVI which we call unbiased-to- L violatorFound — False R N
missing-data ( ) D repeat ‘ . . Measure Test Valid Dift% Test Valid Dift%
6: Sample ¢~ uniformly from 7 \ i* ATOP || 0.8855 | 0.8849 | -0.06 || 0.8821 | 0.8817 | -0.05
_ 7 if fo(u,i™) — fo(u,i”) < 1 then ADG 0.1714 | 0.1709 | -0.29 || 0.1768 | 0.1768 | -0.00
In previous work, Steck et. al. hav.e proposed.the Q. violatorFound = True; v = i~ REC@10 || 0.0945 | 0.0945 | 0.00 || 0.1025 | 0.1030 | 0.49
ATOP and Recall@N measures which meet this 9. break MAP 0.0775 | 0.0586 | -24.38 |[ 0.0858 | 0.0657 | -23.43
criteria. However, ATOP is very similar to AUC 10: end if NDCG || 0.3718 | 0.2957 | -20.47 || 0.3820 | 0.3046 | -20.42
while Recall@N is hard to optimize directly. 11: N=N+1

12: until N >= [Zl=1

¥
13: if violatorFound then

We want a measure which is UBM, focuses on 14: Take gradient step on
the top of the ranking and can be optimized C Q'I]'V”J) (folu,v) — folu,it) + 1)
in an efficient manner. 15: end if

16: until max iterations exceeded




