
Exponential Family Graph Matching and Ranking

SML, NICTA & RSISE, ANU e-mails: first.last@nicta.com.au source code at http://users.rsise.anu.edu.au/∼jpetterson/

Authors
James Petterson, Tibério S. Caetano, Julian J. McAuley and Jin Yu

Abstract

•We present a method for learning max-weight matching predictors in bipartite
graphs.

• The method consists of performing maximum a posteriori estimation in exponen-
tial families with sufficient statistics that encode permutations and data features.

• Although inference is in general hard, we show that for one very relevant ap-
plication – document ranking – exact inference is efficient. For general model
instances, an appropriate sampler is readily available.

• Contrary to existing max-margin matching models, our approach is statistically
consistent and, in addition, experiments with increasing sample sizes indicate
superior improvement over such models.

The Problem

1

2

3

4

5

6

1

2

3

4

5

6

Each couple i j has a pairwise happiness score wi j.

Monogamy is enforced, and no person can be unmatched.

Goal is to maximize overall happiness, i.e.:

y∗ = argmax
y

m∑
i=1

wiy(i).

where y is a permutation. This is a well-studied problem; it is tractable and can be
solved in O(m3) time (Papadimitriou and Steiglitz, 1982).

The Model

We relax the assumption that we know the scores wi j, since in reality what we

measure are the edge features xi j = (x1
i j, . . . , x

d
i j) of dimension d.

Therefore, we parameterize them: wi j =
〈
xi j, θ

〉
and perform MAP estimation of the parameters.

We assume an exponential family model, where the probability model is

p(y|x; θ) = exp (〈φ(x, y), θ〉 − g(x; θ)), where

g(x; θ) = log
∑

y
exp 〈φ(x, y), θ〉

is the log-partition function and y is a permutation.

We impose a Gaussian prior on θ. We minimize the negative log-posterior `(Y |X; θ),
which becomes our loss function:

`(Y |X; θ) =
λ

2
‖θ‖2 +

1
N

N∑
n=1

(
g(xn; θ) −

〈
φ(xn, yn), θ

〉)
where λ is a regularization constant.

Feature Parameterization

The key point is that we equate the solution of the matching problem to the
prediction of the exponential family model, i.e.,

∑
i wiy(i) = 〈φ(x, y), θ〉. Since our

goal is to parameterize features of individual pairs of nodes (so as to produce the
weight of an edge), the most natural model is

φ(x, y) =
M∑

i=1
xiy(i), which gives

wiy(i) =
〈
xiy(i), θ

〉
,

Learning

• Since our loss is a convex and differentiable function of θ gradient descent will
find the global optimum.

• The only issue is the computation of the gradient of the partition function, which
involves the computation of the permanent of a matrix, a ]P-complete problem.

• For small problems (e.g. document ranking) this can be done exactly, but for
larger problems (e.g. image matching) we need to resort to an approximation
– the algorithm that Huber and Law recently proposed (SODA, 2008), which
produces exact samples from the distribution of perfect matches on weighted
bipartite graphs.

Applications

Image Matching

Document Ranking

Comparison to Max-Margin

Compared to existing max-margin approaches (Le and Smola, 2007), our model has
some advantages:

a) it is consistent – that is, in the limit of infinite training data it will obtain the
best attainable model.

b) it is a probabilistic model , and therefore can be integrated as a module in a
Bayesian framework.

c) it is simpler.

The main drawback is that, except for small graphs, it can be considerably slower.

Results

1 2 3 4 5 6 7 8 9 10
0.35

0.4

0.45

0.5

0.55

0.6

0.65

k

N
D

C
G

TD2004

 

 

RankMatch (Our Method), M=2

DORM

RankBoost

RankSVM

FRank

ListNet

AdaRank−MAP

AdaRank−NDCG

QBRank

IsoRank

SortNet 20 hiddens MAP

SortNet 20 hiddens P@10

StructRank

C−CRF

1 2 3 4 5 6 7 8 9 10
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

k

N
D

C
G

OHSUMED

 

 

RankMatch (Our Method), M=3

DORM

RankBoost

RankSVM

FRank

ListNet

AdaRank−MAP

AdaRank−NDCG

QBRank

IsoRank

StructRank

C−CRF

Ranking application: our method (RankMatch) gets state-of-the-art results in the
LETOR 2.0 learning to rank dataset. Note that in this particular application infer-
ence can be done in linear time.

0 50 100 150 200 250 300 350 400 450 500
0.08

0.1

0.12

0.14

0.16

0.18

0.2

number of training pairs

er
ro

r

 

 
exponential model
max margin

grows. However, since consistency is only an asymptotic property, and also since the Hamming
loss is not the criterion optimized by either estimator, this does not imply a better large-sample
performance of MAP in real experiments. In any case, we present results with varying training
set sizes in Figure 2. In Figure ?? we can see an example of a match with and without learning.
The max-margin method is that of [?]. The methods perform almost identically after a sufficiently
large training set size, although the experiment was truncated at 500 training/testing pairs due to
computational overload. (The dataset has in total about 20,000 different image pairs.)

0 50 100 150 200 250 300 350 400 450 500
0.08

0.1

0.12

0.14

0.16

0.18

0.2

number of training pairs

er
ro

r

 

 
max margin
exponential model

Figure 3: Left: match without learning (6/20 correct matches). Right: match with learning (14/20
correct matches)

and training of θ proceeds as explained in Section 4.

Testing At test time, we are given a query q and its corresponding list of D associated documents.
We then have to solve the prediction problem, i.e.

y∗ = argmax
y

D∑
i=1

〈
xiy(i), θ

〉
(19a)

= argmax
y

D∑
i=1

cy(i) 〈ψi, θ〉 . (19b)

We now notice that if the scalar cj = c(j), where c is a non-increasing function of rank position
j, then (19b) can be solved simply by sorting the values of 〈ψi, θ〉 in decreasing order.3 In other
words, the matching problem becomes one of ranking the values 〈ψi, θ〉. Inference in our model is
therefore very fast (linear time).4 In this setting it makes sense to interpret the quantity 〈ψi, θ〉 as a
score of document di for query q. This leaves open the question of which non-increasing function c
should be used. We do not solve this problem in this paper, and instead choose a fixed c. In theory
it is possible to optimize over c during learning, but in that case the optimization problem would no
longer be convex. We describe the results of our method on LETOR 2.0 [22], a publicly available
benchmark data collection for comparing learning to rank algorithms. It is comprised of three data
sets: OHSUMED, TD2003 and TD2004.

Data sets OHSUMED contains features extracted from query-document pairs in the OHSUMED
collection, a subset of MEDLINE, a database of medical publications. It contains 106 queries. For
each query there are a number of associated documents, with relevance degrees judged by humans
on three levels: definitely, possibly or not relevant. Each query-document pair has a 25 dimensional
feature vector associated (our ψi). The total number of query-document pairs is 16,140. TD2003
and TD2004 contain features extracted from the topic distillation tasks of TREC 2003 and TREC
2004, with 50 and 75 queries respectively. Again, for each query there are a number of associated
documents, with relevance degrees judged by humans, but in this case only two levels are provided:
relevant or not relevant. Each query-document pair has a 44 dimensional feature vector associated
(our ψi). The total number of query-document pairs is 49,171 for TD2003 and 74,170 for TD2004.
All datasets are already partitioned for 5-fold cross-validation. See [22] for more detail.

Evaluation Metrics In order to measure the effectiveness of our method we use the normalized
discount cumulative gain (NDCG) measure [16] at rank position k, which is defined as

NDCG@k =
1
Z

k∑
j=1

2r(j) − 1
log(1 + j)

, (20)

where r(j) is the relevance of the jth document in the list, and Z is a normalization constant so that
a perfect ranking yields an NDCG score of 1.

3If r(v) denotes the vector of ranks of entries of vector v, then 〈a, π(b)〉 is maximized by the permutation
π∗ such that r(a) = r(π∗(b)), a theorem due to Polya, Littlewood, Hardy and Blackwell [31].

4Sorting the top k items of a list of D items takes O(k log k +D) time with a quicksort-style agorithm.

7

Figure 2: Learning image matching: hamming loss for different number of training pairs (test set
size fixed to 500 pairs).

5.2 Ranking

Here we apply the general matching model introduced in previous sections to the task of learning
to rank. Ranking is a fundamental problem with applications in diverse areas such as document
retrieval, recommender systems, product rating and others. We are going to focus on web page
ranking.

For this problem we are given a set of queries {qk} and, for each query qk, a list of D(k) documents
{dk1 , . . . , dkD(k)} with corresponding ratings {rk1 , . . . , rkD(k)} (assigned by a human editor), measur-
ing the relevance degree of each document with respect to query qk. A rating or relevance degree is
usually a nominal value in the list {1, . . . , R}, where R is typically between 2 and 5. We are also
given, for every retrieved document dki , a joint feature vector ψki for that document and the query
qk.

Training At training time, we model each query qk as a vector-weighted bipartite graph (Figure
1) where the nodes on one side correspond to a subset of cardinality M of all D(k) documents
retrieved by the query, and the nodes on the other side correspond to all possible ranking positions for
these documents (1, . . . ,M ). The subset itself is chosen randomly, provided at least one exemplar
document of every rating is present. Therefore M must be such that M ≥ R.

The process is then repeated in a bootstrap manner: we resample (with replacement) from the set
of documents {dk1 , . . . , dkD(k)}, M documents at a time (conditioned on the fact that at least one

6

10
−1

10
0

0.53

0.535

0.54

0.545

0.55

0.555

0.56

0.565

0.57

sample size (x M D)

N
D

C
G

−
1

OHSUMED

 

 

RankMatch

DORM

Figure 2: Learning image matching. Left: hamming loss for different numbers of training pairs (test
set size fixed to 500 pairs). Right: an example match from the test set (blue are correct and red
incorrect matches).

retrieval, recommender systems, product rating and others. We are going to focus on web page
ranking.

For this problem we are given a set of queries {qk} and, for each query qk, a list of D(k) documents
{dk1 , . . . , dkD(k)} with corresponding ratings {rk1 , . . . , rkD(k)} (assigned by a human editor), measur-
ing the relevance degree of each document with respect to query qk. A rating or relevance degree is
usually a nominal value in the list {1, . . . , R}, where R is typically between 2 and 5. We are also
given, for every retrieved document dki , a joint feature vector ψki for that document and the query
qk.

Training At training time, we model each query qk as a vector-weighted bipartite graph (Figure
1) where the nodes on one side correspond to a subset of cardinality M of all D(k) documents
retrieved by the query, and the nodes on the other side correspond to all possible ranking positions for
these documents (1, . . . ,M ). The subset itself is chosen randomly, provided at least one exemplar
document of every rating is present. Therefore M must be such that M ≥ R.

The process is then repeated in a bootstrap manner: we resample (with replacement) from the set
of documents {dk1 , . . . , dkD(k)}, M documents at a time (conditioned on the fact that at least one
exemplar of every rating is present, but otherwise randomly). This effectively boosts the number of
training examples since each query qk ends up being selected many times, each time with a different
subset of M documents from the original set of D(k) documents.

In the following we drop the query index k since we examine a single query. Here we follow
the construction used in [21] to map matching problems to ranking problems. (Indeed the only
difference between our ranking model and that of [21] is that they use a max-margin estimator and
we use MAP in an exponential family.) Our edge feature vector xij will be the product of feature
vector ψi associated with document i, and a scalar cj (the choice of which will be explained below)
associated with ranking position j

xij = ψicj . (17)

ψi is dataset specific (details below).

We therefore have from (10) and (17) that

wij = cj 〈ψi, θ〉 , (18)

and training of θ proceeds as explained in Section 4.

6

Left: classification error in a graph matching application. Right: NDCG-1 score in
a ranking application. Compared to the max-margin approach, our method shows
better results as more training data is added.

References

• Caetano, T. S., McAuley, J., Cheng, L., Le, Q. V. & Smola, A. J. (2009).
Learning graph matching. IEEE Trans. on PAMI, 31, 1048–1058.

• Huber, M. & Law, J. (2008). Fast approximation of the permanent for very
dense problems. SODA.

• Le, Q. & Smola, A. (2007). Direct optimization of ranking measures.
http://arxiv.org/abs/0704.3359.

• Liu, T.-Y., Xu, J., Qin, T., Xiong, W. & Li, H. (2007). Letor: Benchmark
dataset for research on learning to rank for information retrieval. LR4IR.

•McAllester, D. (2007). Generalization bounds and consistency for structured
labeling. Predicting Structured Data.


