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e \We present a method for learning max-weight matching predictors in bipartite
graphs.
e [ he method consists of performing maximum a posteriori estimation in exponen-

tial families with sufficient statistics that encode permutations and data features.

e Although inference is in general hard, we show that for one very relevant ap-
plication — document ranking — exact inference is efficient. For general model
instances, an appropriate sampler is readily available.

e Contrary to existing max-margin matching models, our approach is statistically
consistent and, in addition, experiments with increasing sample sizes indicate
superior improvement over such models.

The Problem

Each couple ij has a pairwise happiness score w; ;.

Monogamy is enforced, and no person can be unmatched.

Goal is to maximize overall happiness, i.e.:

m
y" = argmax Z Wiv(i)-
Y=l

where y is a permutation. This is a well-studied problem; it is tractable and can be
solved in O(m>) time (Papadimitriou and Steiglitz, 1982).

e-mails: first.last@nicta.com.au

The Model Appliations S Rsuts
We relax the assumption that we know the scores Wjj, since in reality what we Image Matching
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measure are the edge features x;; = (xij’ e x?;.) of dimension d.

Therefore, we parameterize them: w;; = <xij, 9>
and perform MAP estimation of the parameters.

We assume an exponential family model, where the probability model is

pO|x; 0) = exp (d(x,y),0) — g(x;60)), where

8(x;0) = log ) exp (#(x, ), 6)
Y

is the log-partition function and y is a permutation.

We impose a Gaussian prior on 6. We minimize the negative log-posterior £{(Y|X; 6),
which becomes our loss function:

N
A 1
(IX:0) =2 1017+ > (8(:0) = (#(". ). 0))
n=1

where A is a regularization constant.

Feature Parameterization

The key point is that we equate the solution of the matching problem to the
prediction of the exponential family model, i.e., 3; wiy;) = (#(x,y),8). Since our
goal is to parameterize features of individual pairs of nodes (so as to produce the
weight of an edge), the most natural model is

M
o(x,y) = Z Xiy(i)> Which gives
i=1

Wiy(i) = (Xiy(i)» 0)

e Since our loss is a convex and differentiable function of 6 gradient descent will
find the global optimum.

e The only issue is the computation of the gradient of the partition function, which
involves the computation of the permanent of a matrix, a §P-complete problem.

e For small problems (e.g. document ranking) this can be done exactly, but for
larger problems (e.g. image matching) we need to resort to an approximation
— the algorithm that Huber and Law recently proposed (SODA, 2008), which
produces exact samples from the distribution of perfect matches on weighted
bipartite graphs.

source code at http://users.rsise.anu.edu.au/~jpetterson/
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Comparison to Max-Margin

Compared to existing max-margin approaches (Le and Smola, 2007), our model has
some advantages:

a) it is consistent — that is, in the limit of infinite training data it will obtain the
best attainable model.

b) it is a probabilistic model , and therefore can be integrated as a module in a
Bayesian framework.

c) it is simpler.

The main drawback is that, except for small graphs, it can be considerably slower.
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Ranking application: our method (RankMatch) gets state-of-the-art results in the
LETOR 2.0 learning to rank dataset. Note that in this particular application infer-
ence can be done in linear time.
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Left: classification error in a graph matching application. Right: NDCG-1 score in
a ranking application. Compared to the max-margin approach, our method shows
better results as more training data is added.
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Fast approximation of the permanent for very

Direct optimization of ranking measures.



