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Abstract
In our paper [1], we present a model for matching shapes in images that are
related by near-isometric transformations. We do so by combining two
previous approaches: we use the graphical model of [2], which quickly
solves isometric matching problems in 2-d point sets. We use a structured
learning approach similar to that in [3], which parametrises the matching
scores used by linear and quadratic assignment. The result is an efficient
and exact shape-matching algorithm, which uses machine learning to
parametrise first, second, and third-order features.

Common approaches to the matching problem

Commonly, the problem of matching objects in images is expressed as a
problem of matching graphs, which are attributed by high-dimensional local
image descriptors. That is, we want to find a mapping y from nodes in a
template graph G to nodes in a target graph G ′:

argmin
y

|G|∑
i=1

Φ1(gi, y(gi))︸ ︷︷ ︸
node features

+

|G|∑
i=1

|G|∑
j=1

Φ2(gi, gj, y(gi), y(gj))︸ ︷︷ ︸
edge features

.

Unfortunately, this corresponds to the quadratic assignment problem,
which is in general NP-hard.

Our approach

Instead, we use the recently proposed graphical model from [2], which can
solve near-isometric matching problems exactly in O(|G||G ′|3) time:

the graphical model from [2] (left), and its clique-graph (right)

Nodes in this model correspond to points in the template graph, and their
assignments correspond to points in the target graph. Because the
clique-graph contains only a single loop, loopy belief-propagation in this
graph will converge to the optimal solution.

Our energy function

The energy minimisation problem we now want to solve is

argmin
y

|G|∑
i=1

Φ3(gi, gi+1, gi+2, y(gi), y(gi+1), y(gi+2))︸ ︷︷ ︸
third-order features

.

Φ3 allows us to include first-order features (such as SIFT, Shape Context),
second-order features (such as adjacency information, distances), and
third-order features (such as angles, triangle similarity).

Matching ‘shapes’ and ‘point-patterns’

When the objects being matched are characterised by their shape, our
model seems to capture exactly the desired dependencies.

In other cases, we capture only a fraction of the desired dependencies, but
we benefit from the addition of third-order features, and from the fact that
our model is exact.

Structured learning

Given a collection of labeled training matches, we use a structured
learning approach similar to that of [3] to parametrise Φ3. This allows us to
determine the degree to which changes in appearance play a role, versus
changes in rotation and scale.

An example match...

A labeled shape (left), and its match found in another scene. The correct
label is shown in green, the inferred label using our model is shown in red.

Results on a video sequence

We compare our method to that of [3] (which parametrises features for
linear and quadratic assignment) on frames in a video sequence. The
proportion of incorrect labels is reported as the baseline (separation
between frames) varies.
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By considering only a ‘likely subset’ of p points in the target graph, we
reduce the running time from O(|G||G ′|3) to O(|G|p3). With p = 10, our
algorithm is favourable in terms of performance and running time.
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