
Exploitingdata-independence for fastbelief-propagation
Julian McAuley, Tibério Caetano

julian.mcauley@nicta.com.au tiberio.caetano@nicta.com.au

Abstract
MAP-inference in graphical models requires that
we maximize the sum of two terms: a data-
dependent term, encoding the conditional like-
lihood of a certain labeling given an observa-
tion, and a data-independent term, encoding some
prior on labelings. Often, the data-dependent
factors contain fewer latent variables than the
data-independent factors. We note that MAP-
inference in any such graphical model can be
made substantially faster by appropriately pre-
processing its data-independent terms. Our main
result is to show that message-passing in any such
pairwise model has an expected-case exponent of
only 1.5 on the number of states per node, leading
to significantly faster algorithms than the standard
quadratic time solution.

‘Data-Independence’
MAP-inference in a graphical model G consists of
solving an optimization problem of the form

ŷ = argmax
y

∑
C∈C

ΦC(yC),

where C is the set of cliques in the model. Often,
the model can be further factorized if we make a
distinction between the latent variables y and the
observation x:

ŷ(x) = argmax
y

∑
F∈F

ΦF (yF |xF )︸ ︷︷ ︸
data dependent

+
∑
C∈C

ΦC(yC)︸ ︷︷ ︸
data independent

.

We say that those cliques containing only latent
variables are data-independent. In many models,
those cliques that contain an observed variable
contain fewer latent variables than the purely la-
tent cliques, i.e., each F ∈ F is a proper subset of
some C ∈ C. Examples of such models are shown
at top-right.

Example Models

Examples of graphical models to which our results apply: cliques containing observations have fewer
latent variables than purely latent cliques. In other words, cliques containing a grey node encode the data
likelihood, whereas cliques containing only white nodes encode priors. We focus on cases where the gray
nodes have degree one (i.e., they are connected to only one white node). In such cases we obtain an Ω(

√
N)

speedup on the number of states per node.

Message-Passing
In these models, message passing between two
cliques A = (i, j), B = (j, k) takes the form

mA→B(yi) = Ψi(yi)+max
yj

Ψj(yj)+Φi,j(yi, yj), (1)

which is equivalent to matrix-vector multiplica-
tion in the max-sum semiring. In a recent paper
[1], we showed that matrix-matrix multiplication
in this semiring takes O(N2.5) (for N × N matri-
ces). In our current work, we note that a similar re-
sult can be applied to matrix-vector multiplication,
so long as the matrix is known in advance. Since
the ‘matrix’ in the above equation simply encodes
a prior, it can be preprocessed offline.

How it Works

Step 1:


 6  2 14 16  9  7 12  8 10  3 11 13  1 15  4  5

99 92 87 81 78 66 53 46 30 26 21 16 12 10  8  6

 3  4  8 11  7 16 13  9  6  2 15 10 12  5  1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

don't search past this line

Step 2:


 6  2 14 16  9  7 12  8 10  3 11 13  1 15  4  5

99 92 87 81 78 66 53 46 30 26 21 16 12 10  8  6

 3  4  8 11  7 16 13  9  6  2 15 10 12  5  1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

Step 3:


 6  2 14 16  9  7 12  8 10  3 11 13  1 15  4  5

99 92 87 81 78 66 53 46 30 26 21 16 12 10  8  6

 3  4  8 11  7 16 13  9  6  2 15 10 12  5  1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

Step 4:


 6  2 14 16  9  7 12  8 10  3 11 13  1 15  4  5

99 92 87 81 78 66 53 46 30 26 21 16 12 10  8  6

 3  4  8 11  7 16 13  9  6  2 15 10 12  5  1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

Step 5:


 6  2 14 16  9  7 12  8 10  3 11 13  1 15  4  5

99 92 87 81 78 66 53 46 30 26 21 16 12 10  8  6

 3  4  8 11  7 16 13  9  6  2 15 10 12  5  1 14

98 93 85 76 71 70 67 65 63 57 48 42 39 37 26 17

We wish to compute maxi va[i] + vb[i]. Arrows
connect corresponding elements of va and vb, as
sorted by pa and pb. We draw a red line connecting
the leftmost arrowheads that have been seen so far.
Any ‘arrows’ whose tail lies to the right of this line
cannot possibly correspond to an optimal solution.

Experiments
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Number of online operations per message entry

naı̈ve method
our method
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√
N

2×∑bN/2cm=0
(N−m)!(N−m)!

(N−2m)!N !
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Random potentials (2500 node chain)

naı̈ve method
0.00002N2 (r = 0.00514)

our method
0.00002N1.5 (r = 0.00891)
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Korean

Japanese

Text denoising

naı̈ve method
0.00002N2 (r = 0.15)

our method
0.00015N1.5 (r = 5.38)
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Optical flow (50× 50 grid, 5 iterations)

naı̈ve method
0.00038N2 (r = 28.04)

our method
0.00386N1.5 (r = 1.76)

Top left: number of operations required to compute each entry of the message vector (eq. 1). Top right:
message passing in a chain-structured model with uniform potentials. Bottom left: typo-correction in a
chain-structured model [2]. Bottom right: optical flow in a grid.
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