Image Labeling on a Network: Using Social-Network Metadata for Image Classification
Julian McAuley, Jure Leskovec

Stanford
Abstract Evaluation Image labeling results Tag and group prediction
We study the use of social network metadata for image classifica- We evaluate our method using published label prediction: tag recommendation: group recommendation:
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Which social network features are useful?

We form.edges between images with common metadata. Edge e
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We model image labels in terms of image features ¢(x;), and im- | S - | o | |
age relationships ¢(x;, x;). We then label an entire datasetaccord- ~ We confirm existing findings that tag and GPS data are useful for classification, while also finding that other sources of metadata are informative.
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We augment four popular datasets using metadata from Flickr. the National University of Singapore.
Our data is available at i . stanford.edu/~julian/ For all forms of metadata, we find that images with similar metadata tend to have similar labels.
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