
Fast Inference with Min-Sum Matrix Product

Pedro F. Felzenszwalb, Member,
IEEE Computer Society, and

Julian J. McAuley, Student Member, IEEE

Abstract—The MAP inference problem in many graphical models can be solved

efficiently using a fast algorithm for computing min-sum products of n� n
matrices. The class of models in question includes cyclic and skip-chain models

that arise in many applications. Although the worst-case complexity of the min-

sum product operation is not known to be much better than Oðn3Þ, an

Oðn2:5Þ expected time algorithm was recently given, subject to some constraints on

the input matrices. In this paper, we give an algorithm that runs in

Oðn2 lognÞ expected time, assuming that the entries in the input matrices are

independent samples from a uniform distribution. We also show that two variants

of our algorithm are quite fast for inputs that arise in several applications. This

leads to significant performance gains over previous methods in applications

within computer vision and natural language processing.

Index Terms—Graphical models, MAP inference, min-sum matrix product.

Ç

1 INTRODUCTION

MIN-SUM matrix product (MSP) (a.k.a. distance matrix product) is
an important operation with applications in a variety of areas,
including in inference algorithms for graphical models [15],
parsing with context-free grammars [23], and shortest paths
algorithms [1].

Our main interest in MSP involves its application to MAP
inference in graphical models and optimization problems that have
similar form. It is well known that inference in discrete graphical
models with low tree width can be done using dynamic
programming and belief propagation. McAuley and Caetano [15]
showed that faster inference can be done in a large class of models
if we have a fast method for MSP. This class includes cyclic and
skip-chain models that arise in many applications including in
natural language understanding and computer vision. See Fig. 1
for some examples.

Let A and B be two n� n matrices. The MSP of A and B is the
n� n matrix C ¼ A� B defined by

Cik ¼ min
j
Aij þ Bjk: ð1Þ

Note that this is exactly matrix multiplication in the min-plus
(tropical) semiring.

Standard algorithms for inference with a tree-width 2 model
take Oðmn3Þ time, where m is the number of variables in the model
and n is the number of possible values for each variable. For
models that contain only pairwise factors, inference can be done in
OðmfðnÞÞ time if we have an algorithm for computing MSP of
n� n matrices in OðfðnÞÞ time (see Section 2).

The brute-force approach for computing MSP of n� n
matrices takes Oðn3Þ time. Unfortunately, there is no known

method that improves this bound by a significant amount in the

worst case. An important difference from the standard matrix

product is that the minimum operation does not have an inverse.

This means that fast matrix multiplication methods that rely on a

ring structure, such as Strassen’s algorithm [21], cannot be

directly applied to compute MSP.
Our main theoretical result is an algorithm for MSP that runs in

Oðn2 lognÞ expected time, assuming that the entries of each matrix

are independent samples from a uniform distribution. Our

experimental results show that the method also performs well

under realistic inputs that arise in several applications.
Our basic algorithm uses a Fibonacci heap (or similar structure)

and is mainly of theoretical interest. The algorithm can be

implemented with an integer queue to obtain a practical solution.

We also describe an alternative algorithm that computes exact

values using a scaling technique and avoids any complex data

structure. Our experimental results show that the methods perform

well in three different applications: interactive image segmentation

with active contours models (“snakes”), point pattern matching

with belief propagation, and text denoising with skip-chain models.

1.1 Related Work

Our work is motivated by McAuley and Caetano [15], who noted

the application of MSP for MAP inference with graphical models

and gave an Oðn2:5Þ expected time algorithm for MSP. The method

in [15] assumes every permutation of values in the inputs occurs

with equal probability. This is a weaker assumption than the one

we make in our analysis and could lead to a faster method in some

applications. Section 4 compares the two methods and shows that

our algorithms perform better in several applications.
The worst-case complexity of the MSP operation has been

heavily studied in the theoretical computer science community

because of its relation to the all-pairs-shortest-paths (APSP)

problem. The worst-case asymptotic complexity of computing

MSP of n� n matrices is the same as solving APSP on dense

graphs with n nodes [1]. To our knowledge, the best-known

algorithm for the APSP problem takes Oðn3= lognÞ time in the

worst case [8]. The search for a truly subcubic algorithm (Oðn3��Þ)
is a significant open problem in the area.

There are several known algorithms for the APSP problem

which have good expected runtime, assuming that the input graph

comes from a simple distribution (e.g., [11], [17], [12]). However,

the usual reduction of MSP to APSP (see [1]) leads to graphs that

have deterministic structure, violating the assumptions made by

the APSP algorithms designed for random graphs.
Our basic algorithm can be seen as an application of Knuth’s

lightest derivation method (KLD) [14], [10] with a special stopping

criterion. Felzenszwalb and McAllester [10] suggested using KLD

and an A* version of it for inference in graphical models. However,

there is a difference between the approach we use here and the one

suggested in [10]. When doing inference on a large model, we solve

several small lightest derivation problems, each defined by a single

MSP computation. In contrast, Felzenszwalb and McAllester [10]

suggest solving a single large lightest derivation problem. Solving

a sequence of small problems leads to better performance and

simplifies the implementation.
Our algorithms improve dynamic programming and message

passing methods for inference in low tree-width graphs when the

number of possible values for a variable is large. Another

approach for inference in some classes of graphical models

involves graph cuts [7], [6]. However, these methods are typically

used for models with high tree width, a relatively small number of

possible values per variable, and restricted classes of potential

functions. None of the applications we consider can be easily

addressed with graph cuts.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 12, DECEMBER 2011 2549

. P.F. Felzenszwalb is with the Department of Computer Science, University
of Chicago, 1100 E. 58th St., Chicago, IL 60637.
E-mail: pff@cs.uchicago.edu.

. J.J. McAuley is with NICTA and the Australian National University,
Locked Bag 8001, Canberra, ACT 2601, Australia.
E-mail: julian.mcauley@gmail.com.

Manuscript received 1 Sept. 2010; revised 5 Apr. 2011; accepted 19 May 2011;
published online 6 June 2011.
Recommended for acceptance by T. Jebara.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2010-09-0676.
Digital Object Identifier no. 10.1109/TPAMI.2011.121.

0162-8828/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

2 MAP INFERENCE AND MIN-SUM MATRIX PRODUCT

Let G ¼ ðV ;EÞ be a graph with m nodes. Let x ¼ ðx1; . . . ; xmÞ be a
set of variables associated with the nodes in V . We are interested in
solving optimization problems of the form

x� ¼ arg min
x

X
C2C

�CðxCÞ; ð2Þ

where C is the set of maximal cliques in G, xC denotes the
variables associated with nodes in C, and �C is a potential

function assigning a cost to each possible configuration of values
for these variables.

Optimization problems of this type arise in many situations,
including in MAP estimation with graphical models. Exact or

approximate solutions are often found using some form of
message-passing technique. This includes classical dynamic pro-
gramming methods [5], [3], [4], loopy belief propagation [24], and
the junction-tree algorithm [2]. Sometimes messages are computed
between cliques of the original graph and sometimes over a
triangulated version.

In general, the message passed from a clique A to a clique B

takes the form

mA!BðxA\BÞ ¼ min
xAnB

�XðxAÞ þ
X

C2�ðAÞnB
mC!AðxA\CÞ

0
@

1
A; ð3Þ

where �ðAÞ is the set of cliques neighboring A.
If the model is triangulated and mA!B is computed after A

receives messages from all neighbors except B (i.e., �ðAÞ nB), this

leads to the junction-tree algorithm. This is also equivalent to
nonserial dynamic programming in a decomposable graph [5], [4].
In loopy belief propagation, messages are updated in parallel or in
some arbitrary order until convergence. After messages are
computed, a solution x� can be obtained by computing beliefs
using a similar computation.

As noted in [15], there are many graphical models whose
potential functions �C are decomposable into smaller factors, i.e.,

�CðxCÞ ¼
X
F�C

�F ðxF Þ: ð4Þ

This is a general phenomenon that arises, for example, when one
triangulates a model. Triangulation creates new edges, and thus
larger cliques, but the potential functions of the triangulated graphs

can always be decomposed into the original potential functions.
As in [15], we focus on the case where the potentials take the form

�ijkðxi; xj; xkÞ ¼ �ijðxi; xjÞ þ �ikðxi; xkÞ þ �jkðxj; xkÞ: ð5Þ

That is, we have cliques of size 3 with pairwise factors. Our
algorithms can also be generalized to other factorizations dis-
cussed in [15], but we concentrate on this particular case because it
is the most common in typical applications. For example, if we

have a cyclic model, globally optimal solutions x� can be obtained
by applying the junction-tree algorithm to a triangulated graph
(Fig. 1b). We describe experiments with a model of this type for

image segmentation in Section 4.1. Another example is a skip-chain

model [22] where we have a sequence of hidden variables and a

potential function between pairs of variables that have distance at

most 2 from each other (Fig. 1a). Section 4.3 illustrates an

application of a model of this type for text denoising.
When the potentials are of the form in (5), a message from a

clique A ¼ fi; j; kg to a clique B ¼ fi; l; kg takes the form

mA!Bðxi; xkÞ ¼ �ikðxi; xkÞ þmin
xj

�ijðxi; xjÞ þ�jkðxj; xkÞ; ð6Þ

where �ij is the sum of �ij and messages from cliques that

intersect A at ði; jÞ, �jk is the sum of �jk and messages from cliques

that intersect A at ðj; kÞ, and �ik is the sum of �ik and messages

from cliques, other than B, that intersect A at ði; kÞ.
Note that (6) is essentially equivalent to the MSP (1) of two

matrices (�ij and �jk) of size n, where n is the number of possible

values for each variable in the model. The only difference is that (6)

requires adding another matrix (�ik) to the result. Suppose we can

compute the MSP of two n� n matrices in OðfðnÞÞ time. Then, we

can compute messages in OðfðnÞÞ time. Consider a problem with

m variables in which each variable can take one of n possible

values. If the graph has tree-width 2, we can triangulate it and use

the junction-tree algorithm to find x� in OðmfðnÞÞ time.
Just like MSP can be used for MAP inference with graphical

models, standard matrix multiplication can be used for computing

marginals. Thus, matrix multiplication algorithms such as Stras-

sen’s method [21] can be used for marginal computation in the

class of models that we consider here. We note, however, that such

methods are not very practical due to high constants.

3 THE ALGORITHM

Here, we describe our basic algorithm (Algorithm 1) for computing

C ¼ A� B. We assume all entries in A and B are nonnegative.

Negative (finite) entries can be eliminated by adding a constant to

each matrix and subtracting the constants from the resulting C.
The algorithm exploits a priority queue to avoid computing

most sums Aij þBjk. We initialize the values of C to 1 and insert

all entries of A, B, and C into a queue Q, with priority given by

their value. We repeatedly remove items from Q and insert them

into a set S. Whenever Aij (respectively, Bjk) is removed from Q,

we combine it with entries of the form Bjk (respectively, Aij) that

are already in S and update Cik ¼ minðCik; Aij þ BjkÞ. We stop

when all entries of C are in S. Pseudocode for the algorithm is

shown in the left column of Fig. 2.

Theorem 1. If all entries in A and B are nonnegative, then Algorithm 1

correctly computes C.

Proof. Let j ¼ argminjAij þBjk. Clearly, we always have

Cik � Aij þBjk. It suffices to show that when Cik is removed

from Q, we have Cik ¼ Aij þBjk. Since the entries in A and B

are nonnegative, Aij; Bjk � Cik and both Aij and Bjk will be

removed from Q before Cik. This implies that when Cik is

removed from Q, we have Cik ¼ Aij þBjk. tu

2550 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 12, DECEMBER 2011

Fig. 1. Some typical graphical models with third-order cliques, but only pairwise factors.

Theorem 2. If all entries in A and B are i.i.d. samples from a uniform

distribution, then Algorithm 1 can be implemented to run in

Oðn2 lognÞ expected time.

Proof. First, note that we can assume that the entries in A and B

come from a uniform distribution over ½0; 1	 by scaling them
and then rescaling the resulting C accordingly.

We keep two arrays of linked lists I and K such that I½j	
stores indices i for which Aij is in S while K½j	 stores indices k
for which Bjk is in S. When an entry is removed from Q, we
find the entries in S that combine with it in constant time per
entry. For example, when Aij is removed from Q, we iterate
over k in K½j	. Thus, the running time of the algorithm is
dominated by the additions and priority queue operations.

Let N be the number of additions done by the algorithm. We
perform Oðn2Þ insertions and remove-min operations and
OðNÞ decrease-key operations. Lemma 1 shows that E½N 	 is
Oðn2 lognÞ. Using a Fibonacci heap, we obtain Oð1Þ time
insertion and decrease key and OðlognÞ time remove-min. This
leads to the running time bound of Oðn2 lognÞ. tu

Lemma 1. Let N be the number of additions performed by Algorithm 1. If

the entries in A and B are i.i.d. samples from the uniform distribution

over ½0; 1	, then E½N 	 is Oðn2 lognÞ.
Proof. Let C ¼ A�B, and let M be the maximum value in C. The

algorithm only adds Aij and Bjk if both are at most M.
Otherwise, at least one of Aij or Bjk will not be removed from Q

before the algorithm stops. Let Xijk ¼ 1 if Aij �M and
Bjk �M , and 0 otherwise. The number of additions performed
by the algorithm is N ¼

P
ijk Xijk. Using linearity of expecta-

tion, we have

E½N 	 ¼
X
ijk

E½Xijk	 ¼
X
ijk

P ðXijk ¼ 1Þ:

First, we show that M is small with high probability because
each entry in C is the minimum of n values. Then, we use the
fact that Aij and Bjk are both small with low probability. This
will imply that Xijk ¼ 1 with very low probability.

Let � be a value between 0 and 1. M � � if and only if some
Cik � �. Using the union bound,

P ðM � �Þ �
X
ik

P ðCik � �Þ:

Cik � � if and only if for all j we have Aij þ Bjk � �. For fixed

ði; kÞ, these are independent events; thus,

P ðCik � �Þ ¼
Y
j

P ðAij þBjk � �Þ:

Let s ¼ Aij þBjk. Since Aij and Bjk are independent samples

from the uniform distribution over ½0; 1	, we have P ðs � xÞ ¼
x2=2. Thus,

P ðAij þBjk � �Þ ¼ 1� �2=2 and P ðCik � �Þ ¼ ð1� �2=2Þn:

Using 1� x � e�x, we obtain

P ðCik � �Þ � e�n�
2=2:

Now, we can see that M is small with high probability or large

with low probability:

P ðM � �Þ � n2e�n�
2=2:

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 12, DECEMBER 2011 2551

Fig. 2. Two algorithms for computing MSP. The first (Algorithm 1) keeps track of a Fibonacci heap or similar and data structure Q and a set S. The second (Algorithm 2)
avoids the use of “exotic” data structures and is very fast in practice, but may be sensitive to the schedule for T .

Note that P ðAij � �Þ ¼ P ðBjk � �Þ ¼ �. Since these are indepen-

dent events, we have

P ðAij � � ^Bjk � �Þ ¼ �2: ð7Þ

Let E1 denote the event that M � � and E2 denote the event that

Aij � � ^Bjk � �. We have that Xijk ¼ 1 requires at least one of

E1 or E2 to hold. Using the union bound:

P ðXijk ¼ 1Þ � P ðE1Þ þ P ðE2Þ � n2e�n�
2=2 þ �2:

Now, we can pick � so that both the above terms are small. It is

sufficient to pick �2 ¼ 6 logn
n . Note that as long as n is large

enough, we satisfy the requirement that � � 1. With this choice:

P ðXijk ¼ 1Þ � 1þ 6 logn

n
:

Finally, we obtain

E½N 	 � n3 1þ 6 logn

n

� �
¼ n2ð1þ 6 lognÞ: ð8Þ

So, E½N 	 is Oðn2 lognÞ. tu

3.1 Integer Queue

To obtain the desired running time bound for Algorithm 1, we
need a complex data structure supporting Oð1Þ time decrease-key
operations, such as a Fibonacci heap. We have found that this leads
to poor performance since such data structures are relatively slow
in practice.

Suppose the entries inA andB are integers in ½0; K	. Then, we can

initialize Cik to 2K, and the priorities in Qwill always be integers in

½0; 2K	. We can represent such a queue by an array of length 2K þ 1,

with each entry Q½p	 holding a list of values with priority p.
An important property of Algorithm 1 is that the minimum

priority of items in Q never decreases. This is because, when the
value of Cik is decreased, it does not go below the last value
removed from Q. This makes it possible to perform k queue
operations in OðkþKÞ time. Initialization takes OðKÞ time.
Insertions and decrease key each take Oð1Þ time, while k remove-
min operations take OðkþKÞ in total. During remove-min, we
may need to search for the minimum p with Q½p	 not empty. But,
since the minimum never decreases, we never need to search over
the same priority twice.

Using an integer queue, Algorithm 1 runs in Oðn2 lognþKÞ
time. If the entries inA andB are not integers or have high value, we
can scale and round them to ensure that K is not too large. If the
maximum value in A and B is v, using K priority bins leads to bins
of size b ¼ v=K. By itself, this approach would introduce an additive
error bounded by b. We can avoid this error by making the priority
ofCik equal toCik þ b. This ensures thatAij andBjk will come off the
queue before Cik whenever j ¼ argminAij þBjk. Picking K ¼
�ðn2 lognÞ ensures that the priorities are accurately represented
and we still obtain the expected running time bound of Oðn2 lognÞ.

3.2 Scaling Method

Here, we describe an alternative algorithm (Algorithm 2) that

avoids using a priority queue and computes exact solutions to the

MSP problem.
Note that if we knew M ¼ maxikCik, a very simple algorithm

could be developed for computing C. Since the entries in A and B

are nonnegative, we have that Cik ¼ minjAij þBjk for those j such

that Aij �M ^Bjk �M. By (8), this would allow us to compute C

in Oðn2 lognÞ expected time, without any need for a priority queue.
Of course, we do not know M . In practice, we guess a

value T and compute Cik ¼ minjAij þBjk for those j such that

Aij � T ^Bjk � T . If maxikCik � T , we have correctly computed C

since larger values of Aij or Bjk could not lead to smaller values for

Cik. Otherwise, we double T and try again. Pseudocode for the
algorithm is shown in the right column of Fig. 2.

If we were able to choose T :¼M, then Algorithm 2 would
perform the same additions as Algorithm 1. Note that Algorithm 2
terminates before T > 2M . By (7), doubling T increases the expected
number of additions by a factor of 4. Thus, the total expected
number of additions performed by Algorithm 2 is at most a constant
times the number of additions performed by Algorithm 1. In each
iteration, Algorithm 2 also takesOðn2Þ time to check C and initialize
the lists I and K. The total expected running time is Oðn2 lognÞ as
long as the number of iterations isOðlognÞ. This holds as long as the
initial value for T is not too small.

3.3 Speedups

There are several speedups that improve the running time of our
algorithms in practical situations.

1. From each entry in A we subtract the minimum value in its
row and from each entry in B we subtract the minimum
value in its column. These minima are added back to the
resulting C. This makes the values in C closer to the values
in A and B and allows the algorithm to stop earlier.

2. In both algorithms, we can remove entries from the set S, or
lists I and K, if we already know all of the values in a row
or column ofC. We keep track of which rows/columns ofC
are done, and remove the entries the first time we consider
them and realize they can no longer affect the result.

3. Let aðjÞ ¼ miniAij and bðjÞ ¼ minkBjk be column and row
minima in A and B, respectively. Entries in C derived from
Aij must have value at least Aij þ bðjÞ, and entries in C

derived from Bjk must have value of at least Bjk þ aðjÞ.
This can be used to increase the priority of the items in Q in
Algorithm 1, in which case fewer items might be processed
before the algorithm stops. We let Aij have priority Aij þ
bðjÞ and Bjk have priority Bjk þ aðjÞ. This does not affect
the result because Aij and Bjk will still come off the queue
before Cik whenever j ¼ argminAij þ Bjk. This can be seen
as an A* version of the algorithm. The modification is
beneficial to handle matricies with non-i.i.d. entries. A
similar idea can be used in Algorithm 2 to decide which
entries to include in I and K. We only need to include
items that could be combined with each other to get values
of at most T . Thus, we can take I½j	 :¼ fi j Aij þ bðjÞ � Tg
and K½j	 :¼ fk j aðjÞ þ Bjk � Tg.

4 EXPERIMENTS

We implemented our algorithms and tested them in several
applications by comparing them to the naive (brute force) method
for MSP and the method from [15]. Note that all of these methods
are guaranteed to find an exact solution to the MSP problem. Our
implementation of Algorithm 1 uses an integer queue, as described
in Section 3.1. Both Algorithms 1 and 2 were implemented using all
speedups described in Section 3.3. All methods were implemented
in C++ using the GNU C compiler on a 2.8 GHz Intel PowerMac
running Mac OS X 10.5.

First, we evaluate our algorithms on uniform i.i.d. matrices.
Note that such matrices satisfy the random rank statistics
assumption made in [15]. Fig. 3 shows the performance of the
different methods with running times on the left, and the number
of additions done by each method on the right. This confirms that
our methods have better asymptotic complexity on random inputs.
The experiments below show that results on structured inputs that
arise in practical applications are similar to the random case.

4.1 Interactive Image Segmentation

Here, we consider the problem of image segmentation using active
contour models (“snakes”) [13], [3]. Fig. 4 illustrates an example. In

2552 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 12, DECEMBER 2011

this application, a coarse segmentation of an object is provided by
the user, in the form of a polygonal curve with m control points.
The goal is to improve the segmentation by moving the control

points within a search window around their initial positions.
Let x ¼ ðx1; . . . ; xmÞ denote the position of the control points. In

our experiments, the final segmentation was obtained by solving a
problem of the form

x� ¼ arg min
x

Xm
i¼1

1

gradðxi; xiþ1Þ
þ kxi � xiþ1k2:

Here, xi is constrained to be in a w� w window around its initial
location. The value gradðp; qÞ is a measure of the gradient
magnitude along the line segment between p and q (we want the
object boundary to align with high-gradient regions). The second
term in the sum encourages compact boundaries with control
points that are approximately uniformly spaced.

Solving for x� is equivalent to MAP estimation with a cyclic
graphical model and can be done via the junction-tree algorithm in
a triangulated graph, such as the one in Fig. 1b. Using the naive
MSP algorithm, this takes Oðmn3Þ time, where n ¼ w2 is the
number of possible positions for each control point.1 Fig. 4 shows
the result in one particular image and the total running time
obtained on this image using different methods for MSP as a
subroutine.

4.2 Point Pattern Matching

Many of the problems suggested in [15] involved finding maps

between two point sets. Examples include OCR [9], pose
reconstruction [20], SLAM [18], and point pattern matching [16].

Here, we search for a “template” s containing m points

ðs1; . . . ; smÞ within a “target” t containing n points ðt1; . . . ; tnÞ.
The target consists of a transformed and noisy version of the

template, together with outliers. An example is shown in Fig. 5.
A solution to this matching problem is defined by a map from s

to t. Such a map is defined by x ¼ ðx1; . . . ; xmÞ with xi 2 f1; . . . ; ng.
Here, xi ¼ j indicates that si is mapped to tj. The quality of the

solution is defined by how well distances in s are preserved under

the map x. We let E be a set of edges over the points in s specifying

which distances should be (explicitly) preserved. The optimal

solution is defined as

x� ¼ arg min
x

X
ði;jÞ2E

gðksi � sjk; ktxi � txjkÞ;

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 12, DECEMBER 2011 2553

Fig. 3. Left: Runtime of different MSP algorithms. Right: Number of additions per output entry.

Fig. 4. Interactive image segmentation with an active contour model. Left: Initial placement of the contour and search neighborhoods for the control points. Center: Final
segmentation. Right: Running time as a function of the search space size using different MSP algorithms.

1. Another common approach is to try every possible location for one
point and for each choice optimizing the other point locations using
dynamic programming on a chain. This also takes Oðmn3Þ time.

Fig. 5. Point pattern matching. Left: A template (above) and a scene (below) with
noise and outliers. Right: Running times for matching using different MSP
algorithms as a subroutine.

where the function gða; bÞ defines a robust elasticity constraint

enforcing that a
 b.
Solving for x� is equivalent to MAP estimation in a graphical

model with topology defined by E. It was shown in [15] that in

many applications E forms a tractable model. Here, we use the

model from [16] with the set of edges E shown in Fig. 1c. For

inference, we run loopy belief propagation for 25 iterations in the

loop of “width” 2. This takes Oðmn3Þ time per iteration using the

naive MSP method as a subroutine (the iterative nature of this

method accounts for the higher total running time compared to the

other experiments). The performance on a particular problem

instance using different MSP methods is shown in Fig. 5. Note that

we could perform pairwise belief propagation for the model from

Fig. 1c in Oðmn2Þ time per iteration. However, McAuley et al. [16]

show that passing messages between cliques leads to better

theoretical guarantees. Our MSP algorithms allow us to maintain

the guarantees while incurring an overhead of only OðlognÞ
compared to pairwise belief propagation.

4.3 Skip-Chain Models for Text Denoising

In [22], it was observed that powerful inference procedures can be

developed by introducing long-range dependencies into pairwise

graphical models.
In this experiment, we adapt a simple Markov model for text

denoising (typo correction): We model not only the relationship

between neighboring characters, but also the relationship between

characters at distance 2. This leads to a graphical model of the type

shown in Fig. 1a.
Let t ¼ ðt1; . . . ; tmÞ be a sequence of m characters from an

alphabet of size n. We assume that each character was corrupted

with probability p. The MAP estimate of the hidden (uncorrupted)

sequence x ¼ ðx1; . . . ; xmÞ is given by

x� ¼ arg max
x

Ym
i¼1

p�ðti 6¼ xiÞÞ þ ð1� pÞ�ðti ¼ xiÞ½ 	
|ffl{zffl}

noise modelYm�1

i¼1

q1ðxi; xiþ1Þ
Ym�2

i¼1

q2ðxi; xiþ2Þ
|ffl{zffl}

prior

:

Here, �ðvÞ is the indicator function that equals 1 if v is true and 0 if

v is false. Our priors q1; q2 are extracted from the statistics of

sentences in the Leipzig corpora [19]. The model has tree-width 2

and inference again requires Oðmn3Þ operations using the naive

MSP method within the junction tree algorithm. The average

performance (over 10 sentences each with 200 characters) using

different methods for MSP is shown in Fig. 6. The largest alphabet

we consider comes from the Korean data, which contains
1,108 unique characters.

5 CONCLUSION

The MSP operation plays an important role for inference in a large
class of graphical models. Our basic algorithm runs in Oðn2 lognÞ
expected time assuming the entries in each input matrix are
independent samples from a uniform distribution. Despite this
strong assumption, we show that the algorithm can be made very
fast for inputs that arise in practical applications, achieving
significant performance gains over existing methods. An interest-
ing open question involves showing that the algorithm has good
running time bounds for more general inputs once we include the
speedups described in Section 3.3. Another direction for future
work involves other applications of MSP, such as parsing with
context-free grammars.

REFERENCES

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of
Computer Algorithms. Addison-Wesley, 1974.

[2] S.M. Aji and R.J. McEliece, “The Generalized Distributive Law,” IEEE
Trans. Information Theory, vol. 46, no. 2, pp. 325-343, Mar. 2000.

[3] A. Amini, T. Weymouth, and R. Jain, “Using Dynamic Programming for
Solving Variational Problems in Vision,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 12, no. 9, pp. 855-867, Sept. 1990.

[4] Y. Amit and A. Kong, “Graphical Templates for Model Registration,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 3, pp. 225-236,
Mar. 1996.

[5] U. Bertele and F. Brioschi, Nonserial Dynamic Programming. Academic Press,
1972.

[6] Y. Boykov and M.-P. Jolly, “Interactive Graph Cuts for Optimal Boundary
and Region Segmentation of Objects in N-D Images,” Proc. IEEE Int’l Conf.
Computer Vision, 2001.

[7] Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate Energy
Minimization via Graph Cuts,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 23, no. 11, pp. 1222-1239, Nov. 2001.

[8] T.M. Chan, “More Algorithms for All-Pairs Shortest Paths in Weighted
Graphs,” Proc. Ann. ACM Symp. Theory of Computing, pp. 590-598, 2007.

[9] J.M. Coughlan and S.J. Ferreira, “Finding Deformable Shapes Using Loopy
Belief Propagation,” Proc. European Conf. Computer Vision, 2002.

[10] P.F. Felzenszwalb and D. McAllester, “The Generalized A* Architecture,”
J. Artificial Intelligence Research, vol. 29, pp. 153-190, 2007.

[11] A.M. Frieze and G.R. Grimmett, “The Shortest-Path Problem for Graphs
with Random Arc-Lengths,” Discrete Applied Math., vol. 10, no. 1, pp. 57-77,
1985.

[12] D.R. Karger, D. Koller, and S.J. Phillips, “Finding the Hidden Path: Time
Bounds for All-Pairs Shortest Paths,” SIAM J. Computing, vol. 22, no. 6,
pp. 1199-1217, 1993.

[13] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Models,”
Int’l J. Computer Vision, vol. 1, no. 4, pp. 321-331, 1987.

[14] D. Knuth, “A Generalization of Dijkstra’s Algorithm,” Information Proces-
sing Letters, vol. 6, no. 1, pp. 1-5, 1977.

[15] J.J. McAuley and T.S. Caetano, “Exploiting within-Clique Factorizations in
Junction-Tree Algorithms,” Proc. AI and Statistics, 2010.

[16] J.J. McAuley, T.S. Caetano, and M.S. Barbosa, “Graph Rigidity, Cyclic Belief
Propagation and Point Pattern Matching,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 30, no. 11, pp. 2047-2054, Nov. 2008.

[17] A. Moffat and T. Takaoka, “An All Pairs Shortest Path Algorithm with
Expected Time Oðn2 lognÞ,” SIAM J. Computing, vol. 16, no. 6, pp. 1023-
1031, 1987.

[18] M.A. Paskin, “Thin Junction Tree Filters for Simultaneous Localization and
Mapping,” Proc. Int’l Joint Conf. Artificial Intelligence, 2003.

[19] U. Quasthoff, M. Richter, and C. Biemann, “Corpus Portal for Search in
Monolingual Corpora,” Proc. Language Resources and Evaluation, 2006.

[20] L. Sigal and M.J. Black, “Predicting 3D People from 2D Pictures,” Proc. Conf.
Articulated Motion and Deformable Objects, 2006.

[21] V. Strassen, “Gaussian Elimination Is Not Optimal,” Numerische Mathema-
tik, vol. 14, no. 3, pp. 354-356, 1969.

[22] C. Sutton and A. McCallum, “An Introduction to Conditional Random
Fields for Relational Learning,” Introduction to Statistical Relational Learning,
L. Getoor and B. Taskar, eds., MIT Press, 2006.

[23] L.G. Valiant, “General Context-Free Recognition in Less than Cubic Time,”
J. Computer and System Sciences, vol. 10, pp. 308-315, 1975.

[24] J.S. Yedidia, W.T. Freeman, and Y. Weiss, “Generalized Belief Propaga-
tion,” Proc. Neural Information Processing Systems, 2000.

2554 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 12, DECEMBER 2011

Fig. 6. Text denoising experiment. The box is a closeup of bottom left part of the
graph.

