
Learning Graph Matching
Tibério S. Caetano, Julian J. McAuley, Student Member, IEEE,

Li Cheng, Member, IEEE, Quoc V. Le, and Alex J. Smola

Abstract—As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer

vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a

correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic

assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge

compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic

assignment problem since it is NP-hard. In this paper, we turn our attention to a different question: how to estimate compatibility

functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would

manually provide. We present a method for learning graph matching: The training examples are pairs of graphs and the “labels” are

matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph

matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated

Assignment with bistochastic normalization, a state-of-the-art quadratic assignment relaxation algorithm.

Index Terms—Graph matching, learning, support vector machines, structured estimation, optimization.

Ç

1 INTRODUCTION

GRAPHS are commonly used as abstract representations
for complex structures, including DNA sequences,

documents, text, and images. In particular they are
extensively used in the field of computer vision, where
many problems can be formulated as an attributed graph
matching problem. Here the nodes of the graphs corre-
spond to local features of the image and edges correspond
to relational aspects between features (both nodes and
edges can be attributed, i.e., they can encode feature
vectors). Graph matching then consists of finding a
correspondence between nodes of the two graphs such that
they “look most similar” when the vertices are labeled
according to such a correspondence.

Typically, the problem is mathematically formulated as a
quadratic assignment problem, which consists of finding
the assignment that maximizes an objective function
encoding local compatibilities (a linear term) and structural
compatibilities (a quadratic term). The main body of
research in graph matching has then been focused on
devising more accurate and/or faster algorithms to solve

the problem approximately (since it is NP-hard); the
compatibility functions used in graph matching are
typically handcrafted.

An interesting question arises in this context: If we are
given two attributed graphs to match, G and G0, should the
optimal match be uniquely determined? For example,
assume first that G and G0 come from two images acquired
by a surveillance camera in an airport’s lounge; now,
assume that the same G and G0 instead come from two
images in a photographer’s image database; should
the optimal match be the same in both situations? If the
algorithm takes into account exclusively the graphs to be
matched, the optimal solutions will be the same1 since the
graph pair is the same in both cases. This is the standard
way graph matching is approached today.

In this paper, we address what we believe to be a
limitation of this approach. We argue that if we know the
“conditions” under which a pair of graphs has been
extracted, then we should take into account how graphs
arising in those conditions are typically matched. However, we
do not take the information on the conditions explicitly into
account, since this would obviously be impractical. Instead,
we approach the problem purely from a statistical inference
perspective. First, we extract graphs from a number of
images acquired under the same conditions as those for
which we want to solve, whatever the word “conditions”
means (e.g., from the surveillance camera or the photo-
grapher’s database). We then manually provide what we
understand to be the optimal matches between the resulting
graphs. This information is then used in a learning algorithm
which learns a map from the space of pairs of graphs to the
space of matches.

In terms of the quadratic assignment problem, this
learning algorithm amounts to (in loose language) adjusting

1048 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 6, JUNE 2009

. T.S. Caetano and J.J. McAuley are with the Statistical Machine Learning
Group, NICTA, Locked Bag 8001, Canberra, ACT 2601, Australia, and the
Research School of Information Sciences and Engineering, Australian
National University, ACT 0200, Australia.
E-mail: {tiberio.caetano, julian.mcauley}@nicta.com.au.

. Li Cheng is with TTI-Chicago, 1427 East 60th Street, Chicago, IL 60637.
E-mail: licheng@tti-c.org.

. Q.V. Le is with the Department of Computer Science, Stanford University,
Room 112, Gates Building 1A, Stanford, CA 94305.
E-mail: quocle@stanford.edu.

. A.J. Smola is with Yahoo! Research, 2821 Mission College Blvd.,
1MC8332, Santa Clara, CA 95051. E-mail: alex@smola.org.

Manuscript received 16 June 2008; revised 2 Nov. 2008; accepted 16 Jan.
2009; published online 23 Jan. 2009.
Recommended for acceptance by M. Pelillo.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2008-06-0361.
Digital Object Identifier no. 10.1109/TPAMI.2009.28.

1. Assuming there is a single optimal solution and that the algorithm
finds it.

0162-8828/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

the node and edge compatibility functions such that the
expected optimal match in a test pair of graphs agrees with
the expected match they would have had had they been in
the training set. In this formulation, the learning problem
consists of a convex, quadratic program which is readily
solvable by means of a column generation procedure.

We provide experimental evidence that applying learn-
ing to standard graph matching algorithms significantly
improves their performance. In fact, we show that learning
improves upon nonlearning results so dramatically that
linear assignment with learning outperforms Graduated
Assignment with bistochastic normalization, a state-of-the-
art quadratic assignment relaxation algorithm. Also, by
introducing learning in Graduated Assignment itself, we
obtain results that improve both in accuracy and speed over
the state-of-the-art relaxation.

A preliminary version of this paper appeared in [1].

2 LITERATURE REVIEW

2.1 Learning with Graphs

For completeness, we briefly touch on a related body of
literature, which, although clearly distinct from graph
matching, does involve the concept of learning in data
structures represented as graphs. We stress that the work in
this literature is essentially concerned with problems of
classifying and/or clustering graphs, but not learning a
matching criterion per se.

Since graphs are eminently nonvectorial data structures,
a substantial part of this literature has been focused on
Kernel Methods [2], [3], which comprise a principled
framework for dealing with structured data using standard
tools from linear analysis. We refer the reader to the recent
unified treatment on these methods as applied to graphs [4],
as well as the references therein. Another line of work has
been the use of generative models for graphs in the
structural pattern recognition community, such as [5], [6]
and [7]. Also, learning the graph edit distance for purposes
of graph classification has been introduced in [8].

2.2 Graph Matching

The graph matching literature is extensive, and many
different types of approaches have been proposed, which
mainly focus on approximations and heuristics for the
quadratic assignment problem. An incomplete list includes
spectral methods [9], [10], [11], [12], [13], relaxation labeling and
probabilistic approaches [14], [15], [16], [17], [18], [19], [20],
semidefinite relaxations [21], replicator equations [22], tree search
[23], graduated assignment [24], and RKHS methods [25].
Spectral methods consist of studying the similarities between
the spectra of the adjacency or Laplacian matrices of the
graphs and using them for matching. Relaxation and
probabilistic methods define a probability distribution
over mappings, and optimize using discrete relaxation
algorithms or variants of belief propagation. Semidefinite
relaxations solve a convex relaxation of the original combi-
natorial problem. Replicator equations draw an analogy with
models from biology where an equilibrium state is sought,
which solves a system of differential equations on the nodes
of the graphs. Tree-search techniques in general have worst-
case exponential complexity and work via sequential tests of

compatibility of local parts of the graphs. Graduated Assign-
ment combines the “softassign” method [26] with Sinkhorn’s
method [27] and essentially consists of a series of first-order
approximations to the quadratic assignment objective func-
tion. This method is particularly popular in computer vision
since it produces accurate results while scaling reasonably in
the size of the graph.

The above literature strictly focuses on trying better
algorithms for approximating a solution for the graph
matching problem, but does not address the issue of
how to determine the compatibility functions in a
principled way.

In [28] , the authors learn compatibility functions for the
relaxation labeling process; this is, however, a different
problem than graph matching and the “compatibility
functions” have a different meaning. Nevertheless, it does
provide an initial motivation for learning in the context of
matching tasks. In terms of methodology, the paper most
closely related to ours is possibly [29], which uses
structured estimation tools in a quadratic assignment
setting for word alignment. A recent paper of interest
shows that very significant improvements on the perfor-
mance of graph matching can be obtained by an appro-
priate normalization of the compatibility functions [30];
however, no learning is involved.

3 THE GRAPH MATCHING PROBLEM

The notation used in this paper is summarized in Table 1. In
the following, we denote a graph by G. We will often refer
to a pair of graphs, and the second graph in the pair will be
denoted by G0. We study the general case of attributed graph
matching, and attributes of the vertex i and the edge ij in G
are denoted by Gi and Gij, respectively. Standard graphs

CAETANO ET AL.: LEARNING GRAPH MATCHING 1049

TABLE 1
Definitions and Notation

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

are obtained if the node attributes are empty and the edge
attributes Gij 2 f0; 1g are binary, denoting the absence or
presence of an edge, in which case we get the so-called exact
graph matching problem.

Define a matching matrix y by yii0 2 f0; 1g such that yii0 ¼ 1
if node i in the first graph maps to node i0 in the second
graph (i 7! i0) and yii0 ¼ 0 otherwise. Define by cii0 the value
of the compatibility function for the unary assignment i 7! i0

and by dii0jj0 the value of the compatibility function for the
pairwise assignment ij 7! i0j0. Then, a generic formulation
of the graph matching problem consists of finding the
optimal matching matrix y� given by the solution of the
following (NP-hard) quadratic assignment problem [31],

y� ¼ argmax
y

X
ii0
cii0yii0 þ

X
ii0jj0

dii0jj0yii0yjj0

" #
; ð1Þ

typically subject to either the injectivity constraint (one-to-
one, that is,

P
i yii0 � 1 for all i0,

P
i0 yii0 � 1 for all i) or

simply the constraint that the map should be a function
(many-to-one, that is,

P
i0 yii0 ¼ 1 for all i). If dii0jj0 ¼ 0 for all

ii0jj0, then (1) becomes a linear assignment problem, exactly
solvable in worst-case cubic time [32]. Although the
compatibility functions c and d obviously depend on the
attributes fGi;G

0
i0 g and fGij; G

0
i0j0 g, the functional form of

this dependency is typically assumed to be fixed in graph
matching. This is precisely the restriction we are going to
relax in this paper: Both the functions c and d will be
parametrized by vectors whose coefficients will be learned
within a convex optimization framework. In a way, instead
of proposing yet another algorithm for determining how
to approximate the solution for (1), we are aiming at
finding a way to determine what should be maximized in (1)
since different c and d will produce different criteria to be
maximized.

4 LEARNING GRAPH MATCHING

4.1 General Problem Setting

We approach the problem of learning the compatibility
functions for graph matching as a supervised learning
problem [33]. The training set is comprised ofN observations
x from an input set X and N corresponding labels y from an
output set Y and can be represented by fðx1; y1Þ; . . . ;
ðxN ; yNÞg. Critical in our setting is the fact that the observa-
tions and labels are structured objects. In typical supervised
learning scenarios, observations are vectors and labels are
elements from some discrete set of small cardinality, for
example, yn 2 f�1; 1g in the case of binary classification.
However, in our case, an observation xn is a pair of graphs,
i.e., xn ¼ ðGn;G0nÞ, and the label yn is a match between
graphs, represented by a matching matrix, as defined in
Section 3.

If X ¼ G � G is the space of pairs of graphs and Y the
space of matching matrices, then learning graph matching
amounts to finding a w-parametrized function gw : G �
G 7! Y which minimizes the prediction loss on the test set.
Since the test set here is assumed not to be available at
training time, we use the standard approach of minimizing
the empirical risk (average loss in the training set) plus a
regularization term in order to avoid overfitting. The

optimal predictor will then be the one which minimizes
an expression of the following type:

1

N

XN
n¼1

�ðgwðGn;G0nÞ; ynÞ|ffl{zffl}
empirical risk

þ ��ðwÞ|fflfflffl{zfflfflffl}
regularization term

; ð2Þ

where �ðgwðGn;G0nÞ; ynÞ is the loss incurred by the
predictor g when predicting, for training input ðGn;G0nÞ,
the output gwðGn;G0nÞ instead of the training output yn. The
function �ðwÞ penalizes “complex” vectors w, and � is a
parameter that trades off data fitting against generalization
ability, which is, in practice, determined using a validation
set. In order to completely specify such an optimization
problem, we need to define the parametrized class of
predictors gwðG;G0Þ, whose parameters w we will optimize
over the loss function �, and the regularization term �ðwÞ.
In the following, we will focus on setting up the optimiza-
tion problem by addressing each of these points.

4.2 The Model

We start by specifying a w-parametrized class of predictors
gwðG;G0Þ. We use the standard approach of discriminant
functions, which consists of picking as our optimal estimate
the one for which the discriminant function fðG;G0; y;wÞ is
maximal, i.e., gwðG;G0Þ ¼ argmaxyfðG;G0; y;wÞ. We assume
linear discriminant functions fðG;G0; y;wÞ¼hw;�ðG;G0; yÞi
so that our predictor has the form

gwðG;G0Þ ¼ argmax
y2Y

hw;�ðG;G0; yÞi: ð3Þ

Effectively, we are solving an inverse optimization problem,
as described in [33], [34], that is, we are trying to find f such
that g has desirable properties. Further specification of
gwðG;G0Þ requires determining the joint feature map
�ðG;G0; yÞ, which has to encode the properties of both
graphs as well as the properties of a match y between these
graphs. The key observation here is that we can relate the
quadratic assignment formulation of graph matching, given
by (1), with the predictor given by (3), and interpret the
solution of the graph matching problem as being the
estimate of g, i.e., yw ¼ gwðG;G0Þ. This allows us to interpret
the discriminant function in (3) as the objective function to
be maximized in (1):

h�ðG;G0; yÞ; wi ¼
X
ii0
cii0yii0 þ

X
ii0jj0

dii0jj0yii0yjj0 : ð4Þ

This clearly reveals that the graphs and the parameters
must be encoded in the compatibility functions. The last
step before obtaining � consists of choosing a parameter-
ization for the compatibility functions. We assume a simple
linear parameterization

cii0 ¼ h�1ðGi;G
0
i0 Þ; w1i; ð5aÞ

dii0jj0 ¼ h�2ðGij; G
0
i0j0 Þ; w2i; ð5bÞ

i.e., the compatibility functions are linearly dependent on
the parameters, and on new feature maps �1 and �2 that
only involve the graphs (Section 5 specifies the feature
maps �1 and �2). As already defined, Gi is the attribute of

1050 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 6, JUNE 2009

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

node i and Gij is the attribute of edge ij (similarly for G0).
However, we stress here that these are not necessarily local
attributes, but are arbitrary features simply indexed by the
nodes and edges.2 For instance, we will see in Section 5 an
example where Gi encodes the graph structure of G as
“seen” from node i, or from the “perspective” of node i.

Note that the traditional way in which graph matching is
approached arises as a particular case of (5): If w1 and w2 are
constants, then cii0 and dii0jj0 depend only on the features of
the graphs. By defining w :¼ ½w1 w2�, we arrive at the final
form for �ðG;G0; yÞ from (4) and (5):

�ðG;G0; yÞ ¼
X
ii0
yii0�1ðGi;G

0
i0 Þ;
X
ii0jj0

yii0yjj0�2ðGij; G
0
i0j0 Þ

" #
:

ð6Þ

Naturally, the final specification of the predictor g depends
on the choices of �1 and �2. Since our experiments are
concentrated on the computer vision domain, we use
typical computer vision features (e.g., Shape Context) for
constructing �1 and a simple edge-match criterion for
constructing �2 (details follow in Section 5).

4.3 The Loss

Next we define the loss �ðy; ynÞ incurred by estimating the
matching matrix y instead of the correct one, yn. When both
graphs have large sizes, we define this as the fraction of
mismatches between matrices y and yn (i.e., a normalized
Hamming loss),

�ðy; ynÞ ¼ 1� 1

kynk2
F

X
ii0
yii0y

n
ii0 ; ð7Þ

where k�kF is the Frobenius norm. If one of the graphs has a
small size, this measure may be too rough. In our experi-
ments, we will encounter such a situation in the context of
matching in images. In this case, we instead use the loss

�ðG;G0; �; �nÞ ¼ 1� 1

j�j
X
i

dðG0�ðiÞ; G0�nðiÞÞ
�

" #
: ð8Þ

Here, graph nodes correspond to point sets in the images, G
corresponds to the smaller, “query” graph and G0 is the
larger, “target” graph (in this expression, Gi and G0j are
particular points in G and G0; �ðiÞ is the index of the point in
G0 to which the ith point in G is mapped, �nðiÞ is the index
of the “correct” mapping; and d is simply the euclidean
distance and is scaled by �, which is simply the width of the
image in question). Hence, we are penalizing matches based
on how distant they are from the correct match; this is
commonly referred to as the “endpoint error.”

Finally, we specify a quadratic regularizer �ðwÞ ¼ 1
2 kwk

2.

4.4 The Optimization Problem

Here, we combine the elements discussed in Section 4.2 in
order to formally set up a mathematical optimization
problem that corresponds to the learning procedure,

following the large-margin approach of [33]. The expression
that arises from (2) by incorporating the specifics discussed
in Sections 4.2 and 4.3 still consists of a very difficult (in
particular nonconvex) optimization problem. Although the
regularization term is convex in the parameters w, the
empirical risk, i.e., the first term in (2), is not. Note that
there are finitely many matches y and, therefore, a finite
number of possible values for the loss �; however, the
space of parameters W is continuous. What this means is
that there are large equivalence classes of w (an equivalence
class in this case is a given set of ws each of which produces
the same loss). Therefore, the loss is piecewise constant on w
and, as a result, certainly not amenable to any type of
smooth optimization.

One approach to render the problem of minimizing (2)
more tractable is to replace the empirical risk by a convex
upper bound on the empirical risk, an idea that has been
exploited in machine learning in recent years [33], [35], [36].
By minimizing this convex upper bound, we hope to
decrease the empirical risk as well. It is easy to show that
the convex (in particular, linear) function 1

N

P
n �n is an

upper bound for 1
N

P
n �ðgwðGn;G0nÞ; ynÞ for the solution of

(2) with appropriately chosen constraints:

minimize
w;�

1

N

XN
n¼1

�n þ
�

2
kwk2 ð9aÞ

subject to hw;�nðyÞi � �ðy; ynÞ � �n
for all n and y 2 Y:

ð9bÞ

Here, we define �nðyÞ :¼ �ðGn;G0n; ynÞ � �ðGn;G0n; yÞ.
Formally, we have the following lemma:

Lemma 1. For any feasible ð�; wÞ of (9), the inequality �n �
�ðgwðGn;G0nÞ; ynÞ holds for all n. In particular, for the
optimal solution ð��; w�Þ, we have 1

N

P
n �
�
n � 1

N

P
n �ðgw�

ðGn;G0nÞ; ynÞ.
Proof. The constraint (9-b) needs to hold for all y, hence in

particular for yw
� ¼ gw� ðGn;G0nÞ. By construction, yw

�

satisfies hw;�nðyw� Þi � 0. Consequently, �n � �ðyw� ; ynÞ.
The second part of the claim follows immediately. tu

The constraints (9b) mean that the margin fðGn;G0n;
yn;wÞ � fðGn;G0n; y;wÞ, i.e., the gap between the discrimi-
nant functions for yn and y should exceed the loss induced
by estimating y instead of the training matching matrix yn.
This is highly intuitive since it reflects the fact that we want
to safeguard ourselves most against mispredictions y,
which incur a large loss (i.e., the smaller the loss, the less
we should care about making a misprediction, so we can
enforce a smaller margin). The presence of �n in the
constraints and in the objective function means that
we allow the hard inequality (without �n) to be violated,
but we penalize violations for a given n by adding to the
objective function the cost 1

N �n.
Despite the fact that (9) has exponentially many con-

straints (every possible matching y is a constraint), we will
see in what follows that there is an efficient way of finding
an �-approximation to the optimal solution of (9) by finding
the worst violators of the constrained optimization problem.

CAETANO ET AL.: LEARNING GRAPH MATCHING 1051

2. As a result, in our general setting, “node” compatibilities and “edge”
compatibilities become somewhat misnomers, being more appropriately
described as unary and binary compatibilities. We, however, stick to the
standard terminology for simplicity of exposition.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

4.5 The Algorithm

Instead of using the formulation in (9), which has n slack

variables (used in [1] and [33]), we here use the (equivalent)

formulation given in [37], in which there is only a single

slack variable:

minimize
w;�

� þ �
2
kwk2 ð10aÞ

subject to
1

N

X
n

hw;�nðyÞi � 1

N

X
n

�ðy; ynÞ � �

for all y 2 Y:
ð10bÞ

Note that the number of constraints in (10) is given by

the number of possible matching matrices kYk times the

number of training instances N . In graph matching, the

number of possible matches between two graphs grows

factorially with their size. In this case, it is infeasible to solve

(9) exactly.
There is, however, a way out of this problem by using an

optimization technique known as column generation [32].

Instead of solving (10) directly, one computes the most

violated constraint in (10) iteratively for the current solution

and adds this constraint to the optimization problem. In

order to do so, we need to solve

ŷn ¼ argmax
y

hw;�ðGn;G0n; yÞi þ�ðy; ynÞ½ �; ð11Þ

as this is the term for which the constraint (10b) is tightest

(i.e., the constraint that maximizes �). Substituting into (10b)

we obtain

� ¼ �ðŷn; ynÞ � hw;�nðŷnÞi: ð12Þ

Thus, in (10a), we obtain

1

N

X
n

�ðŷn; ynÞ � hw;�nðŷnÞi þ
�

2
kwk2; ð13Þ

whose gradient (with respect to w) is

�w� 1

N

X
n

�nðŷnÞ: ð14Þ

Equations (13) and (14) define the new constraint to be

added to the optimization problem. Pseudocode for

this algorithm is described in Algorithm 1. See [38] for

more details.
Let us investigate the complexity of solving (11). Using

the joint feature map � as in (6) and the loss as in (7), the

argument in (11) becomes

h�ðG;G0; yÞ; wi þ�ðy; ynÞ
¼
X
ii0
yii0�cii0 þ

X
ii0jj0

yii0yjj0dii0jj0 þ constant; ð15Þ

where �cii0 ¼ h�1ðGi;G
0
i0 Þw1i þ kynii0=yn2

Fk and dii0jj0 is defined

as in (5b).
The maximization of (15), which needs to be carried out

at training time, is a quadratic assignment problem, as is the

problem to be solved at test time. In the particular case

where dii0jj0 ¼ 0 throughout, both the problems at training

and at test time are linear assignment problems, which can
be solved efficiently in worst-case cubic time.

In our experiments, we solve the linear assignment
problem with the efficient solver from [39] (“house”
sequence) and the Hungarian algorithm (video/bikes data
set). For quadratic assignment, we developed a C++
implementation of the well-known Graduated Assignment
algorithm [24]. However, the learning scheme discussed
here is independent of which algorithm we use for solving
either linear or quadratic assignment. Note that the
estimator is only an approximation in the case of quadratic
assignment: Since we are not guaranteed to find precisely the
most violated constraint of (11), we cannot be sure that the
duality gap is properly minimized in the constrained
optimization problem.3

Algorithm 1. Bundle Method

1: Define:

2: �nðyÞ :¼ �ðGn;G0n; ynÞ � �ðGn;G0n; yÞ
3: HnðyÞ :¼ hw;�ðGn;G0n; yÞi þ�ðy; ynÞ
4: Input: training graph pairs fGng,fG0ng, training

matching matrices fyng, sample size N , tolerance �

5: Initialize i ¼ 1, w1 ¼ 0

6: repeat

7: for n ¼ 1 to N do

8: ŷn ¼ argmaxy2YH
nðyÞ

9: end for

10: Compute ‘gradient’ ai (equation 14)
11: Compute ‘offset’ bi (equation 13)

12: wiþ1 :¼ argminw
�
2 kwk

2 þmaxð0;maxj�ihaj; wi þ bjÞ
13: i iþ 1

14: until converged (see [38])

5 FEATURES FOR THE COMPATIBILITY FUNCTIONS

The joint feature map �ðG;G0; yÞ has been derived in its full
generality (6), but, in order to have a working model, we
need to choose a specific form for �1ðGi;G

0
i0 Þ and

�2ðGij; G
0
i0j0 Þ, as mentioned in Section 4. We first discuss

the linear features �1 and then proceed to the quadratic
terms �2. For concreteness, here we only discuss options
actually used in our experiments.

5.1 Node Features

We construct �1ðGi;G
0
i0 Þ using the squared difference

�1ðGi;G
0
i0 Þ ¼ ð. . . ;�jGiðrÞ �G0i0 ðrÞj

2; . . .Þ. This differs from
what is shown in [1], in which an exponential decay is
used (i.e., expð�jGiðrÞ �G0i0 ðrÞj

2Þ); we found that using
the squared difference resulted in much better perfor-
mance after learning. Here, GiðrÞ and G0i0 ðrÞ denote the
rth coordinates of the corresponding attribute vectors.
Note that, in standard graph matching without learning,
we typically have cii0 ¼ expð�kGi �G0i0 k

2Þ, which can be

1052 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 6, JUNE 2009

3. Recent work has been done on structured learning when exact
inference is not feasible [40]. In that paper, the authors analyze both
theoretically and empirically the class of models represented by a fully
connected Markov random field. This sheds some light on structured
prediction problems such as multilabel classification, clustering, and image
segmentation. Unfortunately, the analysis does not apply to settings with
hard assignment constraints, such as quadratic assignment, which makes it
difficult for us to assess to what extent (and if) their insights extend to our
setting.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

seen as the particular case of (5a) for both �1 and w1

flat, given by �1ðGi;G
0
i0 Þ ¼ ð. . . ; expð�kGi �G0i0 k

2Þ; . . .Þ
and w1 ¼ ð. . . ; 1; . . .Þ [30]. Here, instead, we have
cii0 ¼ h�1ðGi;G

0
i0 Þ; w1i, where w1 is learned from training

data. In this way, by tuning the rth coordinate of w1

accordingly, the learning process finds the relevance of the
rth feature of �1. In our experiments (to be described in the
next section), we use the well-known 60-dimensional Shape
Context features [41]. They encode how each node “sees”
the other nodes. It is an instance of what we called in
Section 4 a feature that captures the node “perspective”
with respect to the graph. We use 12 angular bins (for
angles in ½0; �6Þ . . . ½11�

6 ; 2�Þ) and 5 radial bins (for radii in
ð0; 0:125Þ; ½0:125; 0:25Þ . . . ½1; 2Þ, where the radius is scaled by
the average of all distances in the scene) to obtain our
60 features. This is similar to the setting described in [41].

5.2 Edge Features

For the edge features Gij (G0i0j0), we use standard graphs, i.e.,
Gij (G0i0j0) is 1 if there is an edge between i and j and 0
otherwise. In this case, we set �2ðGij; G

0
i0j0 Þ ¼ GijG

0
i0j0 (so that

w2 is a scalar).

6 EXPERIMENTS

6.1 House/Hotel Sequence

For our first experiment, we consider the CMU “house”
sequence—a data set consisting of 111 frames of a toy house
[42]. Each frame in this sequence has been hand-labeled,
with the same 30 landmarks identified in each frame [43].
We explore the performance of our method as the baseline
(separation between frames) varies. We assess the quality of
a match with the normalized Hamming loss (7).

For each baseline (from 0 to 90, by 10), we identified all
pairs of images separated by exactly this many frames. We
then split these pairs into three sets, for training, validation,
and testing. In order to determine the adjacency matrix for
our edge features, we triangulated the set of landmarks
using the Delaunay triangulation (see Fig. 1).

Fig. 1a shows the performance of our method as the
baseline increases, for both linear and quadratic assignment
(for quadratic assignment, we use the Graduated Assign-
ment algorithm, as mentioned previously). The values
shown report the normalized Hamming loss (i.e., the
proportion of points incorrectly matched); for each baseline,
the regularization constant resulting in the best perfor-
mance of its validation set is used for testing. Graduated
assignment using bistochastic normalization (with a nor-
malization constant of � ¼ 0:00001), which, to the best of
our knowledge, is the state-of-the-art relaxation, is shown
for comparison (quadratic normalization � ¼ 0:00001);
the spectral matching implementation of [30] is also
shown (SMAC).4

For both linear and quadratic assignment, Fig. 1 shows
that learning significantly outperforms nonlearning in
terms of accuracy. Interestingly, quadratic assignment
performs worse than linear assignment before learning is
applied—this is likely because the relative scale of the linear
and quadratic features is badly tuned before learning. The
line “quadratic” (simple scaling) shows that we can address this problem somewhat by scaling the linear features to be

in the range ½0; 1� (so that both the linear and quadratic

features have the same scale), in which case quadratic

CAETANO ET AL.: LEARNING GRAPH MATCHING 1053

Fig. 1. (a) Performance on the “house” sequence as the baseline
(separation between frames) varies (the normalized Hamming loss on
all testing examples is reported, with error bars indicating the standard
error). (b) The weights learned for the quadratic model (baseline ¼ 90,
� ¼ 0:1). (c) A frame from the sequence, together with its landmarks and
triangulation; the 12th and the 102nd frames, matched using linear
assignment (without learning, loss ¼ 14=30), and the same match after
learning (� ¼ 1, loss ¼ 6=30). Mismatches are shown in red.

4. Exponential decay on the node features was beneficial when using the
method of [30], and has hence been maintained in this case (see Section 5.1).

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

assignment does better than linear assignment for large
baselines. It is also worth noting that linear assignment with
learning performs similarly to quadratic assignment with
bistochastic normalization (without learning)—this is an
important result since quadratic assignment via Graduated
Assignment is significantly more computationally inten-
sive. After learning, linear and quadratic assignment per-
form similarly, whereas we might expect quadratic
assignment to do better; we expect that this is simply due
to the inexact nature of the learning scheme when quadratic
assignment is applied.

Fig. 1b shows the weight vector learned using quadratic
assignment (for a baseline of 90 frames, with � ¼ 1). Note
that the first 60 points show the weights of the Shape
Context features, whereas the final point corresponds to the
edge features. The final point is given a very high score after
learning, indicating that the edge features are important in
this model.5 Here, the first 12 features correspond to the
first radial bin (as described in Section 5), etc. The first
radial bin appears to be more important than the last, for
example. Fig. 1c also shows an example match, using the
12th and the 102nd frames of the sequence for linear
assignment, before and after learning.

Fig. 3 shows similar results, for another CMU data set
(the 101 frame “hotel” sequence). Exponential decay was
found to work better than linear decay for the quadratic
assignment method in this experiment (see Section 5.1).
After learning, quadratic assignment outperforms linear
assignment in this experiment.

Finally, Fig. 4 shows the running time of our method
compared to its accuracy. First, it should be noted that the
use of learning has no effect on running time; since learning
outperforms nonlearning in all cases, this presents a very
strong case for learning.6 Graduated assignment with
bistochastic normalization gives the best nonlearning
performance; however, it is still worse than either linear
or quadratic assignment with learning and it is significantly
slower. The implementation of [30] is also shown, though
this code is implemented in MATLAB (whereas the others
are implemented in C++), so direct comparison of running
times is not possible. Note that the timing for the “hotel”
sequence is identical and is not shown.

6.2 Synthetic Transformations

For our second experiment, we consider an artificially
generated sequence of points and apply a series of common
transformations to it. Again we use the Shape Context
features, which are not invariant to these transformations;
thus, the matching problem becomes more difficult as the
transformations become more extreme. This experiment
will assess how well learning is able to choose those
features which remain useful under these transformations.

Our setup is similar to the previous experiments: We
begin with the point set in Fig. 6a (image taken from [44],
[45], [46], with 35 landmarks identified using code provided

by Longbin Chen); we then rotate the point set by 90 degrees

(for the “rotation” sequence), shear it horizontally to twice

its width (for the “shear” sequence), and apply noise with

standard deviation 20 pixels (for the “noise” sequence).

These transformations are applied gradually over a series of

200 frames. We compute the Shape Context features and

1054 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 6, JUNE 2009

Fig. 2. (a) Performance on the video sequence as the baseline
(separation between frames) varies (the endpoint error on all testing
examples is reported, with error bars indicating the standard error).
(b) The weights learned for the model (baseline ¼ 90; � ¼ 10;000).
(c) The 1st and the 91st frames, matched using linear assignment (loss
= 0.035), and the same match after learning (� ¼ 10;000; loss ¼ 0:015).
The outline of the points to be matched (left) and the correct match
(right) are shown in green; the inferred match is outlined in red; the
match after learning is much closer to the correct match.

5. This should be interpreted with some caution: The features have
different scales, meaning that their importances cannot be compared
directly. However, from the point of view of the regularizer, assigning this
feature a high weight bears a high cost, implying that it is an important
feature.

6. The time taken to learn the model is not included as it is typically an
offline step. This amount can vary greatly, depending on the number of
training samples, the value of �, the matching algorithm being used, and
various parameters of the learning algorithm; typically, less than 1 minute
was required to learn each model.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

Delaunay triangulation for each frame, and conduct
experiments for fixed baselines as before.

Results for this experiment are shown in Fig. 5. First note
that learning outperforms nonlearning in all cases, for both
linear and quadratic assignments. Graduated assignment
with bistochastic normalization and the SMAC method of
[30] are also shown for comparison. Again, exponential
decay was found to work better than linear decay for the
quadratic assignment method in this experiment.

For the “rotation” sequence (Fig. 5a), the Shape Context
features become gradually less useful as the baseline
increases (as they are not invariant to rotation), meaning
that the loss for linear assignment approaches 1 for large
baselines. Alternately, the adjacency features are invariant
to rotation; after learning, quadratic assignment achieves
approximately zero error for all baselines.

For the “shear” sequence (Fig. 5b), quadratic assignment
does much better than linear assignment before learning,
though linear assignment does better after learning (as

with the previous experiment, this is probably due to
the inexact nature of the learning scheme when doing
quadratic assignment).

For the “noise” sequence (Fig. 5c), linear assignment
again does better than quadratic assignment—this is
perhaps due to the fact that the Delaunay triangulation is
very sensitive to noise, rendering the adjacency features
useless for large baselines.

Fig. 6 shows an example match, before and after
learning.

6.3 Video Sequence

For our third experiment, we consider matching features of
a human in a video sequence. We used a video sequence
from the SAMPL data set [47]—a 108 frame sequence of a
human face (see Fig. 2c). To identify landmarks for these
scenes, we used the SUSAN corner detector [48], [49]. This
detector essentially identifies points as corners if their
neighbors within a small radius are dissimilar. This detector
was tuned such that no more than 200 landmarks were
identified in each scene.

In this setting, we are no longer interested in matching all

of the landmarks in both images, but rather those that
correspond to important parts of the human figure. We
identified the same 11 points in each image (Fig. 2c). It is
assumed that these points are known in advance for the
template scene (G) and are to be found in the target scene
(G0). Clearly, since the correct match corresponds to only a
tiny proportion of the scene, using the normalized Ham-
ming loss is no longer appropriate—we wish to penalize
incorrect matches less if they are “close to” the correct

match. Hence, we use the loss function (as introduced in
Section 4.2):

�ðG;G0; �; �nÞ ¼ 1� 1

j�j
X
i

dðG0�ðiÞ; G0�nðiÞÞ
�

" #
: ð16Þ

Here, the loss is small if the distance between the chosen
match and the correct match is small.

CAETANO ET AL.: LEARNING GRAPH MATCHING 1055

Fig. 3. (a) Performance on the “hotel” sequence as the baseline
(separation between frames) varies. The normalized Hamming loss on
all testing examples is reported, with error bars indicating the standard
error. (b) A frame from the sequence, together with its landmarks and
triangulation; the 3rd and the 93rd frames, matched using linear
assignment (without learning, loss ¼ 18=30), and the same match after
learning (� ¼ 100; loss ¼ 5=30). Mismatches are shown in red.

Fig. 4. Running time versus accuracy on the “house” data set, for a
baseline of 90. Standard errors of both running time and performance
are shown (the standard error for the running time is almost zero). Note
that linear assignment is around three orders of magnitude faster than
quadratic assignment. Note that the SMAC code of [30] is implemented
in MATLAB, and is not directly comparable.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

Since we are interested in only a few of our landmarks,
triangulating the graph is no longer meaningful. Hence, we
present results only for linear assignment.

Fig. 2a shows the performance of our method as the
baseline increases. In this case, the performance is non-
monotonic as the subject moves in and out of view
throughout the sequence. This sequence presents additional
difficulties over the “house” data set, as we are subject to
noise in the detected landmarks, and possibly in their
labeling also. Nevertheless, learning outperforms nonlearn-
ing for all baselines. The weight vector (Fig. 2b) is heavily
peaked about particular angular bins.

6.4 Bikes

For our final experiment, we used images from the
Caltech 256 data set [50]. We chose to match images in the
“touring bike” class, which contains 110 images of bicycles.
Since the Shape Context features we are using are robust to
only a small amount of rotation (and not to reflection), we
only included images in this data set that were taken
“side-on.” Some of these were then reflected to ensure that
each image had a consistent orientation (in total, 78 images
remained). Again, the SUSAN corner detector was used to
identify the landmarks in each scene; six points correspond-
ing to the frame of the bicycle were identified in each frame
(see Fig. 7a).

Rather than matching all pairs of bicycles, we used a
fixed template (G), and only varied the target. This is an
easier problem than matching all pairs, but is realistic in
many scenarios, such as image retrieval.

Table 2 shows the endpoint error of our method and
gives further evidence of the improvement of learning over
nonlearning. Fig. 7 shows a selection of data from our
training set, as well as an example matching, with and
without learning.

7 CONCLUSIONS AND DISCUSSION

We have shown how the compatibility functions for the
graph matching problem can be estimated from labeled
training examples, where a training input is a pair of graphs
and a training output is a matching matrix. We use large-
margin structured estimation techniques with column
generation in order to solve the learning problem efficiently,
despite the huge number of constraints in the optimization
problem. We presented experimental results in three
different settings, each of which revealed that the graph
matching problem can be significantly improved by means
of learning.

An interesting finding in this work has been that linear
assignment with learning performs similarly to Graduated
Assignment with bistochastic normalization, a state-of-the-
art quadratic assignment relaxation algorithm. This suggests
that in situations where speed is a major issue, linear
assignment may be resurrected as a means for graph
matching. In addition to that, if learning is introduced to
Graduated Assignment itself, then the performance of
graph matching improves significantly in accuracy and
slightly in speed when compared to the best existing
quadratic assignment relaxation [30].

There are many other situations in which learning a
matching criterion can be useful. In multicamera settings, for
example, when different cameras may be of different types
and have different calibrations and viewpoints, it is reason-
able to expect that the optimal compatibility functions will
be different depending on which camera pair we consider.
In surveillance applications, we should take advantage of
the fact that much of the context does not change: the
camera and the viewpoint are typically the same.

To summarize, by learning a matching criterion from
previously labeled data, we are able to substantially
improve the accuracy of graph matching algorithms.

1056 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 6, JUNE 2009

Fig. 5. Performance of linear and quadratic assignment under various transformations, both before and after learning: (a) rotation, (b) shear, and

(c) noise.

Fig. 6. An example match on the “shear” sequence, with a horizontal
shear of 150 percent. (a) The point set used for our synthetic
experiments. (b) The adjacency matrix for our template set. (c) Two
frames matched using linear assignment (without learning,
loss ¼ 29=35). (d) The same match after learning (� ¼ 0:1, loss ¼ 7=35).

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

The authors thank Gideon Dror, James Petterson, and

Choon Hui Teo for comments on the paper. They also thank

Longbin Chen and Choon Hui Teo for code. NICTA is

funded by the Australian Government’s Backing Australia’s

Ability initiative and the Australian Research Council’s ICT

Centre of Excellence program.

REFERENCES

[1] T.S. Caetano, L. Cheng, Q.V. Le, and A.J. Smola, “Learning Graph
Matching,” Proc. Int’l Conf. Computer Vision, 2007.

[2] B. Schölkopf and A. Smola, Learning with Kernels. MIT Press, 2002.
[3] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern

Analysis. Cambridge Univ. Press, 2004.

[4] S. Vishwanathan, K.M. Borgwardt, N. Schraudolph, and I.R.
Kondor, “On Graph Kernels,” J. Machine Learning Research,
submitted, 2008.

[5] A. Torsello and E.R. Hancock, “Learning Shape-Classes Using a
Mixture of Tree-Unions,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 28, no. 6, pp. 954-967, June 2006.

[6] D. White and R.C. Wilson, “Spectral Generative Models for
Graphs,” Proc. Int’l Conf. Image Analysis and Processing, pp. 35-42,
2007.

[7] B. Bonev, F. Escolano, M. Lozano, P. Suau, M. Cazorla, and W.
Aguilar, “Constellations and the Unsupervised Learning of
Graphs,” Proc. Graph-Based Representations in Pattern Recognition,
pp. 340-350, 2007.

[8] M. Neuhaus and H. Bunke, “Automatic Learning of Cost
Functions for Graph Edit Distance,” Information Sciences,
vol. 177, no. 1, pp. 239-247, 2007.

[9] M. Leordeanu and M. Hebert, “A Spectral Technique for
Correspondence Problems Using Pairwise Constraints,” Proc. Int’l
Conf. Computer Vision, 2005.

[10] H. Wang and E.R. Hancock, “A Kernel View of Spectral Point
Pattern Matching,” Proc. Int’l Workshops Advances in Structural and
Syntactic Pattern Recognition and Statistical Techniques in Pattern
Recognition, pp. 361-369, 2004.

[11] L. Shapiro and J. Brady, “Feature-Based Correspondence—An
Eigenvector Approach,” Image and Vision Computing, vol. 10,
pp. 283-288, 1992.

[12] M. Carcassoni and E.R. Hancock, “Spectral Correspondence for
Point Pattern Matching,” Pattern Recognition, vol. 36, pp. 193-204,
2003.

[13] T. Caelli and S. Kosinov, “An Eigenspace Projection Clustering
Method for Inexact Graph Matching,” IEEE Trans. Pattern Analayis
and Machine Intelligence, vol. 26, no. 4, pp. 515-519, Apr. 2004.

[14] T.S. Caetano, T. Caelli, and D.A.C. Barone, “Graphical Models for
Graph Matching,” Proc. IEEE Int’l Conf. Computer Vision and
Pattern Recognition, pp. 466-473, 2004.

[15] A. Rosenfeld and A.C. Kak, Digital Picture Processing. Academic
Press, 1982.

[16] R.C. Wilson and E.R. Hancock, “Structural Matching by Discrete
Relaxation,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 19, no. 6, pp. 634-648, June 1997.

[17] E. Hancock and R.C. Wilson, “Graph-Based Methods for Vision: A
Yorkist Manifesto,” Proc. Int’l Workshops Advances in Structural and
Syntactic Pattern Recognition and Statistical Techniques in Pattern
Recognition, pp. 31-46, 2002.

[18] W.J. Christmas, J. Kittler, and M. Petrou, “Structural Matching in
Computer Vision Using Probabilistic Relaxation,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp. 749-764,
1995.

[19] J.V. Kittler and E.R. Hancock, “Combining Evidence in Probabil-
istic Relaxation,” Int’l J. Pattern Recognition and Artificial Intelli-
gence, vol. 3, pp. 29-51, 1989.

[20] S.Z. Li, “A Markov Random Field Model for Object Matching
Under Contextual Constraints,” Proc. IEEE Int’l Conf. Computer
Vision and Pattern Recognition, pp. 866-869, 1994.

[21] C. Schellewald, “Convex Mathematical Programs for Relational
Matching of Object Views,” PhD dissertation, Univ. of Mannhein,
2004.

[22] M. Pelillo, “Replicator Equations, Maximal Cliques, and Graph
Isomorphism,” Neural Computation, vol. 11, pp. 1933-1955, 1999.

[23] B.T. Messmer and H. Bunke, “A New Algorithm for Error-
Tolerant Subgraph Isomorphism Detection,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 20, no. 5, pp. 493-503, May
1998.

CAETANO ET AL.: LEARNING GRAPH MATCHING 1057

Fig. 7. (a) Some of our training scenes. (b) A match from our test set.

The top frame shows the points as matched without learning

(loss ¼ 0:122) and the bottom frame shows the match with learning

(loss ¼ 0:060). The points to be matched (left) and the correct match

(right) are outlined in green; the inferred match is outlined in red.

TABLE 2
Performance on the ‘Bikes’ Data Set

Results for the minimizer of the validation loss (� ¼ 10;000) are
reported. Standard errors are in parentheses.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

[24] S. Gold and A. Rangarajan, “A Graduated Assignment Algorithm
for Graph Matching,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 18, no. 4, pp. 377-388, Apr. 1996.

[25] M. van Wyk, T. Durrani, and B. van Wyk, “A RKHS Interpolator-
Based Graph Matching Algorithm,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 24, no. 7, pp. 988-995, July 2002.

[26] A. Rangarajan, A. Yuille, and E. Mjolsness, “Convergence
Properties of the Softassign Quadratic Assignment Algorithm,”
Neural Computation, vol. 11, pp. 1455-1474, 1999.

[27] R. Sinkhorn, “A Relationship between Arbitrary Positive Matrices
and Doubly Stochastic Matrices,” Annals Math. and Statistics,
vol. 35, pp. 876-879, 1964.

[28] M. Pelillo and M. Refice, “Learning Compatibility Coefficients for
Relaxation Labeling Processes,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 16, no. 9, pp. 933-945, Sept. 1994.

[29] S. Lacoste-Julien, B. Taskar, D. Klein, and M. Jordan, “Word
Alignment Via Quadratic Assignment,” Proc. North Am. Chapter
Assoc. for Computational Linguistics-Human Language Technologies,
2006.

[30] T. Cour, P. Srinivasan, and J. Shi, “Balanced Graph Matching,”
Proc. Conf. Neural Information Processing Systems, 2006.

[31] K. Anstreicher, “Recent Advances in the Solution of Quadratic
Assignment Problems,” Math. Programming, Ser. B, vol. 97, pp. 27-
42, 2003.

[32] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Dover Publications, July 1998.

[33] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large
Margin Methods for Structured and Interdependent Output
Variables,” J. Machine Learning Research, vol. 6, pp. 1453-1484,
2005.

[34] R.K. Ahuja and J.B. Orlin, “Inverse Optimization,” Operations
Research, vol. 49, no. 5, pp. 771-783, 2001.

[35] A. Smola, S.V.N. Vishwanathan, and Q. Le, “Bundle Methods for
Machine Learning,” Proc. Advances in Neural Information Processing
Systems 20, J. Platt, D. Koller, Y. Singer, and S. Roweis, eds.,
pp. 1377-1384, 2008.

[36] B. Taskar, C. Guestrin, and D. Koller, “Max-Margin Markov
Networks” Proc. Advances in Neural Information Processing Systems
16, S. Thrun, L. Saul, and B. Schölkopf, eds., 2004.

[37] T. Joachims, “Training Linear SVMs in Linear Time,” Proc.
Knowledge Discovery and Data Mining, 2006.

[38] C. Teo, Q. Le, A. Smola, and S. Vishwanathan, “A Scalable
Modular Convex Solver for Regularized Risk Minimization,” Proc.
Knowledge Discovery and Data Mining, 2007.

[39] R. Jonker and A. Volgenant, “A Shortest Augmenting Path
Algorithm for Dense and Sparse Linear Assignment Problems,”
Computing, vol. 38, no. 4, pp. 325-340, 1987.

[40] T. Finley and T. Joachims, “Training Structural SVMs when Exact
Inference Is Intractable,” Proc. Int’l Conf. Machine Learning, 2008.

[41] S. Belongie, J. Malik, and J. Puzicha, “Shape Matching and Object
Recognition Using Shape Contexts,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 24, no. 4, pp. 509-521, Apr. 2002.

[42] CMU “house” data set, http://vasc.ri.cmu.edu/idb/html/
motion/house/index.html, 2009.

[43] T.S. Caetano, T. Caelli, D. Schuurmans, and D.A.C. Barone,
“Graphical Models and Point Pattern Matching,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1646-
1663, Oct. 2006.

[44] A.M. Bronstein, M.M. Bronstein, and R. Kimmel, Numerical
Geometry of Non-Rigid Shapes. Springer, 2007.

[45] A.M. Bronstein, M.M. Bronstein, A.M. Bruckstein, and R. Kimmel,
“Analysis of Two-Dimensional Non-Rigid Shapes,” Int’l J.
Computer Vision, 2007.

[46] Mythological Creatures 2D database, http://tosca.cs.technion.
ac.il, 2009.

[47] SAMPL motion data set, http://sampl.ece.ohio-state.edu/
database.htm, 2009.

[48] S. Smith, “A New Class of Corner Finder,” Proc. British Machine
Vision Conf., pp. 139-148, 1992.

[49] S. Smith, “Flexible Filter Neighbourhood Designation,” Proc. Int’l
Conf. Pattern Recognition, pp. 206-212, 1996.

[50] G. Griffin, A. Holub, and P. Perona, “Caltech-256 Object Category
Data Set,” Technical Report 7694, California Institute of Technol-
ogy, http://authors.library.caltech.edu/7694, 2007.

Tibério S. Caetano received the BSc degree in
electrical engineering (with research in physics)
and the PhD degree in computer science, (with
highest distinction) from the Universidade Fed-
eral do Rio Grande do Sul (UFRGS), Brazil. The
research part of the PhD program was under-
taken at the Computing Science Department at
the University of Alberta, Canada. He held a
postdoctoral research position at the Alberta
Ingenuity Centre for Machine Learning and is

currently a senior researcher with the Statistical Machine Learning
Group at NICTA. He is also an adjunct research fellow at the Research
School of Information Sciences and Engineering, Australian National
University. His research interests include pattern recognition, machine
learning, and computer vision.

Julian J. McAuley received the BSc degree in
mathematics and the BEng degree in software
engineering (with first-class honors and the
university medal) from the University of New
South Wales in 2007. He is currently undertaking
a PhD at the Australian National University,
under the supervision of Tibério Caetano. He is
a student member of the IEEE.

Li Cheng received the PhD degree from the
Department of Computing Science, University of
Alberta, Canada, in 2004. He worked as a
research associate in the same department at
the University of Alberta, and then worked as a
researcher with the Machine Learning group,
NICTA, Australia. He is now with TTI-Chicago.
His research interests are mainly on image and
video understanding, computer vision, and
machine learning. He is a member of the IEEE.

Quoc V. Le is a PhD student at Stanford
University’s AI Lab, under the supervision of
Andrew Ng. He has also studied with the
Statistical Machine Learning Group at NICTA,
and the Max Planck Institute for Biological
Cybernetics.

Alex J. Smola received the master’s degree at
the University of Technology, Munich, and the
doctoral degree in computer science at the
University of Technology Berlin. Until 1999, he
was a researcher at the IDA Group of the GMD
Institute for Software Engineering and Computer
Architecture in Berlin (now part of the Fraunhofer
Geselschaft). He worked as a researcher and
group leader at the Research School for Informa-
tion Sciences and Engineering of the Australian

National University. From 2004 until 2008, he worked as a senior principal
researcher and the program leader of the Statistical Machine Learning
Group at NICTA. He is now at Yahoo! Research.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1058 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 6, JUNE 2009

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

