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ABSTRACT
Traditional recommender systems typically use user-item rating
histories as their main data source. However, deep generative mod-
els now have the capability to model and sample from complex data
distributions, including user-item interactions, text, images, and
videos, enabling novel recommendation tasks. This comprehensive,
multidisciplinary survey connects key advancements in RS using
Generative Models (Gen-RecSys), covering: interaction-driven gen-
erative models; the use of large language models (LLM) and textual
data for natural language recommendation; and the integration of
multimodal models for generating and processing images/videos
in RS. Our work highlights necessary paradigms for evaluating the
impact and harm of Gen-RecSys and identifies open challenges.
This survey accompanies a tutorial presented at ACM KDD’24,
with supporting materials provided at: https://encr.pw/vDhLq.
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1 INTRODUCTION
Advancements in generative models have significantly impacted
the evolution of recommender systems (RS). Traditional RS, which
relied on capturing user preferences and item features within a
specific domain — often referred to as “narrow experts” – are now
being complemented and, in some instances, surpassed by gener-
ative models. These models have introduced innovative ways of
conceptualizing and implementing recommendations. Specifically,
modern generative models learn to represent and sample from com-
plex data distributions, including not only user-item interaction
histories but also text and image content, unlocking these data
modalities for novel and interactive recommendation tasks.

Moreover, advances in natural language processing (NLP) through
the introduction of large language models (LLMs) such as Chat-
GPT [121] and Gemini [148] have showcased remarkable emergent
capabilities [165], including reasoning, in-context few-shot learn-
ing, and access to extensive open-world information within their
pre-trained parameters. Because of their broad generalist abilities,
these pretrained generative models have opened up an exciting new
research space for a wide variety of recommendation applications
(see Table 1), e.g., enhanced personalization, improved conversa-
tional interfaces, and richer explanation generation, among others.
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Figure 1: Overview of the areas of interest in generative models in recommendation.

The core of generative models lies in their ability to model and
sample from their training data distribution for various inferential
purposes, which enables two primary modes of application for RS:

(1) Directly trained models. This approach trains generative mod-
els, such as VAE-CF (Variational AutoEncoders for Collaborative
Filtering) [97] (cf. Section 2.1) directly on user-item interaction
data to predict user preferences, without using large, diverse pre-
training datasets. These models learn the probability distribution
of items a user might like based on their previous interactions.

(2) Pretrained models. This strategy uses models pretrained on
diverse data (text, images, videos) to understand complex pat-
terns, relationships, and contexts that often exhibit (emergent)
generalization abilities to a range of novel tasks [165]. Among a
variety of applications, this survey covers the use of pretrained
Gen-RecSys models in the following settings:
• Zero- and Few-shot Learning (cf. Section 3.2.1), using in-context
learning (ICL) for broad understanding without extra training.

• Fine-Tuning (cf. Section 3.3), adjusting model parameters using
specific datasets for tailored recommendations.

• Retrieval-Augmented Generation (RAG) (cf. Section 3.3), inte-
grating information retrieval with generative modeling for
contextually relevant outputs.

• Feature Extraction for Downstream Recommendation (cf. Sec-
tion 3.4), e.g., generating embeddings or token sequences for
complex content representation.

• Multimodal Approaches (cf. Section 4), jointly using multiple
data types such as text, image, and video to enhance and im-
prove the recommendation experience.

1.1 Recent Surveys and Our Contributions
Recent Relevant Surveys. Recent surveys have marked significant
advancements in the field. We highlight our contributions and
distinguish our survey by its comprehensive and unique approach.

• Deldjoo et al. [33] explore GAN-based RS across four different
recommendation scenarios (graph-based, collaborative, hybrid,
context-aware).

• Li et al. [95] explore training strategies and learning objectives
of LLMs for RS.

• Wu et al. [171] discuss both the use of LLMs to generate RS input
tokens or embeddings as well as the use of LLMs as an RS;

• Lin et al. [99] focus on adapting LLMs in RS, detailing various
tasks and applications. Fan et al. [38] overview LLMs in RS, em-
phasizing pre-training, fine-tuning, and prompting, while Vats
et al. [150] review LLM-based RS, introducing a heuristic taxon-
omy for categorization.

• Huang et al. [67], explore using foundation models (FMs) in RS.
• Wang et al. [158] introduce GeneRec, a next-gen RS that person-
alizes content through AI generators and interprets user instruc-
tions to gather user preferences.

While the mentioned surveys offer crucial insights, their scope is of-
ten limited to LLMs [38, 95, 99, 150, 171] or, more broadly, FMs [67]
and/or specific models such as GANs [33], without considering the
wider spectrum of generative models and data modalities. The work
by [158] provides a more relevant survey on Gen-RecSys although
their work is mostly on personalized content generation.

Core Contributions. Figure 1 illustrates the structure of our Gen-
RecSys survey. It categorizes data sources, recommendation models,
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Table 1: Example applications of Gen-RecSys methods.

Description Relevant Section

Utilize text in RS, including item descriptions, user preferences, reviews, queries, and conversation
histories. Examples include generative and conversational recommendations and explanations.

Sections 3.2, 3.5

Using and generating images for recommendation, reasoning, and content creation. Section 4, Sections 4.4
Applying the emergent reasoning abilities of pre-trained models to recommendation tasks, includ-
ing in-context learning and tool-augmented reasoning.

Sections 3.3, 3.5

Integrating RS with external knowledge sources through retrieval augmented generation. Section 3.3
Selecting or generating informative user-item interactions to improve RS model training. Sections 2.3, 2.4
Generating recommendation results with complex structures such as list-wise or page-wise outputs. Sections 2.1, 2.2, 2.3, 2.5
Facilitating conversational recommendation through full NL dialogue. Section 3.5

and scenarios, extending to system evaluation and challenges. We
present a systematic approach to deconstructing the Gen-RecSys
recommendation process into distinct components and methodolo-
gies. Our contributions are summarized as follows.

(1) Our survey is broader in scope than the surveys mentioned
above, encompassing not just LLMs but a wide array of
generative models in RS.

(2) We have chosen to classify these models based on the type of
data and modality they are used for, such as user-item data
(cf. Section 2), text-driven (cf. Section 3), and multimodal (cf.
Section 4) models, as shown in the Rec. Scenario layer.

(3) Within each modality discussion, we provide an in-depth
exploration of deep generative model paradigms as shown in
theModel layer, yet with a broader scope that spans multiple
contexts and use cases, offering a critical analysis of their
roles and effectiveness in respective sections.

(4) We study the evaluation of Gen-RecSys with finer details,
shedding light on multiple aspects such as benchmarks, eval-
uation for impact and harm relative to multiple stakeholders,
and conversational evaluation. This evaluation framework
is particularly notable as it helps to understand the complex
challenges intrinsic to Gen-RecSys.

(5) We discuss several open research challenges and issues. Our
survey benefits from the expertise of scholars/industry prac-
titioners from diverse institutions and disciplines.

2 GENERATIVE MODELS FOR INTERACTION-
DRIVEN RECOMMENDATION

Interaction-driven recommendation is a setup where only the user-
item interactions (e.g., “user A clicks item B”) are available, which
is the most general setup studied in RS. In this setup, we concen-
trate on the inputs of user-item interactions and outputs of item-
recommended lists or grids rather than richer inputs or outputs
from other modalities such as textual reviews. Even though no
textual or visual information is involved, generative models [47, 64,
84, 144, 149] still show their unique usefulness. In this section, we
examine the paradigms of generative models for recommendation
tasks with user-item interactions, including auto-encoding mod-
els [84], auto-regressive models [64, 149], generative adversarial
networks [47], diffusion models [144] and more.

2.1 Auto-Encoding Models
Auto-encoding models learn to reconstruct their inputs. This ca-
pability allows them to be used for various purposes, including
denoising, representation learning, and generation tasks.

2.1.1 Preliminaries: Denoising Auto-Encoding Models. Denoising
Auto-Encoding models are a group of models that learn to recover
the original inputs from a corrupted version of the inputs. Tradition-
ally, denoising auto-encoding models refer to a group of Denoising
Autoencoders [140, 151] with hidden layers as a “bottleneck”. For
example, AutoRec [140] tries to reconstruct the input vector, which
is partially observed. More broadly, BERT-like models [35, 146, 172]
are also treated as denoising auto-encoding models. Such models re-
cover corrupted (i.e., masked) inputs through stacked self-attention
blocks [59, 146]. For example, BERT4Rec [146] is trained to predict
masked items in given user historical interaction sequences. There-
fore, BERT-like [35] models can be used for next-item prediction in
the inference phase [59, 146].

2.1.2 Variational Auto-Encoding Models. Variational Autoencoders
(VAEs) are models that learn stochastic mappings from an input 𝑥
from a often complicated probability distribution 𝑝 to a probability
distribution 𝑞. This distribution, 𝑞, is typically simple (e.g., a normal
distribution), enabling the use of a decoder to generate outputs 𝑥 by
sampling from 𝑞 [84]. VAEs find wide applications in traditional RS,
particularly for collaborative filtering [97], sequential recommenda-
tion [137] and slate generation [29, 74, 106]. Compared to Denoising
Autoencoders, VAEs often demonstrate superior performance in
collaborative filtering due to stronger modeling assumptions, such
as VAE-CF [97]. Additionally, Conditional VAE (CVAE) [145] mod-
els learn distributions of preferred recommendation lists for a given
user. This makes them useful for generating those lists beyond a
greedy ranking schema. Examples like ListCVAE [74] and PivotC-
VAE [106] use VAEs to generate entire recommendation lists rather
than solely ranking individual items.

2.2 Auto-Regressive Models
Given an input sequence x, at step 𝑖 , auto-regressive models [12]
learn the conditional probability distribution 𝑝 (𝑥𝑖 |x<𝑖 ), where x<𝑖
represents the subsequence before step 𝑖 . Auto-regressive mod-
els are primarily used for sequence modeling [12, 36, 149]. In RS,
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they find wide applications in session-based or sequential recom-
mendations [63, 80], model attacking [181], and bundle recommen-
dations [7, 66], with recurrent neural networks [7, 63, 66], self-
attentive models [80], and more.

2.2.1 Recurrent Auto-RegressiveModels. Recurrent neural networks
(RNNs) [25, 64] have been use to predict the next item in session-
based and sequential recommendations, such as GRU4Rec [63] and
its variants [62, 182] (e.g., predicting the next set of items in basket
or bundle recommendations, such as set2set [66] and BGN [7]).
Moreover, using the auto-regressive generative nature of recur-
rent networks, researchers extract model-generated user behavior
sequences, which are used in the research of model attacking [181].

2.2.2 Self-Attentive Auto-Regressive Models. Self-attentive models
replace the recurrent unit with self-attention and related modules,
inspired by transformers [149]. This group of models can be used
in session-based recommendation and sequential recommenda-
tion [80, 100, 124, 170], next-basket or bundle prediction [179], and
model attacking [181]. Meanwhile, the benefits of self-attentive
models are that they handle long-term dependencies better than
RNNs and enable parallel training [149]. Additionally, self-attentive
models are the de-facto option for pre-trained models [35] and large
language models [17, 18, 165], which is gaining traction in RS. More
details about using such language models for recommendations
will be discussed in Section 3.

2.3 Generative Adversarial Networks
Generative adversarial networks (GANs) [47, 115] are composed
of two primary components: a generator network and a discrimi-
nator network. These networks engage in adversarial training to
enhance the performance of both the generator and the discrimina-
tor. GANs are used in RS for multiple purposes [19, 23, 153]. In the
interaction-driven setup, GANs are proposed for selecting informa-
tive training samples [19, 153], for example, in IRGAN [153, 156],
the generative retrieval model is leveraged to sample negative items.
Meanwhile, GANs synthesize user preferences or interactions to
augment training data [21, 157]. Additionally, GANs have shown
effectiveness in generating recommendation lists or pages, such
as [23] in whole-page recommendation settings.

2.4 Diffusion Models
Diffusion models [144] generate outputs through a two-step pro-
cess: (1) corrupting inputs into noise via a forward process, and (2)
learning to recover the original inputs from the noise iteratively
in a reverse process. Their impressive generative capabilities have
attracted growing interest from the RS community.

First, a group of works [152, 159] learns users’ future interaction
probabilities through diffusion models. For example, DiffRec [159]
predicts users’ future interactions using corrupted noises from the
users’ historical interactions. Second, another group of works [104,
173] focuses on diffusion models for training sequence augmenta-
tion, showing promising results in alleviating the data sparsity and
long-tail user problems in sequential recommendation.

2.5 Other Generative Models
In addition to the previously mentioned generative models, RS
also draw upon other types of generative models. For instance,
VASER [191] leverages normalizing flows [132] (and VAEs [84])
for session-based recommendation. GFN4Rec [105], on the other
hand, adapts generative flow networks [11, 122] for listwise rec-
ommendation. Furthermore, IDNP [37] utilizes generative neural
processes [43, 44] for sequential recommendation. In summary, var-
ious generative models are explored in RS, even in settings without
textual or visual modalities.

3 LARGE LANGUAGE MODELS IN
RECOMMENDATION

While language has been leveraged by content-based RS for over
three decades [107], the advent of pretrained LLMs and their emer-
gent abilities for generalized, multi-task natural language (NL) rea-
soning [17, 18, 165] has ushered in a new stage of language-based
recommendation. Critically, NL constitutes a unified, expressive,
and interpretable medium that can represent not only item features
or user preferences, but also user-system interactions, recommen-
dation task descriptions, and external knowledge [45]. For instance,
items are often associated with rich text including titles, descrip-
tions, semi-structured textual metadata, and reviews. Similarly, user
preferences can be articulated in NL in many forms, such as reviews,
search queries, liked item descriptions, and dialogue utterances.

Pretrained LLMs provide new ways to exploit this textual data:
recent research (e.g., [40, 45, 58, 138, 143]) has shown that in many
domains, LLMs have learned useful reasoning abilities for making
and explaining item recommendations based on user preferences as
well as facilitating conversational recommendation dialogues. As
discussed below, these pretrained abilities can be further augmented
through prompting (e.g., [103, 138, 143]), fine-tuning (e.g., [45, 54,
78, 189]), retrieval (e.g., [27, 40, 65, 83, 154]), and other external
tools (e.g., [40, 160, 183].

We next proceed to survey the developments in LLM-based RS’s,
first discussing encoder-only LLMs for dense retrieval and cross-
encoding (Section 3.1) followed by generative NL recommenda-
tion and explanation with sequence-to-sequence (seq2seq) LLMs
(Section 3.2). We then review the complementary use of RS and
LLMs covering RAG (Section 3.3) and LLM-based feature extraction
(Section 3.4), before concluding with a review of conversational
recommendation methods (Section 3.5).

3.1 Encoder-only LLM Recommendation
3.1.1 Recommendation as Dense Retrieval. A common task is to
retrieve the most relevant items given a NL preference statement
using item texts, for which dense retrieval has become a key tool.
Dense retrievers [39] produce a ranked list of documents given
a query by evaluating the similarity (e.g., dot product or cosine
similarity) between encoder-only LLM document embeddings and
the query embedding. They are highly scalable tools (especially
when used with approximate search libraries like FAISS1) because
documents and queries are encoded separately, allowing for dense

1https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss
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vector indexing of documents before querying. To use dense re-
trieval for recommendation [123], first, a component of each item’s
text content, such as its title, description, reviews, etc., is treated as
a document and a dense item index is constructed. Then, a query is
formed by some NL user preference description, for instance: an
actual search query, the user’s recently liked item titles, or a user
utterance in a dialogue.

Several recent works explore recommendation as standard dense
retrieval with retrievers that are off-the-shelf [54, 123, 185] and
fine-tuned [65, 91, 116]. More complex dense retrieval methods
include review-based retrieval with contrastive BERT fine-tuning
[2] and multi-aspect query decomposition [86], and the use of a
second-level encoder to fuse the embedding of a user’s recently
liked items into a user embedding before scoring [92, 168].

3.1.2 Recommendation via LLM Item-Preference Fusion. Several
works approach rating prediction by jointly embedding NL item and
preference descriptions in LLM cross-encoder architectures with an
MLP rating prediction head [126, 169, 176, 188, 190]. Such fusion-
in-encoder methods often exhibit strong performance because they
allow interaction between user and item representations, but are
much more computationally expensive than dense retrieval and
thus may be best used for small item sets or as rerankers [116].

3.2 LLM-based Generative Recommendation
In LLM-based generative recommendation, tasks are expressed as
token sequences – called prompts –which form an input to a seq2seq
LLM. The LLM then generates another token sequence to address
the task – with example outputs including: a recommended list of
item titles/ids [54, 111, 138, 143], a rating [9, 78], or an explanation
[45, 50, 93, 94, 118]. These methods rely on the pretraining of LLMs
on large text corpora to provide knowledge about a wide range
of entities, human preferences, and commonsense reasoning that
can be used directly for recommendation or leveraged to improve
generalization and reduce domain-specific data requirements for
fine-tuning or prompting [18, 165].

3.2.1 Zero- and Few- Shot Generative Recommendation. Several
recent publications [78, 103, 138, 143] have evaluated with off-
the-shelf LLM generative recommendation, focusing on domains
that are prevalent in the LLM pre-training corpus such as movie
and book recommendation. Specifically, these methods construct
a prompt with a NL description of user preference (often using a
sequence of recently liked item titles) and an instruction to rec-
ommend the next 𝑘 item titles [103, 138, 143] or predict a rating
[78, 103]. While, overall, untuned LLMs underperform supervised
CF methods trained on sufficient data [78, 143], they are competi-
tive in near cold-start settings [138, 143]. Few-shot prompting (or
in-context learning), in which a prompt contains examples of input-
output pairs, typically outperforms zero-shot prompting [138].

3.2.2 Tuning LLMs for Generative Recommendation. To improve
an LLM’s generative recommendation performance and add knowl-
edge to its internal parameters, multiple works focus on fine-tuning
[9, 45, 54, 78, 111] and prompt-tuning [26, 94, 189] strategies. Recent
works fine-tune LLMs on NL input/output examples constructed
from user-system interaction history and task descriptions for rat-
ing prediction [9, 78] and sequential recommendation [54, 111], or

in the case of P5 [45], both preceding tasks plus top-𝑘 recommenda-
tion, explanation generation, and review summarization. Other rec-
ommendation works study prompt tuning approaches [26, 94, 189],
which adjust LLM behaviour by tuning a set of continuous (or soft)
prompt vectors as an alternative to tuning internal LLM weights.

Generative Explanation. A line of recent work focuses on expla-
nation generation where training explanations are extracted from
reviews, since reviews often express reasons why a user decided to
interact with an item. Techniques include fine-tuning [45, 94, 161],
prompt-tuning [93, 94], chain-of-thought prompting [129], and con-
trollable decoding [50, 118, 119, 174] – where additional predicted
parameters such as ratings steer LLM decoding.

3.3 Retrieval Augmented Recommendation
Adding knowledge to an LLM internal memory through tuning
can improve performance, but it requires many parameters and re-
tuning for every system update. An alternative is retrieval-augmented
generation (RAG) [15, 70, 87], which conditions output on infor-
mation from an external source such as a dense retriever (Section
3.1). RAG methods facilitate online updates, reduce hallucinations,
and generally require fewer LLM parameters since knowledge is
externalized [15, 70, 112].

RAG has recently begun to be explored for recommendation,
with the most common approach being to first use a retriever or
RS to construct a candidate item set based on a user query or
interaction history, and then prompt an encoder-decoder LLM to
rerank the candidate set [27, 65, 154, 166, 175]. For RAG-based
explanation generation, Xie et al. [174] generate queries based
on interaction history to retrieve item reviews which are used as
context to generate an explanation of the recommendation. RAG is
also emerging as a key paradigm in conversational recommendation
(c.f. Sec 3.5): for example, RAG is used in [40] to retrieve relevant
user preference descriptions from a user “memory” module to guide
dialogue, and by Kemper et al. [83] to retrieve information from an
item’s reviews to answer user questions.

3.4 LLM-based Feature Extraction
Conversely to how RS or retrievers are used in RAG to obtain inputs
for LLMs (Section 3.3), LLMs can also be used to generate inputs
for RS [54, 60, 91, 116, 130, 180]. For instance: LLM2-BERT4Rec
[54] initializes BERT4Rec (Section 2.1.1) item embeddings of item
texts; Query-SeqRec [60] includes LLM query embeddings as inputs
to a transformer-based recommender; and TIGER [130] first uses
an LLM to embed item text, then quantizes this embedding into a
semantic ID, and finally trains a T5-based RS to generate new IDs
given a user’s item ID history. Similarly, MINT [116] and GPT4Rec
[91] produce inputs for a dense retriever by prompting an LLM to
generate a query given a user’s interaction history.

3.5 Conversational Recommendation
The recent advances in LLMs have made fully NL system-user di-
alogues a feasible and novel recommendation interface, bringing
in a new stage of conversational recommendation (ConvRec) re-
search. This direction studies the application of LLMs in multi-turn,
multi-task, and mixed-initiative NL recommendation conversations
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[40, 72], introducing dialogue history as a rich new form of interac-
tion data. Specifically, ConvRec includes the study and integration
of diverse conversational elements such as dialogue management,
recommendation, explanation, QA, critiquing, and preference elic-
itation [72, 110]. While some research [58] approaches ConvRec
with a monolithic LLM such as GPT4, other works rely on an LLM to
facilitate NL dialogue and integrate calls to a recommender module
which generates item recommendations based on dialogue or inter-
action history [5, 22, 52, 77, 96, 160, 175]. Further research advances
ConvRec system architectures with multiple tool-augmented LLM
modules, incorporating components for dialogue management, ex-
planation generation, and retrieval [40, 42, 75, 83, 162, 183].

4 GENERATIVE MULTIMODAL
RECOMMENDATION SYSTEMS

In recent years, users have come to expect richer interactions than
simple text or image queries. For instance, they might provide a
picture of a desired product along with a natural language modifica-
tion (e.g., a dress like the one in the picture but in red). Additionally,
users want to visualize recommendations to see how a product fits
their use case, such as how a garment might look on them or how
a piece of furniture might look in their room. These interactions
require new RS that can discover unique attributes in each modality.
In this section, we discuss RS that utilize multiple data modalities.
In Sections 4.1-4.2 we discuss motivations and challenges to the
design of multimodal RS. In Sections 4.3-4.4 we review contrastive
and generative approaches to multimodal RS, respectively.

4.1 Why Multimodal Recommendation?
Retailers often have multimodal information about their customers
and products, including product descriptions, images and videos,
customer reviews and purchase history. However, existing RS typ-
ically process each source independently and then combine the
results by fusing unimodal relevance scores.

In practice, there are many use cases in which such a “late fusion”
approach may be insufficient to satisfy the customer needs. One
such use case is the cold start problem: when user behavioral data
cannot be used to recommend existing products to new customers,
or new products to existing customers, it is useful to gather diverse
information about the items so that preference information can be
transferred from existing products or customers to new ones.

Another use case occurs when different modalities are needed
to understand the user request. For example, to answer the request
“best metal and glass black coffee table under $300 for my living
room”, the system would need to reason about the appearance and
shape of the item in context with the appearance and shape of
other objects in the customer room, which cannot be achieved by
searching with either text or image independently. Other examples
of multimodal requests include an image or audio of the desired
item together with text modification instructions (e.g., a song like
the sound clip provided but in acoustic), or a complementary related
product (e.g., a kickstand for the bicycle in the picture).

A third use case for multimodal understanding is in RS with
complex outputs, such as virtual try-on features or intelligent mul-
timodal conversational shopping assistants.

4.2 Challenges to Multimodal Recommendation
The development of multimodal RS faces several challenges. First,
collecting data to train multimodal systems (e.g., image-text-image
triplets) is significantly harder than for unimodal systems. As a
result, annotations for some modalities may be incomplete [128].

Second, combining different data modalities to improve recom-
mendation results is not simple. For instance, existing contrastive
learning approaches [73, 89, 90, 127] map each data modality to
a common latent space in which all modalities are approximately
aligned. However, such approaches often capture information that
is shared across modalities (e.g., text describing visual attributes),
but they overlook complementary aspects that could benefit rec-
ommendations (e.g., text describing non visual attributes) [49]. In
general we would like the modalities to compensate for one an-
other and result in a more complete joint representation. While
fusion-based approaches [89, 90] do learn a joint multimodal rep-
resentation, ensuring the alignment of information that is shared
and leaving some flexibility to capture complementary information
across modalities remains a challenge. Third, learning multimodal
models requires orders of magnitude more data than learning mod-
els for individual data modalities.

Despite these challenges, we believe multimodal generative mod-
els will become the standard approach. Indeed, recent literature
shows significant advances on the necessary components to achieve
effective multimodal generative models for RS, including (1) the
use of LLMs and diffusion models to generate synthetic data for
labeling purposes [16, 117, 135], (2) high quality unimodal encoders
and decoders [56, 85], (3) better techniques for aligning the latent
spaces from multiple modalities into a shared one [46, 89, 127], (4)
efficient re-parametrizations and training algorithms [71], and (5)
techniques to inject structure to the learned latent space to make
the problem tractable [144].

4.3 Contrastive Multimodal Recommendation
As discussed before 4.2, learning multimodal generative models
is very difficult because we need to not only learn a latent repre-
sentation for each modality but also ensure that they are aligned.
One way to address this challenge is to first learn an alignment
between multiple modalities and then learn a generative model on
“well-aligned” representations. In this subsection, we discuss two
representative contrastive learning approaches: CLIP and ALBEF.

Contrastive Language-Image Pre-training (CLIP) [127] is a popular
approach, in which the task is to project images and associated text
into the same point of the embedding space with parallel image and
text encoders. This is achieved with a symmetric cross-entropy loss
over the rows and columns of the cosine similarity matrix between
all possible pairs of images and text in a training minibatch.

Align Before you Fuse (ALBEF) [90] augments CLIP with a mul-
timodal encoder that fuses the text and image embeddings, and
proposes three objectives to pre-train the model: Image-text con-
trastive learning (ITC), masked language modeling (MLM), and
image-text matching (ITM). The authors also introduce momentum
distillation to provide pseudo-labels in order to compensate for the
potentially incomplete or wrong text descriptions in the noisy web
training data. Using their proposed architecture and training objec-
tives, ALBEF obtains better results than CLIP in several zero-shot
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and fine-tuned multimodal benchmarks, despite using orders of
magnitude less images for pre-training.

Contrastive-based alignment has shown impressive zero-shot
classification and retrieval results [8, 61, 120], and has been success-
fully fine-tuned to a multitude of tasks, such as object detection [48],
segmentation [192] or action recognition [69]. The same alignment
objective has also been used between other modalities [24, 51, 68],
and with multiple modalities at the same time [46].

4.4 Generative Multimodal Recommendation
Despite their advantages, the performance of purely contrastive RS
often suffers from data sparsity and uncertainty [163]. Generative
models address these issues by imposing suitable structures on
their latent spaces. Moreover, generative models allow for more
complex recommendations, e.g., those requiring to synthesize an
image. In what follows, we discuss thee representative generative
approaches: VAEs, diffusion models, and multimodal LLMs.

Multimodal VAEs:While VAEs (see Section 2.1.2) could be applied
directly to multimodal data, a better approach that leverages modal-
ity specific encoders and decoders trained on large corpus of data is
to partition both the input and latent spaces per modality, say image
and text. However, this approach reduces the multimodal VAE to
two independent VAEs, one per modality. In ContrastVAE [163],
both modalities are aligned by adding a contrastive loss between
the unimodal latent representations to the ELBO objective. Experi-
ments show that ContrastVAE improves upon purely contrastive
models by adequately modeling data uncertainty and sparsity, and
being robust to perturbations in the latent space.

Diffusion models, explained in Section 2.4, are state-of-the-art
models for image generation. While they can also be used for text
generation, e.g., by using a discrete latent space with categorical
transition probabilities [6], text encoders based on transformers or
other sequence-to-sequence models are preferred in practice. As
a consequence, multimodal models for both text and images, such
as text-to-image generation models, combine text encoders with
diffusion models for images. For instance, DALL-E [131] uses the
CLIP embedding space as a starting point to generate novel images,
and Stable Diffusion [134] uses a UNet autoencoder separately pre-
trained on a perceptual loss and a patch-based adversarial objective.
Several works have built on and expanded diffusion models by
increasing controllability of the generated results [187], consistency
on the generated subjects identity [136], or for virtual try on [193].

Multimodal LLMs (MLLM) provide a natural language interface
for users to express their queries in multiple modalities, or even
see responses in different modalities to help visualize the prod-
ucts. Given the complexity of training large generative models
end-to-end, researchers typically assemble systems composed of
discriminatively pre-trained encoders and decoders, usually con-
nected by adaptation layers to ensure that unimodal representations
are aligned. Another approach that involves little or no training is
to allow a "controller" LLM to use external foundation models, or
tools, to deal with the multimodal input and output [184]. Then,
instruction tuning is an important step to make LLMs useful task
solvers. Llava [102] is a multimodal LLM that accepts both text and
image inputs, and produces useful textual responses. The authors
connect a CLIP encoder with an LLM decoder using a simple linear
adaptation layer. In [101] the authors change the connection layer

from a linear projection to a two-layer MLP and obtain better re-
sults. Although MLLM research is still in its inception, some works
already start using them in recommendation applications [81].

5 EVALUATING FOR IMPACT AND HARM
Evaluating RS is a complex and multifaceted task that goes be-
yond simply measuring a few key metrics of a single model . These
systems are composed of one or more recommender models and
various other ML and non-ML components, making it highly non-
trivial to assess and evaluate the performance of an individual
model. Moreover, these systems can have far-reaching impacts on
users’ experiences, opinions, and actions, which may be difficult to
quantify or predict, which adds to the challenge. The introduction
of Gen-RecSys further complicates the evaluation process due to
the lack of well-established benchmarks and the open-ended na-
ture of their tasks. When evaluating RS, it is crucial to distinguish
between two main targets of evaluation: the system’s performance
and capabilities, and its potential for causing safety issues and soci-
etal harm. We review these targets, discuss evaluation metrics, and
conclude with open challenges and future research directions.

5.1 Evaluating for Offline Impact
The typical approach to evaluating a model involves understanding
its accuracy in an offline setting, followed by live experiments.

5.1.1 Accuracy Metrics. The usual metrics used for discriminative
tasks are recall@k, precision@k, NDCG@k, AUC, ROC, RMSE,
MAE, etc. Many recent works on generative RS (e.g., [9, 58, 78, 79,
130]) incorporate such metrics for discriminative tasks.

For the generative tasks, we can borrow techniques from NLP.
For example, the BLEU score is widely used for machine translation
and can be useful for evaluating explanations[45], review gener-
ation, and conversational recommendations. The ROUGE score,
commonly used for evaluating machine-generated summarization,
could be helpful again for explanations or review summarization.
Similarly, perplexity is another metric that could be broadly useful,
including during the training process to ensure that the model is
learning the language modeling component appropriately [108].

5.1.2 Computational Efficiency. Evaluating computational
efficiency is crucial for generative recommender models, both for
training and inference, owing to their computational burden. This
is an upcoming area of research.

5.1.3 Benchmarks. Many existing benchmark datasets popular
in discriminative recommender models, such as Movielens [53],
Amazon Reviews [57], Yelp Challenge[1], Last.fm [139], and Book-
Crossing [194], are still useful in generative recommender mod-
els, but only narrowly. Some recent ones, like ReDial [96] and
INSPIRED [55], are useful datasets for conversational recommenda-
tions. [30, 32, 186] propose benchmarks called cFairLLM and FaiR-
LLM, to evaluate consumer fairness in LLMs based on the sensitivity
of pretrained LLMs to protected attributes in tailoring recommenda-
tions. We note that some benchmarks such as BigBench[10] which
are commonly used by the LLM community, have recommendations
tasks. It will be specifically useful for the RS community to develop
new benchmarks for tasks unlocked by Gen-RecSys models.
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5.2 Online and Longitudinal Evaluations
Offline experiments may not capture an accurate picture because
of the interdependence of the different models used in the system
and other factors. So, A/B experiments help understand the model’s
performance along several axes in real-world settings. Note that
[155] proposes a new paradigm of using simulation using agents to
evaluate recommender models. In addition to the short-term impact
on engagement/satisfaction, the platform owners will be interested
in understanding the long-term impact. This can be measured using
business metrics such as revenue and engagement (time spent,
conversions). Several metrics could be used to capture the impact
on users (daily/monthly active users, user sentiment, safety, harm).

5.3 Conversational Evaluation
BLEU and perplexity are useful for conversational evaluation but
should be supplemented with task-specific metrics (e.g., recall)
or objective-specific metrics (e.g., response diversity [88]). Strong
LLMs can act as judges, but human evaluation remains the gold
standard. Toolkits like CRSLab [76] simplify building and evalu-
ating conversational models, but lack of labeled data in industrial
use cases poses a challenge. Some studies use LLM-powered user
simulations to generate data.

5.4 Evaluating for Societal Impact
Previous work has investigated categories of interest for societal
impacts of traditional RS [113] and generative models [14, 167]
independently. In the context of RS literature, six categories of
harms are found to be associated with RS: content, privacy viola-
tions and data misuse, threats to human autonomy and well-being,
transparency and accountability, harmful social effects such as filter
bubbles, polarisation, manipulability, and fairness. In addition, RS
based on generative models can present new challenges [14, 167]:

• LLMs use out-of-domain knowledge, introducing different
sources of societal bias that are not easily captured by exist-
ing evaluation techniques [30, 31, 141].

• The significant computational requirements of LLMs lead to
heightened environmental impacts [13, 109].

• The automation of content creation and curation may dis-
place human workers in industries such as journalism [28],
creative writing, and content moderation, leading to social
and economic disruption [4].

• Recommender systems powered by generative models may
be susceptible to manipulation and could have unintended
and unexpected consequences for users [20, 82].

• Generative recommendations can expose users to the poten-
tial pitfalls of hyper-personalization [41, 133].

5.5 Holistic Evaluations
As mentioned above, thoroughly evaluating RS for offline metrics,
online performance, and harm is highly non-trivial. Moreover, dif-
ferent stakeholders (e.g. platform owners and users) [3, 114, 147]
may approach evaluation differently. The complexity of Gen-RecSys
evaluation presents an opportunity for further research and special-
ized tools. Drawing inspiration from the HELM benchmark [98],
a comprehensive evaluation framework tailored for Gen-RecSys
would benefit the community.

6 CONCLUSIONS AND FUTURE DIRECTIONS
While many directions for future work have been highlighted above,
the following topics constitute especially important challenges and
opportunities for Gen-RecSys:

• RAG (cf. Section 3.3), including: data fusion for multiple
(potentially subjective) sources such as reviews [177, 178],
end-to-end retriever-generator training [15, 70, 87], and sys-
tematic studies of generative reranking alternatives [125].

• Tool-augmented LLMs for conversational recommenda-
tion, focusing on architecture design for LLM-driven control
of dialogue, recommender modules, external reasoners, re-
trievers, and other tools [18, 40, 112, 162], especially methods
for proactive conversational recommendation.

• Personalized Content Generation such as virtual try-
on experiences [193], which can allow users to visualize
themselves wearing recommended clothing or accessories,
improving customer satisfaction and reducing returns.

• Red-teaming – in addition to the standard evaluations, real-
world generative RS will have to undergo red-teaming (i.e.,
adversarial attacks) [34, 142, 164] before deployment to stress
test the system for prompt injections, robustness, alignment
verification, and other factors.

Despite being a short survey, this work has attempted to provide
a foundational understanding of the rich landscape of generative
models within recommendation systems. It extends the discussion
beyond LLMs to a broad spectrum of generative models, exploring
their applications across user-item interactions, textual data, and
multimodal contexts. It highlights key evaluation challenges, ad-
dressing performance, fairness, privacy, and societal impact, thereby
establishing a new benchmark for future research in the domain.
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