Journal of Biomedical Informatics 82 (2018) 63-69

Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

Identifying and characterizing highly similar notes in big clinical note)

Check for

datasets Uaies

Rodney A. Gabriel™”", Tsung-Ting Kuo®, Julian McAuley®, Chun-Nan Hsu”

2 UCSD Health Department of Biomedical Informatics, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
® Department of Anesthesiology, University of California, San Diego, 200 West Arbor Dr, San Diego, CA 92103, USA
© Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA

ARTICLE INFO ABSTRACT

Keywords:

Electronic medical record
De-deduplication

Natural language processing

Background: Big clinical note datasets found in electronic health records (EHR) present substantial opportunities
to train accurate statistical models that identify patterns in patient diagnosis and outcomes. However, near-to-
exact duplication in note texts is a common issue in many clinical note datasets. We aimed to use a scalable
algorithm to de-duplicate notes and further characterize the sources of duplication.

Methods: We use an approximation algorithm to minimize pairwise comparisons consisting of three phases: (1)
Minhashing with Locality Sensitive Hashing; (2) a clustering method using tree-structured disjoint sets; and (3)
classification of near-duplicates (exact copies, common machine output notes, or similar notes) via pairwise
comparison of notes in each cluster. We use the Jaccard Similarity (JS) to measure similarity between two
documents. We analyzed two big clinical note datasets: our institutional dataset and MIMIC-IIL

Results: There were 1,528,940 notes analyzed from our institution. The de-duplication algorithm completed in
36.3 h. When the JS threshold was set at 0.7, the total number of clusters was 82,371 (total notes = 304,418).
Among all JS thresholds, no clusters contained pairs of notes that were incorrectly clustered. When the JS
threshold was set at 0.9 or 1.0, the de-duplication algorithm captured 100% of all random pairs with their JS at
least as high as the set thresholds from the validation set. Similar performance was noted when analyzing the
MIMIC-III dataset.

Conclusions: We showed that among the EHR from our institution and from the publicly-available MIMIC-III

dataset, there were a significant number of near-to-exact duplicated notes.

1. Background and significance

Electronic health records (EHR) are becoming more essential in
every medical center. Reusing EHR data for research, quality im-
provement, and clinical support is promising [1]. Big clinical note da-
tasets found in EHRs present substantial opportunities to train accurate
statistical models that identify patterns in patient diagnosis and out-
comes [2-6]. However, near-to-exact duplication in note texts — defined
as a cluster of notes with partial to exact similarity — is a common issue
in many clinical note datasets. The existence of highly similar notes
may arise due to various reasons, including the pervasive use of note
templates, copy-and-pasting, or automatic generation of notes from
machines or procedures. The widespread presence of highly similar
notes within EHR systems is potentially problematic when training
predictive algorithms that model the language or attributes in these
notes [7-14]. For example, highly similar notes, especially exact du-
plicates, may skew statistics of terms frequencies and cause overfitting

of the trained models to a certain site/corpus, leading to poor gen-
eralization of the clinical natural language processing (NLP) system. A
predictive model may erroneously identify correlations between
symptoms and comorbidities [8,11]. Furthermore, duplicate records
may be associated with patient safety hazards, including missing im-
portant laboratory results [9]. Correcting duplication in clinical note
data is challenging, as the sources of duplication are widely observed
but poorly understood. De-duplication and data cleansing approaches
may improve the quality of clinical note corpora as a vital information
source for meaningful use of EHR.

To detect and correct such duplicates requires algorithms that are
both accurate and highly scalable. In the setting of big clinical note
datasets, consisting of millions of free text notes, such algorithms need
to identify similar notes in a realistic time frame. A brute-force ap-
proach involves pairwise comparisons of every note in the dataset;
however, this is intractable for big clinical note datasets.

We, therefore, aim to use a scalable algorithm to de-duplicate notes

* Corresponding author at: Department of Anesthesiology, University of California, San Diego, 200 West Arbor Dr, San Diego, CA 92103, USA.

E-mail address: ragabriel@ucsd.edu (R.A. Gabriel).

https://doi.org/10.1016/j.jbi.2018.04.009

Received 10 January 2018; Received in revised form 16 April 2018; Accepted 17 April 2018

Available online 19 April 2018
1532-0464/ Published by Elsevier Inc.

http://www.sciencedirect.com/science/journal/15320464
https://www.elsevier.com/locate/yjbin
https://doi.org/10.1016/j.jbi.2018.04.009
https://doi.org/10.1016/j.jbi.2018.04.009
mailto:ragabriel@ucsd.edu
https://doi.org/10.1016/j.jbi.2018.04.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbi.2018.04.009&domain=pdf

R.A. Gabriel et al.

and further characterize the source of duplication. We leverage big data
corpora of clinical notes in the EHR that have been accumulated for
years from large medical centers to explore duplication and hidden
structure that may impact their meaningful use for both clinical support
and research. Such findings may be used in future studies that assess the
effect of near-duplication on machine learning, NLP, and privacy-pre-
serving algorithms.

2. Material and methods
2.1. Data source

The clinical note dataset was collected from the medical centers of
University of California, San Diego (UCSD), which is a large medical
center that has deployed EHR systems for more than a decade. This
project was exempt from the informed consent requirement by our
Institutional Review Board. The clinical notes consisted of progress
notes, history & physical examination notes, laboratory, and discharge
summaries. With each note, we extracted metadata pertaining to date
that the note was charted and patient medical record number. We chose
to look specifically at a subset of notes related to patients with or at risk
for morbid obesity, one of the three high priority use case conditions
designated by our funding source and with the largest patient popula-
tion among all of the use case conditions All notes pertaining to patients
with the following criteria were included: (1) age greater than or equal
to 18 years of age; and (2) body mass index greater than or equal to
25 kg/m? in the last five years. Patients excluded from the analysis were
those that were pregnant or prisoners. Notes excluded from the analysis
were those with fewer than 4 words. All other notes fitting the inclusion
criteria were included in the analysis. As a separate analysis, we also
explored clinical notes from the publicly available MIMIC-III dataset
[15]. We obtained all note texts from the database and gathered the
charting date and unique patient identification code for each note. No
notes were excluded from the MIMIC-III dataset.

2.2. Similarity index

We used the Jaccard Similarity (JS) measure to compute the simi-
larity between two documents [16]. JS operates on sets while a docu-
ment may be considered to be a list, since words are ordered. Therefore,

MinHash

I Rows
per
band

bands

»

One
Minhash
Signature
for one
document

Signature Matrix

identify “candidate pairs”
by finding notes with the
same Minhash signature.

Tree-Based Clustering

Journal of Biomedical Informatics 82 (2018) 63-69

we converted each document into a set by a shingling process. For some
fixed n, shingling is the process of taking n consecutive words from the
document into a set, otherwise known as an n-gram method. Punc-
tuation and whitespace are ignored. Thus, each shingle contains exactly
n words. The JS of two documents is calculated using the n-grams from
each set — defined as the number of shared n-grams divided by the total
number of unique n-grams. Of note, how the order of words impacts the
similarity between two documents can be controlled by setting n, while
the order of the n-grams themselves will have low impact in de-
termining the similarity.

JS has many desirable properties to be described below that allow
for scalable algorithms to be developed. Other similarity measures can
also be considered though in our experience they do not significantly
impact de-duplication results, and have no impact at all when seeking
to detect identical notes.

2.3. De-duplication algorithm

We developed a method to identify clusters of highly similar notes —
we use an approximation algorithm to minimize pairwise comparisons
and consists of three phases: (1) Minhashing (first used in AltaVista
search engine to detect duplicate webpages from the entire World Wide
Web) with Locality Sensitive Hashing [17,18]; (2) a clustering method
using tree-structured disjoint sets; and (3) classification of near-dupli-
cates via pairwise comparison of notes in each cluster. The algorithm
can be used to analyze large clinical note corpora with limited available
memory space and has been described previously [19]. Fig. 1 illustrates
the major steps of this algorithm.

2.4. Minhashing

The first step in the de-duplication algorithm is Minhashing. The
goal of this step is to replace large sets of documents by much smaller
representations called “signatures”. The similarity-preserving property
must hold; that is when the signatures of two documents are compared,
their similarity must be close to the true similarity of the two docu-
ments. One technique to produce such signatures is minhashing
[17,18]. Each document is broken down into a set of n-grams, which
consists of n consecutive words produced via a sliding window
throughout the document. We set n = 4 here. In our previous study, we

Classification

Classification:
Exact copies
Similar Notes
Common Outputs

calculate similarity amongst
“candidate pairs” and create
disjoint sets represented

as trees (i.e. clusters) for notes
that are actually similar

Fig. 1. Illustration of the methodology used to de-duplicate notes from a big clinical note dataset.

R.A. Gabriel et al.

determined that n lower than 4 would create too many overlaps while n
greater than 4 would create too many unique n-gram signatures that
would be too expensive to efficiently process [19]. Four was sufficient
to account for both word occurrences and ordering to capture dupli-
cations. Once a complete set of n-grams is created for all documents in
the dataset, each n-gram is assigned a unique integer. For each docu-
ment, we then randomly permute its integers from its n-grams. The
“Minhash value” is then equal to the minimum permuted value among
all its n-grams. The JS of two documents is equal to the probability that
the Minhash value of the first document is equal to the Minhash value
in the second document. To calculate the probability of two documents
having the same Minhash value, we apply a fixed number (M) of
random permutations to produce M Minhash values. If m is the number
of trials for which the Minhash values are equal between the two
documents, then we can approximate the probability of the two docu-
ments having the same Minhash value as m/M. Thus, for each docu-
ment, we apply M random permutations and for each permutation, we
take the minimum value among its n-grams. As a result, we have re-
duced the representation of our documents to a set of M numbers. We
call this set a minhash signature.

However, producing the M random permutations on a large integer
space can be computationally expensive. Hence, we need a much faster
method to perform approximate random permutations. We use random
hash functions for this purpose. If the hash space is very large compared
to the cardinality of the set of numbers being permuted, the probability
that a pair of numbers will hash to the same number will be very low.
Thus, each number in the set will be permuted to a unique number with
a high probability.

At this point, each document has an assigned Minhash signature,
that is each document is reduced to a much smaller representation with
M integers. However, it is still required to perform pairwise compar-
isons between documents’ Minhash signatures, which are computa-
tionally expensive in big datasets. Therefore, we created what is known
as a “signature matrix”, in which the hash function to an n-gram’s
unique integer are the rows and each document’s Minhash signature are
the columns. The signature matrix is then split into equally sized bands
of rows. If we have r rows in each band, then we will have b = M/r
bands. Now, we consider a pair of documents for similarity computa-
tion only if the two documents have the same Minhash signature in at
least one band. The signature matrix, however, is too large to hold in
memory. To circumvent this, we divide it into the bands so that each
band can be processed independently in memory. To minimize the
amount of memory taken by the bands while keeping accuracy high, we
hashed the r rows in one band of a document to a single 64-bit number.
Thus, one band can be represented by one integer per document. We
call the matrix with these bands as rows a band matrix. The following is
a step-by-step description of the creation of the signature matrix:

1. Compute the signature matrix in which the rows correspond to a
specific n-gram and the columns correspond to a specific document.
Therefore, for each column (document), only the rows (n-grams)
that are present in that document are considered “positive”.

2. Split the signature matrix into b bands, each with r rows

. Let C be a (initially empty) list of candidate pairs

4. For each band:

a. Find all pairs of documents which have the same signature in the
band (i.e. the same pattern of “positive” n-grams)

b. Add these pairs to C

c. Compute the JS for all pairs in C.

w

2.5. Clustering using disjoint sets

Disjoint sets are a data structure used to process sets efficiently
where the sets are represented by trees. Our goal is to identify docu-
ments with at least one other near duplicate document that have JS
scores greater than or equal to the given threshold in a data set.

65

Journal of Biomedical Informatics 82 (2018) 63-69

Consider that all documents are connected as a graph with edges as
their JS scores. This problem is equivalent to removing all edges with a
score lower than the threshold. We therefore call this threshold the edge
threshold. However, this would require exhaustive pairwise compar-
isons, which is intractable. Instead, we developed an approximate so-
lution by maintaining trees representing each cluster such that all pairs
of documents in a tree would have a lower bound on the JS of at least
the threshold. This threshold is called the tree threshold. The approx-
imation is closely related to the problem of community detection from a
connected social graph [20,21].

Recall how candidate pairs are generated. For each band, all pairs of
documents, which have the same signature in the band, are considered
as candidate pairs. We can then check if the pair actually has a JS score
higher than the edge threshold. If so, we replace each document in the
pair by the root document in the cluster in which the document be-
longs. The next step is to combine clusters using the set Union opera-
tion. This is essentially the procedure of finding candidate pairs, which
will be executed for each band. Clusters (disjoint sets) created in bands
already processed will be inherited when the current band is processed
and the Union procedure will merge two disjoint sets by applying the
triangle inequality of JS [22] to ensure that the resulting set still
maintains a mutual similarity at least as high as the tree threshold
(document pairs in each cluster will be guaranteed to have JS scores
higher than the given tree threshold). The guarantee serves our goal of
identifying near duplicates. This algorithm also reduces the number of
documents for which we need to actually evaluate their JS scores. The
following is a brief step-by-step description of generation of these sets:

1. For each band (from signature matrix), sort the band based on its
signature value.
2. For each set of documents with the same signature value:
a. For all document pairs (A, B) in the set, calculate the JS
b. If JS = edge threshold, then Union(A, B). The function of Union
is defined in more detail in a previous publication [19]. In brief,
each pair (document A and B) is compared and determined
whether their similarity satisfies the tree threshold and can be
included into an existing set; otherwise, a new tree will be cre-
ated and one of the documents will serve as the parent node for
that tree.

2.6. Classification

Classification of notes generated in the final clusters were categor-
ized to either:

® exact copies (defined as two notes with JS = 1.0 and charted at the
same exact date for the same exact patient),

e common output notes (defined as two notes with JS = 1.0 but which
do not have to be for the same patient or same chart date), and

o similar notes (defined as all other notes greater than or equal to the
set JS threshold).

Examples of common output notes are notes automatically generated
from machine output (i.e. electrocardiogram, laboratory tests, etc.).
“Similar notes” is a broad classification category, which includes any notes
with a JS greater than the given threshold and that were not considered
exact notes or common output notes. Basically, if a “similar” pair (based
on the selected JS) is not an exact copy or a common output note (i.e.
JS = 1.0 but not same patient and/or time), it is defaulted to be con-
sidered a “similar note”. We used various JS thresholds (from 0.4 to 1.0) in
our experiments to be considered “similar notes”. Similar notes could
potentially include notes created from a similar template or notes with a
high degree of copy-and-pasting. To classify these notes, pairwise com-
parisons are performed for each pair of notes in each cluster. For each pair,
the following conditions are tested: (1) whether JS = 1.0, (2) whether the
chart date was the same; and (3) whether the patient was the same.

R.A. Gabriel et al.

2.7. Validation methodology

From the institutional and MIMIC-III clinical note datasets, we
generated two million random pairs and calculated the JS for each pair.
All pairs that had a JS greater than or equal to 0.3 and less than or equal
to 1.0 were included in a final validation list. The lists consisted of 1568
and 400 random pairs of notes for the institutional and MIMIC-III
clinical note datasets, respectively. The lowest JS threshold we ana-
lyzed was 0.4, therefore, we chose 0.3 as the lower range of notes to
include in the final validation list in order to: (1) describe notes that
should not be included in clusters; and (2) limit the number of com-
parisons needed for the validation step to preserve run-time. The pre-
sence of each random pair from the final validation list was compared
to all notes from each cluster generated from the de-duplication algo-
rithm. If the JS of that random pair is greater than or equal to the JS
threshold of the de-duplication algorithm, then the two notes of this
pair are expected to belong to the same cluster. If the JS of that random
pair is less than 5% below the threshold of the JS of the de-duplication
algorithm, the two notes of this pair are expected to not be in the same
cluster. The proportion of correctly grouped pairs and incorrectly
grouped pairs were calculated and reported as a percentage. The same
validation step was similarly performed for both the institutional and
MIMIC-III clinical note datasets.

3. Results

There was a total of 10,672,699 clinical notes in the institutional
dataset from June 4, 2012 — August 6, 2015. Of these, 1,528,940 notes
were associated with morbid obesity and thus were included in our
initial analysis. The de-duplication algorithm was processed on a virtual
machine with 256 gigabytes of random access memory - the total time
to process all notes into clusters was 36.3h. Fig. 2A illustrates the
number of clusters and total notes included based on the JS threshold.
When the JS threshold was set at 0.7, the total number of clusters was
82,371, which included 304,418 total notes. Table 1 lists the frequency
of cluster sizes in each JS threshold setting: clusters with 2 notes, 3-10
notes, 11-100 notes, 101-1000 notes, and greater than 1000 notes.

Though clusters containing exactly two notes made up the vast
majority of clusters, there are six clusters with more than 1000 notes
that are exactly identical and fifteen clusters with more than 1000 notes
that had a JS of 0.8 or higher. Notes in each cluster were then classified
into whether they were exact copies, common outputs, or similar notes.
The proportion of notes fitting into each of these three categories are
illustrated in Fig. 2B. Table 2 lists the validation results of these clus-
ters. We manually investigated 100 random sets that had cluster sizes of

A B

600K
---- number of notes

~. — number of clusters
N 80

60

20

L ; , , . ; ; 0
0.4 0.5 0.6 0.7 0.8 0.9 1.0

Jaccard Similarity Threshold

100 -

40 1

Journal of Biomedical Informatics 82 (2018) 63-69

Table 1
Frequency of clusters with different number of notes from clinical notes from
our institutional dataset.

Jaccard similarity Cluster size
2 3-10 11-100 101-1000 > 1000

1.0 38,589 5389 634 101 6

0.9 51,677 7109 669 109 10

0.8 59,476 8369 842 143 15

0.7 68,975 12,265 964 150 17

0.6 95,565 14,826 915 140 17

0.5 130,073 15,601 943 137 17

0.4 180,997 18,059 950 137 17

2 when the JS threshold was set at =0.7. The majority (86%) of sets
were for the same patient. The remaining 14% were for different pa-
tients but otherwise highly similar notes. We then manually in-
vestigated all 17 sets with cluster size > 1000 notes. All sets consisted
of common output notes — automatic machine-generated notes (i.e.
electrocardiogram) that were less than 20 words with identical voca-
bulary for a variety of patients and time.

Among all JS thresholds, no clusters contained pairs of notes that
were incorrectly clustered (false positive) with the JS below the 5%
allowable level. When the JS threshold was set at 0.9 or 1.0, the de-
duplication algorithm captured 100% of all random pairs with the JS
higher than or equal to the set similarity thresholds from the validation
set. As the threshold decreased from 1.0 to 0.4, the proportion of
random pairs correctly clustered decreased.

Next, our algorithm was tested on the publicly available dataset,
MIMIC-III. There was a total of 2,065,096 clinical notes in this dataset
that were included in the analysis. Fig. 3A shows the number of clusters
and total notes based on the JS threshold. When the JS threshold was
set at 0.7, the total number of clusters was 110,030, which included
310,230 total notes. Table 3 lists the frequency of cluster sizes for each
JS threshold setting.

The proportion of notes fitting into each of these three categories is
illustrated in Fig. 3B. Table 4 lists the validation results of these clus-
ters. Among all JS thresholds, again, no clusters contained pairs of notes
that had a JS less than 5% of the set threshold.

When the JS threshold was set to as low as 0.6, the de-duplication
algorithm still captured 100% of all random pairs with the JS higher
than the thresholds from the validation set. As the JS threshold was
decreased to 0.5 and 0.4, the percent captured decreased to 97% and
64%, respectively.

[] Similar notes
[common output
[Exact copy

0.4 0.7 1.0

Jaccard Similarity Threshold

Fig. 2. (A) Line graph illustrating the number of clusters and total number of notes generated from the algorithm when the Jaccard Similarity threshold was set at
0.4-1.0; (B) stacked bar plots illustrating the proportion of notes categorized as exact copies, common output, or similar notes. These graphs are based on our

institutional clinical note dataset.

66

R.A. Gabriel et al.

Journal of Biomedical Informatics 82 (2018) 63-69

Table 2

Validation results for our institutional notes. FPR: False positive rate. TPR: True positive rate, or sensitivity.
Jaccard similarity # of pairs in clusters Total number of random % FPR # of pairs in clusters % FPR # of pairs in Total number of % TPR
threshold below JS threshold pairs tested below JS below JS threshold (allowable) clusters =JS random pairs =JS

threshold (allowable) threshold threshold

1.0 0 1545 0.00 0 0.00 23 23 100.00
0.9 0 1517 0.00 0 0.00 49 49 100.00
0.8 19 1448 1.31 0 0.00 62 120 51.67
0.7 8 1290 0.62 0 0.00 105 278 37.77
0.6 1 1205 0.08 0 0.00 99 363 27.27
0.5 0 1102 0.00 0 0.00 99 466 21.24
0.4 0 715 0.00 0 0.00 929 853 11.61

4. Discussion Table 3

To our knowledge, no large-scale attempts have been made to
comprehensively identify highly similar notes in big clinical note da-
tasets. One reason is that comprehensive pairwise comparisons would
be prohibitively expensive in terms of computational resources. We
showed that among the EHR from our institution and from the publicly-
available MIMIC-III dataset, there were a significant number of near-to-
exact duplicated notes. This work attempts to address note-level du-
plication versus event-level duplication. Though the presence of note-
level duplication is well-known, few studies provide quantitative and
large-scale measures of the extent of this issue. One study analyzed
approximately 20,000 notes and found that only 18% of the text was
manually entered [23]. This manuscript represents a step toward un-
derstanding its scale, the potential consequences, and scalable solutions
to the problem by analyzing millions of notes from two different da-
tabases.

Though big clinical note datasets present substantial opportunities
to train accurate statistical language models for advanced clinical nat-
ural language processing tools and meaningful use applications, du-
plicates may prevail for various reasons — a phenomenon widely ob-
served and reported, but never comprehensively studied within a large
medical center [7-13,24]. In a previous study analyzing ~1500
random clinical notes, the authors reported that 22% of an average
signout note was considered unique, while 44% of progress notes were
unique. Duplicated sections of signout notes most frequently included
medication lists and history of present illness text while duplicated
sections in progress notes were frequently from assessment and plan
sections [25]. This high density of similarity among clinical notes will
directly impact how we approach clinical NLP problems. Sampling from
such a corpus for training and testing may require special treatment to
avoid unwanted biases that degrade statistical language models. Many
standard machine learning and NLP algorithms make assumptions

A

600K 1

---- number of notes
— number of clusters

T T

04 05 06 07 08 09 1.0

Jaccard Similarity Threshold

100

80

60

40

20

Frequency of clusters with different number of notes from clinical notes from
the MIMIC-III dataset.

Jaccard similarity Cluster size

2 3-10 11-100 101-1000 > 1000
1.0 29,715 5448 221 8 1
0.9 58,803 18,307 221 8 1
0.8 66,509 31,456 339 12 1
0.7 67,800 41,700 514 15 1
0.6 76,619 48,406 477 15 1
0.5 95,742 51,333 431 14 1
0.4 120,955 53,108 462 14 1

about the data from which they are built (e.g, data samples are in-
dependent and identically distributed). Unfortunately, these assump-
tions can be violated once duplicates are introduced into the data. For
example, for supervised learning algorithms, data that is intended to be
‘held-out’ for validation may be replicated in the training set, causing a
predictive model’s accuracy to be overstated, which would limit the
model’s ability to work externally. Another example is with outlier
detection, in which a highly unusual combination of symptoms might
go unnoticed if several redundant copies of the symptoms appear across
multiple notes. However, some duplicated notes should not be con-
sidered a problem if the high similarity shared between notes is clini-
cally important. The challenges that follow successful de-duplication
include ranking the importance of these similar notes. Identifying du-
plication is only part of the solution. We show that there are several
complex sources of redundant information, where “exact copies” of
notes only accounted for a fraction. These sources of near-to-exact
duplication also included notes that were generated automatically,
generated from templates, or have had significant portions copy-and-
pasted. Simply aggressively removing even partial duplicates would

Similar notes
1 common output
Exact copy

0.4 0.7 1.0

Jaccard Similarity Threshold

Fig. 3. (A) Line graph illustrating the number of clusters and total number of notes generated from the algorithm when the Jaccard Similarity threshold was set at
0.4-1.0; (B) stacked bar plots illustrating the proportion of notes categorized as exact copies, common output, or similar notes. These graphs are based on the publicly

available MIMIC-III dataset.

67

R.A. Gabriel et al.

Journal of Biomedical Informatics 82 (2018) 63-69

Table 4

Validation results for MIMIC-III notes. FPR: False positive rate. TPR: True positive rate, or sensitivity.
Jaccard similarity # of pairs in Total number of random % FPR # of pairs in clusters % FPR # of pairs in Total number of % TPR
threshold clusters below JS pairs tested below JS below JS threshold (allowable) clusters =JS random pairs =JS

threshold threshold (allowable) Threshold Threshold

1.0 0 367 0.00 0.00 0.00 33 33 100.00
0.9 0 367 0.00 0.00 0.00 33 33 100.00
0.8 1 367 0.27 0.00 0.00 33 33 100.00
0.7 0 366 0.00 0.00 0.00 34 34 100.00
0.6 0 366 0.00 0.00 0.00 34 34 100.00
0.5 0 365 0.00 0.00 0.00 34 35 97.14
0.4 0 347 0.00 0.00 0.00 34 53 64.15

also bias algorithms in unknown ways and impede system re-use.

Once similar clusters are found, the next step would be to classify
the source of near-to-exact duplication. We chose three types of cate-
gorization schemes — exact copies, common output notes, and a third,
broad category termed similar notes. The latter category (i.e., similar
notes) is essentially all other notes not considered exact copies or
common output notes and could be further classified as notes con-
structed from a common template or notes with high prevalence of
copy-and-pasting. Future studies will aim to further categorize this
third group. Redd et al. demonstrated the feasibility of identifying
documents containing templates in a small cohort of notes [26]. Fur-
thermore, it is important to elucidate reasons why exact copies are
being generated in the note dataset as there are several issues with this
phenomenon. This is essential for determining which duplicates are
considered clinically important versus problematic.

Comparing the results for the two datasets, we found that the pro-
portion of exact copy notes in the exactly identical clusters (JS = 1.0)
was higher in MIMIC-III than at our institution. Also, we had more than
a hundred large clusters with a size greater than 100 from our in-
stitutional dataset compared to less than 20 for MIMIC-III, though their
total numbers of near-to-exact duplicate notes and clusters are similar.
Whether any curation process may have reduced the number of large
clusters for MIMIC-III and whether the presence of large clusters from
our institutional dataset are typical among real clinical datasets and
contributed to lower true positive rates for our clustering algorithm are
among our topics for further investigation.

We utilized an efficient de-duplication algorithm that required
computation time linearly proportional to the size of the input dataset.
Our results show that the algorithm is scalable to cluster near-to-exact
duplicates among millions of notes from both institutional and publicly
available datasets. The required processing time (~40h) for approxi-
mately 2 million notes was much more realistic compared to the run-
time required for exhaustive pairwise comparisons.

Our de-duplication algorithm is a greedy algorithm that merges
notes that the Minhashing estimates as highly likely to be similar to a
root note of a tree representing a cluster. The algorithm is efficient and
ideal for clustering exactly identical notes. For clustering near-duplicate
notes, we use the triangle inequality property of the JS metric to ensure
that no note that is too far below a given threshold (compared with any
note in a cluster) is incorrectly merged. This approach guarantees no
false positives, but may exclude notes that should be merged into the
same cluster, as confirmed by our validation tests of the resulting
clusters.

Within our institutional dataset, when the JS threshold was set to
high thresholds (higher than 90% similarity), our algorithm achieved
perfect true positive rates, with all pairs of notes with at least that si-
milarity level were correctly clustered. However, when the threshold
setting decreases to 0.8 or lower, the true positive rates of captured
pairs decreased from 52% to 12%, respectively. When the algorithm
was applied to MIMIC-III, the true positive rates stay perfect even when
the threshold is set to as low as 0.6. On the other hand, validation re-
sults demonstrated that no notes were incorrectly clustered (false

68

positives), meaning that all notes within a cluster had a JS within at
least 5% of the set similarity threshold. This suggests that the actual
number of near-duplicate notes would be greater than the number re-
ported here, especially for the institutional dataset. Based on our al-
gorithm, by definition, no two documents in a set could have a JS less
than the defined threshold. Per our methods, during the clustering step,
candidate pairs are compared and the JS calculated. If they do not meet
criteria, then they are not placed in the same set. Therefore, we would
expect a very low false positive rate as we did for all similarity indices.

There are several limitations to our study. First, our greedy clus-
tering algorithm missed pairs of near-duplicate notes to merge them
into the same cluster, underestimated the number of near-duplicate
notes, and ran out of memory when we attempted to process the entire
set of 11 million notes from our institutional dataset. Though our pre-
liminary study shows that this over-partitioning issue can be improved
significantly simply by applying a second round of clustering after an
initial clustering, as future work, we would like to develop a solution
with guarantee of performance in terms of both computational effi-
ciency and quality of clustering.

Furthermore, we chose to classify the clustered notes into three
categories: exact copies, common output notes, and similar notes.
Classification of highly similar notes is not limited to the three cate-
gories we chose. In any case, we chose these three categories as a proof-
of-concept. Future studies will be aimed at defining and characterizing
sources of duplication with potential clinical implications.

In conclusion, we described a scalable algorithm that clusters highly
similar notes (based on a set similarity index) from large clinical note
datasets that contain millions of documents. Such an algorithm may be
executed in a more realistic timeframe compared to an approach that
depends upon performing pairwise comparisons. In the setting of ex-
panded utilization of EHR in healthcare systems, the number of clinical
documents will continue to expand rapidly.

Author contributions

All the author helped design the study, conduct the study, collect
the data, analyze the data, and prepare the manuscript.

Financial support

This work was supported by the National Library of Medicine (NLM)
training Grant No. T15LM011271 and partially funded through a
Patient-Centered Outcomes Research Institute (PCORI) Award
(Contract CDRN-1306-04819). Authors utilized resources provided by
Integrating Data for Analysis, Anonymization and SHaring (iDASH).
The statements in this article are solely the responsibility of the authors
and do not necessarily represent the views of the Patient-Centered
Outcomes Research Institute (PCORI), its Board of Governors or
Methodology Commi