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Abstract

Modeling the complex interactions between users
and items is at the core of designing successful
recommender systems. One key task consists of
predicting users’ personalized sequential behav-
ior, where the challenge mainly lies in modeling
‘third-order’ interactions between a user, her pre-
viously visited item(s), and the next item to con-
sume. In this paper, we propose a unified method,
TransRec, to model such interactions for large-
scale sequential prediction. Methodologically, we
embed items into a ‘transition space’ where users
are modeled as franslation vectors operating on
item sequences. Empirically, this approach out-
performs the state-of-the-art on a wide spectrum of
real-world datasets.

1 Introduction

In order to predict sequential user actions like the next prod-
uct to purchase, movie to watch, or place to visit, it is essen-
tial (and challenging) to model the third-order interactions
between a user u, the item(s) ¢ she recently consumed, and
the item j to visit next. Not only does the model need to han-
dle the complexity of the interactions themselves, but also the
scale and inherent sparsity of real-world data.

Traditional recommendation methods usually excel at
modeling two-way (i.e., pairwise) interactions. This includes
Matrix Factorization (MF) techniques [Koren et al., 2009]
that make use of inner products to model the compatibility be-
tween user-item pairs (i.e., user preferences). Likewise, (first-
order) Markov Chain (MC) models [Serfozo, 2009] capture
transition relationships between pairs of adjacent items in se-
quences (i.e., sequential dynamics), often by way of factor-
izing the transition matrix in favor of generalization ability.
For the task of sequential recommendation, researchers have
made use of scalable tensor factorization methods, such as
Factorized Personalized Markov Chains (FPMC) [Rendle et
al., 2010]. FPMC models third-order relationships between
u, i, and j by the summation of two pairwise relationships:
one for the compatibility between w and the next item j, and
another for the sequential continuity between the previous
item ¢ and the next item j. Ultimately, this is a combination
of MF and MC (see Section 3.2 for details).

—p  User U1

3
@ gd ﬁ S’lll
: : e ‘
—
l —> User u2

\\? §g Qrﬂ ------ > User U3

T qu
B.

>
Figure 1: TransRec: Items (movies) are embedded into a ‘transi-
tion space’ where each user is modeled by a translation vector. The
transition of a user from one item to another is captured by a user-
specific translation operation.

Translation operation:

—_— S —
prev. item + user ~ next item

»

Recently, there have been two lines of work that aim
to improve FPMC. Personalized metric embedding meth-
ods replace the inner products in FPMC with Euclidean dis-
tances, where the metricity assumption—especially the trian-
gle inequality—enables the model to generalize better [Wu et
al., 2013; Moore et al., 2013; Feng et al., 2015]. However,
these works still adopt a framework that models the user pref-
erence component and sequential continuity component sepa-
rately, which may be disadvantageous as the two components
are inherently correlated. Another line of work [Wang et al.,
2015] makes use of operations like average/max pooling to
aggregate the representations of the user u and the previous
item i, before their compatibility with the next item j is mea-
sured. These works partially address the issue of modeling
the dependence between the two key components, though are
hard to interpret and can not benefit from the generalization
ability of metric embeddings.

In this paper, we aim to tackle the above issues by introduc-
ing a new framework called Translation-based Recommenda-
tion (TransRec). The key idea behind TransRec is presented
in Figure 1: Items are embedded as points in a (latent) ‘transi-
tion space’; each user is represented as a ‘translation vector’
in the same space. Then, the third-order interactions men-
tioned earlier are captured by a personalized translation oper-
ation: the coordinates of the previous item i, plus the trans-
lation vector of u determine (approximately) the coordinates
of the next item 7, i.e., ¥; + &, ~ +;. Finally, we model the
compatibility of the triplet (u, 4, j) with a distance function



d(¥; + tu,7;). At prediction time, recommendations can be

made via nearest-neighbor search centered at ¥; + t,,.

The advantages of such an approach are three-fold: (1) It
naturally models third-order interactions with only a single
component; (2) It also enjoys the generalization benefits of
the implicit metricity assumption; and (3) It can easily handle
large sequences (e.g. millions of instances) due to its simple
form. Empirically, we conduct comprehensive experiments
on a wide range of large, real-world datasets (which are pub-
licly available), and quantitatively demonstrate the superior
recommendation performance achieved by TransRec.

2 Related Work

General recommendation. Traditional approaches to rec-
ommendation ignore sequential signals in the system. Such
systems focus on modeling user preferences, and typically
rely on Collaborative Filtering (CF) techniques, especially
Matrix Factorization (MF) [Ricci et al., 2011]. For implicit
feedback data (like purchases, clicks, and thumbs-up), point-
wise (e.g. [Hu et al., 2008; Pan et al., 2008; Ning and Karypis,
2011]) and pairwise methods (e.g. [Rendle er al., 2009;
Rendle and Schmidt-Thieme, 2010]) based on MF have been
proposed.

Sequential recommendation. Scalable sequential models
usually rely on Markov Chains (MC) to capture sequen-
tial patterns (e.g. [Rendle et al., 2010; Wang et al., 2015;
Feng et al., 2015]). Rendle et al. proposed to factorize the
third-order ‘cube’ that represents the transitions made by
users among items. The resulting model, Factorized Person-
alized Markov Chains (FPMC), can be seen as a combina-
tion of MF and MC and achieves good performance for next-
basket recommendation.

There are also works that have adopted metric embeddings
for the recommendation task, leading to better generalization
ability. For example, Chen et al. introduced Logistic Met-
ric Embeddings (LME) for music playlist generation [Chen
et al., 2012], where the Markov transitions among different
songs are encoded by the distances among them. Recently,
Feng et al. further extended LME to model personalized se-
quential behavior and used pairwise ranking for predicting
next points-of-interest [Feng et al., 2015]. On the other hand,
Wang et al. recently introduced the Hierarchical Representa-
tion Model (HRM), which extends FPMC by applying aggre-
gation operations (like max/average pooling) to model more
complex interactions [Wang ef al., 2015]. We will give more
details of these works in Section 3.2.

Our work differs from the above in that we introduce a
translation-based structure which naturally models the third-
order interactions between a user, the previous item, and the
next item for personalized Markov transitions.

Knowledge bases. Although different from recommenda-
tion, there has been a large body of work on knowledge
bases that focuses on modeling multiple, complex relation-
ships between various entities. Recently, partially motivated
by the findings made by word2vec [Mikolov et al., 2013],
translation-based methods (e.g. [Bordes et al., 2013; Lin et
al., 2015; Wang et al., 2014]) have achieved state-of-the-art
accuracy and scalability, in contrast to those achieved by tra-

ditional embedding methods relying on tensor decomposition
or collective matrix factorization (e.g. [Nickel ef al., 2011;
Nickel et al., 2012; Singh and Gordon, 2008]). Our work is
inspired by those findings, and we tackle the challenges from
modeling large-scale, personalized, and complex sequential
data.

Recurrent recommender networks. Recently, Recurrent
Neural Networks (RNN) are introduced into recommender
systems to capture temporal dynamics [Hidasi et al., 2016;
Wu et al., 2017; Jing and Smola, 2017]. For instances, Recur-
rent Recommender Networks (RRN) split time into segments
with a time granularity (e.g. two months), model temporal
evolution of users and items via RNNs, and estimate the rat-
ing of an item given by a user at any time segment [Wu et
al., 2017]. Other than using the specific timestamps, another
line of work considers short session-based data, and seeks to
use RNNs to capture the sequential dynamics within a ses-
sion [Hidasi ef al., 2016]. Our method is compact and effi-
cient since it only considers item transitions depending on the
last visited item which is the most significant factor affecting
user’s next action (especially on sparse dataset). However, it’s
promising to investigate long-term dependencies via RNNs
for next item recommendation.

3 The Translation-based Model

Problem Formulation. We refer to the objects that users (/)
interact with in the system as items (Z), e.g. products, movies,
or places. The sequential, or ‘next-item, prediction task we
are tackling is formulated as follows. For each user u € U
we have a sequence of items S = (S}, 83, -+, Sj5.) that
u has interacted with. Given the sequence set from all users
S = {§%,8%2 ...  S“ul}, our objective is to predict the
next item to be ‘consumed’ by each user and generate recom-
mendation lists accordingly.

3.1 The Proposed Model

We aim to build a model that (1) naturally captures personal-
ized sequential behavior, and (2) easily scales to large, real-
world datasets. Methodologically, we learn a transition space
® = RX, where each item i is represented with a point/vector
; € ®. 7; can be latent, or transformed from certain explicit
features of the item ¢, e.g. the output of a neural network. In
this paper we model ; as a latent vector.

To model personalized sequential behavior, we represent
each user u with a translation vector t,, € ® to capture u’s
inherent intent or ‘long-term preferences’ that influence her
to make transitioning decisions.! In particular, if u transitions
from item ¢ to item j, then we want Vi—i—fu ~ 7, which means
7, should be a nearest neighbor of ¥; + t,, in ® according
to some distance metric d(z,y), e.g. Lo distance. Note that
we are uncovering a metric space where (1) neighborhood
captures the notion of similarity and (2) translation encap-
sulates various semantically complex transition relationships
amongst items. In both cases, the inherent triangle inequality

'For sparse data, t,, could potentially be modeled as £, = £+ T,
where ¢ is a global vector and 7, is regularized towards 0.



assumption plays an important role in helping the model to
generalize, as it does in canonical metric learning scenarios.

Finally, the probability that a given user u transitions from
the previous item % to the next item j is predicted by

P?"(j | uvi) X ﬂj - d(’% Jrfu»ij)a

1
subjectto ¥, € ¥ C &, forie 7. M

U is a subspace in @, e.g. a unit ball, a technique which has
been shown to be helpful for mitigating ‘curse of dimension-
ality’ issues (e.g. [Bordes et al., 2013; Wang et al., 2014,
Lin et al., 2015]). In the above equation a single bias term
B; is added to capture overall item popularity.

Ranking Optimization. Given a user and the associated his-
torical sequence, the ultimate goal of the task is to rank the
ground-truth item j higher than all other items (j' € T \ j).
Therefore it is a natural choice to optimize the pairwise rank-
ing between j and j’ by (e.g.) Sequential Bayesian Personal-
ized Ranking (S-BPR) [Rendle et al., 2010]. To this end, we
optimize the total order >, ; given the user u and the previous
item ¢ in the sequence:

0= argénax Z Z Z Ino(Pu,ij — Puiyr) — QO),

weU jESu j/%Su

where ¢ is the item preceding j in S¥, p,;; is a short-
hand for the prediction in Eq. (1), © is the parameter set
{Bicz, VieT, ﬁteu}, and Q(©) is an L, regularizer.

Learning the Parameters. Item embeddings ;<7 and tucu
are randomly initialized to be unit vectors. [;cz are initial-
ized to be zero. The objective function (Eq. (3.1)) is maxi-
mized by stochastic gradient ascent: First, we uniformly sam-
ple a user u from Y. Then, a ‘positive’ item j and a ‘nega-
tive” item j are uniformly sampled from S* \ §} and Z \ "
respectively. Next, parameters are updated via stochastic gra-
dient ascent. Finally, we re-normalize ¥;, ¥;, and ¥/ to be
vectors in W. The above steps are repeated until convergence
or until the accuracy plateaus on the validation set.

3.2 Connections to Existing Models

Knowledge Graphs. Our method is inspired by recent ad-
vances in knowledge graph completion, e.g. [Bordes et al.,
2013; Wang et al., 2014; Lin et al., 2015; Yang et al., 2015;
Trouillon ef al., 2016], where the objective is to model mul-
tiple types of relations between pairs of entities. One state-
of-the-art technique (see e.g. [Bordes et al., 2013]) embeds
entities as points and relations as translation vectors such that
the relationship between two entities is captured by the corre-
sponding translation operation. In recommendation settings,
items are analogous to ‘entities’ in knowledge graphs. Our
key idea is to represent each user as one particular type of
‘relation’ such that it captures the personalized reasons a user
transitions from one item to another.

Sequential Models. State-of-the-art sequential prediction
models are typically based on (personalized) Markov Chains.
FPMC [Rendle et al., 2010] is a seminal model whose predic-
tor consists of two key components: (1) the inner product of
user and item factors (capturing users’ inherent preferences),
and (2) the inner product of the factors of the previous and

next item (capturing sequential dynamics). FPMC is essen-
tially the combination of MF and factorized MC:

PT’(]|’LL,’L)O(<MU7N]>+<P;,Q_']>, (2)

where user embeddings Mu and item embeddings N s ]31-, Q J
are parameters learned from the data.

Recently, Personalized Ranking Metric Embedding
(PRME) [Feng er al., 2015] was proposed to improve FPMC
by learning two metric spaces: one for measuring user-item
affinity and another for sequential continuity. Predictions are
made according to

Pr(j | u,i) o< (o [|My = NjI3 + (1= a) - | B = Bj3),

which replaces inner products in FPMC by distances. As ar-
gued in [Chen er al., 2012; Feng et al., 2015; Hsieh et al.,
20171, the underlying metricity assumption brings better gen-
eralization ability. However, like FPMC, PRME still has to
learn two closely correlated components in a separate man-
ner, using a hyperparameter « to balance them.

Another recent work, Hierarchical Representation Model
(HRM) [Wang et al., 2015], tries to extend FPMC by using an
aggregation operation (max/average pooling) to blend users’

preferences (Mu) and their recent activities (IV;):
Pr(j|u,i) (aggregation(ﬂu,ﬁi),ﬁj>. 3)

Although the predictor can be seen as modeling the third-
order interactions with a single component, the aggregation
is hard to interpret and does not reap the benefits of using
metric embeddings as PRME does.

TransRec also falls into the category of Markov Chain
models; however, it applies a novel translation-based struc-
ture in a metric space, which enjoys the benefits of using a
single, interpretable component as well as a metric space.

4 Experiments

We include a wide range of publicly available datasets vary-
ing in domain, size, data sparsity, and variability/complexity.
Data and code are available at http://cseweb.ucsd.
edu/~jmcauley/.
Amazon. Reviews and timestamps on seven large product
categories from Amazon.com [McAuley er al., 2015]. This
dataset spans May 1996 to July 2014 and is notable for its
high sparsity and variability.
Epinions. This dataset was collected by [Zhao et al., 2014]
from Epinions.com, a popular online consumer review web-
site. The reviews span January 2001 to November 2013.
Foursquare. A large number of check-ins of users at differ-
ent venues from December 2011 to April 2012. This dataset
was collected by [Levandoski et al., 2012] and is widely used
for evaluating next point-of-interest prediction methods.
Flixter. A large, dense movie rating dataset from Flixter.com.
The timespan is from November 2005 to November 2009.
Google Local. A new dataset we introduce from Google
which contains 11.4M reviews and ratings from 4.5M users
on 3.1M local businesses.

For each of the above datasets, we discard users and items
with fewer than 5 associated actions in the system. In cases
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Table 1: Ranking results on different datasets (higher is better). The number of latent dimensions K for all comparison methods is set to 10.
The best performance in each case is underlined. The last column shows the percentage improvement of TransRec over the best baseline.

Dataset  |Metric | PopRec BPR-MF FMC  FPMC HRMa; HRMy,« PRME TransRec. TransRec,,%Improv.
Epinions AUC 0.4576  0.5523 0.5537 0.5517 0.6060 0.5617 0.6117 0.6063  0.6133 0.3%
Hit@50| 342% 3.770% 3.84% 293% 3.44% 2.79% 2.51% 3.18% 4.63% 20.6%
Google AQC 0.5391 0.8188 0.7619 0.7740 0.8640 0.8102 0.8252  0.8359 0.8691 0.6%
Hit@50| 0.32% 427% 354% 3.99% 3.55% 4.59% 5.07% 6.37% 6.84% 34.9%
Amazon |AUC 0.6717 0.7320 0.7214 0.7302 0.7600 0.7436  0.7490  0.7659  0.7772 2.26%
Hit@50 | 3.22% 451% 4.06% 4.13% 632% 4.93% 5.67%  7.16% 7.23% 14.4%
Foursquare AUC 0.9168 09511 0.9463 0.9479 09559 0.9523 0.9565 0.9631 0.9651 0.9%
Hit@50 | 55.60% 60.03% 63.00% 64.53% 60.75% 61.60% 65.32% 66.12%  67.09% 2.7%
Flixter AUC 0.9459 09722 0.9568 0.9718 09695 0.9687 09728  0.9727 0.9750 0.2%
Hit@50 | 11.92% 21.58% 22.23% 33.11% 32.34% 30.88% 40.81% 35.52% 35.02%  -13.0%

where star-ratings are available, we take all of them as users’
positive feedback. Afterwards we end up with 1.11M users,
1.09M items, and 15.5M actions. The average number of ac-
tions per user/item in our data ranges from 3.23 to 310.61.

4.1 Comparison Methods

PopRec: This is a naive baseline that ranks items according
to their popularity.

Bayesian Personalized Ranking (BPR-MF) [Rendle et al.,
2009]: BPR-MF is a state-of-the-art item recommendation
model which takes Matrix Factorization as the underlying
predictor. It ignores sequential signals in the system.
Factorized Markov Chain (FMC): Captures the ‘global’ se-
quential dynamics by factorizing the item-to-item transition
matrix (shared by all users), but does not capture personal-
ized behavior.

Factorized Personalized Markov Chain (FPMC) [Rendle
et al., 2010]: Uses a predictor that combines Matrix Fac-
torization and factorized Markov Chains so that personalized
Markov behavior can be captured (see Eq. (2)).
Personalized Ranking Metric Embedding (PRME) [Feng
et al., 2015]: PRME models personalized Markov behavior
by the summation of two Euclidean distances (see Eq. (3.2)).
Hierarchical Representation Model (HRM) [Wang et al.,
2015]: HRM extends FPMC by using aggregation operations
to model more complex interactions (see Eq. (3)). We com-
pare against HRM with both max pooling and average pool-
ing, denoted by HRMp,.x and HRM,,, respectively.
Translation-based Recommendation (ZTransRec): Our
method, which unifies user preferences and sequential dy-
namics with translations. In experiments we try both £; and
squared L4 distance for our predictor (see Eq. (1)).

4.2 Evaluation Methodology

For each dataset, we partition the sequence S* for each user
u into three parts: (1) the most recent one Sﬁsw for test, (2)
the second most recent one S \%’5“ -1 for validation, and (3) all
the rest for training. Hyperparameters in all cases are tuned
by grid search with the validation set. Finally, we report the
performance of each method on the test set in terms of the
following ranking metrics:

Area Under the ROC Curve (AUC):

1 1
AUC = — ]-Ru u<Ru."7
|U\Z€;{|I\S“| _,Zu (g 2
u J'ETI\S

Hit Rate at position 50 (Hit@50):

1
HitQ50 = 7 > 1(Ryg, <50),
ueU

where g,, is the ‘ground-truth’ item associated with user u at
the most recent time step, IR, ; is the rank of item ¢ for user
u (smaller is better), and 1(b) is an indicator function that re-
turns 1 if the argument b is true; O otherwise. Intuitively,
AUC counts the fraction of times that rank desired items
higher than irelevant items, and reflect overall recommenda-
tion performance. Hit@50 measures Top-N ranking perfor-
mance, which considers whether the ‘ground-truth’ item is
ranked among the top-50 items.

4.3 Performance and Quantitative Analysis

Results are collated in Table 1 (datasets are ranked in ascend-
ing order of item density). Due to the sparsity of most of the
datasets in consideration, the number of dimensions K of all
latent vectors in all cases is set to 10 for simplicity. The main
findings are summarized as follows:

BPR-MF and FMC achieve considerably better results than
the popularity-based baseline in most cases. FPMC and
HRM are essentially combinations of MF and FMC. FPMC
beats BPR-MF and FMC mainly on relatively dense datasets
like Foursquare and Flixter, and loses on sparse datasets—
possibly due to the large number of parameters it introduces.
HRM achieves strong results amongst all baselines in many
cases, presumably from the aggregation operations.

PRME replaces the inner products in FPMC by distance
functions. It beats FPMC in most cases, though sometimes
loses to HRM due to different modeling strategies. Note that
like FPMC, PRME turns out to be quite strong at handling
dense datasets like Foursquare and Flixter. We speculate that
the two models could benefit from the considerable amount
of additional parameters they use when data is dense.

TransRec outperforms other methods in nearly all cases.
The improvements seem to be correlated with: (1) Variabil-
ity: TransRec achieves large improvements on Google, the



dataset with the largest vocabulary of items in our collection,
including all kinds of restaurants, bars, shops (etc.) as well
as a global user base. (2) Sparsity: TransRec beats all base-
lines especially on comparatively sparser datasets like Epin-
ions and Google. The only exception is in terms of Hit@50
on Flixter, the densest dataset in consideration. We speculate
that TransRec is at a disadvantage by using fewer parame-
ters (than PRME) especially when K is set to a small number
(10). In practice, we achieved comparable results with the
strongest baseline when increasing the dimensionality of all
models to 100.

5 Conclusion

We introduced a scalable translation-based method,
TransRec, for modeling the semantically complex per-
sonalized sequential dynamics in recommender systems. We
analyzed the connections between TransRec and existing
methods, and demonstrated its suitability for modeling
third-order interactions between users, their previously
consumed items, and their next item. Superior results
achieved on a spectrum of large, real-world datasets suggest
that translation-based architectures are a promising avenue
for recommendation problems.
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