
A Longitudinal Evaluation of a Best Practices CS1
Adrian Salguero, Julian McAuley, Beth Simon, and Leo Porter

University of California San Diego

ABSTRACT
Over a decade ago, the CS1 course for students without prior

programming experience at a large research-intensive university
was redesigned to incorporate three best practices in teaching pro-
gramming: Media Computation, Pair Programming, and Peer In-
struction. The purpose of this revision was to improve the quality of
the course, appeal to a larger student body, and improve retention
in the major. An initial analysis of the course indicated an increase
in pass rates and 1-yr retention of students in the major. Now that
time has passed and those students impacted by the revision have
had time to graduate, this longitudinal study revisits and expands
on these prior findings through examining student outcomes over
a twelve year period (2001 through 2013). The student outcomes
examined include failure rates in CS1, retention rates in the major,
rates of switching into the major, time to degree, and performance
in subsequent major courses. We compare these findings against
similar metrics collected for another CS1 course at the same institu-
tion that caters to students with prior programming experience and
did not make changes during this same time period. Overall, the
inclusion of media computation, pair programming, and peer in-
struction corresponds to a significant improvement in passing rates
for CS1 as well as retention of majors from CS1 through graduation.
In turn, there is no indication that this larger group of students
experienced any harm in terms of lower grades in upper-division
courses or their time to degree.

CCS CONCEPTS
• Social and professional topics → Computing Education.

KEYWORDS
peer instruction, media computation, pair programming

ACM Reference Format:
Adrian Salguero, Julian McAuley, Beth Simon, and Leo Porter. 2020. A
Longitudinal Evaluation of a Best Practices CS1. In Proceedings of the 2020
International Computing Education Research Conference (ICER ’20), August
10–12, 2020, Virtual Event, New Zealand. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3372782.3406274

1 INTRODUCTION
The primary goal of this study is to determine the long-term

impact of a redesign of a CS1 course at UC San Diego in 2008. For
context, those in the computer science field are well aware that the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICER ’20, August 10–12, 2020, Virtual Event, New Zealand
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7092-9/20/08. . . $15.00
https://doi.org/10.1145/3372782.3406274

number of computer science majors has risen and declined over
time. The rise of the dot-coms at the end of the 1990s correlated with
a surge in interest in computer science and related fields, with the
number of bachelor’s degrees in computing peaking in the United
States in 2003 [27]. Following that peak, the number of students
interested in computer science suffered a precipitous decline. To
respond to that decline, computer science programs began to focus
on how best to attract and retain students into the computer science
discipline. Within this context, our institution began a concerted
effort to overhaul our CS1 course for students without prior experi-
ence in order to reduce failure rates, improve retention of students
in computing majors, and to attract new students to the major [36].

The faculty driving the course revision set forth a mandate to
adopt best practices from the computing education and science
education communities. After reviewing possible practices, the
course was redesigned to include three practices recognized within
these communities. The first was to ensure computing was being
taught in a context meaningful to students through the use of
Media Computation [11]. The second sought to actively engage
students in core course concepts during “lecture” through the use
of Peer Instruction [7]. The third was to create a community among
students by having them engage in Pair Programming [51]. We note
that less was known about the efficacy of each of these practices in
computing than is known now; Section 3 provides the context for
the changes at that time.

Prior work by Porter and Simon reported on the success of this
course revision—specifically showing that the course redesign sig-
nificantly lowered failure rates while also resulting in more students
taking courses in the major one year after taking the introductory
course [35]. However, because the evaluation of the new course
was done only a few years after the course restructuring, there are
a number of questions that could not be answered then that are
possible to answer now: Did the increase in retention in comput-
ing courses 1-year later persist to increase retention at the time
of graduation? How well did students from this larger group of
majors perform in later courses? Were the changes more beneficial
for different demographics of students? And can we explain the
improved outcomes simply by the changes over time?

In this work, we have extracted over 17 years of CS1 student
data to evaluate the impact of the course redesign on passing rates,
retention of majors to the point of graduation, the number of stu-
dents switching into computing majors, student performance in
required upper-division computing courses, and time-to-degree.
Using student demographic data, we are able to evaluate how the
course redesign impacted male and female students as well as stu-
dents from under-represented minority groups (URM).1 Moreover,
a fortunate facet of our computer science curriculum is that the
major has long had two alternative paths into the major. The first

1Similar to the Special Report on “Women, minorities, and persons with disabilities in
science and engineering” [28] we define URM as Chicano, Latino, African-American,
American Indian, and Alaska Native.

Day 3: CS-1, Novices ICER ‘20, August 10–12, 2020, Virtual Event, New Zealand

182

https://doi.org/10.1145/3372782.3406274
https://doi.org/10.1145/3372782.3406274

path, for students without prior programming experience, is the
path with the course redesign. The second path, for students with
prior programming experience, experienced no significant changes
to its curriculum over the same time. By comparing student results
for both paths, we are able to explore whether the benefits expe-
rienced after the course redesign are better explained by changes
over time or by the redesign itself.

The contributions of this comprehensive longitudinal evaluation
of incorporating Peer Instruction, Media Computation, and Pair
Programming in an introductory computing course include:

• Student passing rates and retention of majors improved sig-
nificantly after the course redesign.

• There is no evidence that this larger population of students
suffered worse outcomes later in terms of grades in subse-
quent courses or time-to-degree.

• Outcomes for students from underrepresented groups in
computing (women, URMs) improved, as did outcomes for
students from represented groups.

• The benefits for students are better explained as a result of
the course redesign rather than possible changes over time.

• Instructors who taught both before and after the revision
experienced similar benefits for their students.

2 BACKGROUND
In this section we describe prior work related to the relevant

best practices and the theoretical underpinning for these practices.

2.1 Peer Instruction
Peer Instruction [7] is an interactive pedagogical approachwhere

students prepare for lecture by reading relevant material, then
attend lecture prepared to discuss with peers and the instructor [56].
In class, the instructor poses several multiple choice questions; for
each, students individually think about the question, discuss with
peers for several minutes, and vote on the correct answer.

Peer Instruction has been studied extensively in computing, find-
ing that Peer Instruction: is valued by students in lower- and upper-
division courses at both large research-focused universities and
small liberal arts colleges [21, 31, 32]; shifts students classroom
engagement from passive to interactive [40]; results in in-class
learning, both from peers [34] and from the instructor [57]; reduces
failure rates [8, 33]; results in improved final exam scores [42, 55];
and provides data useful to researchers for identifying key concepts
and struggling students [23–25, 37].

Recently, Porter and Simon described the factors that led to Peer
Instruction being adopted by portions of the computing education
community [36]. However, some barriers continue to exist for some
faculty wishing to adopt Peer Instruction in their courses [4]. For
more detailed summaries of Peer Instruction, please see Simon et
al. [41] and Porter and Simon [36].

Peer Instruction is strongly grounded in constructivist learning
theory, specifically socioconstructive learning [48]. Peer Instruction
replaces lecture from “sage on the stage” with instructor as “guide
on the side.” Through carefully crafted multiple-choice questions
(targeting students’ zone of proximal development), Peer Instruc-
tion provides students with a scaffolded opportunity to challenge
themselves with new concepts and address common misconcep-
tions. The peer discussion phase allows them to develop their own

understanding through discussion and explanations to each other.
Under the “Interactive, Constructive, Active, and Passive” Frame-
work proposed by Chi and Wylie [6], they connect student behav-
iors during active learning to cognitive engagement. A study in
CS found that students in traditional lectures report lower levels
of engagement than those in a Peer Instruction class [40]. While
we know of no research that explicitly measures the impact of
Peer Instruction on specific social-psychological measures such as
growth mindset and social belonging, there seem clear connections.
The vote-discuss-vote process of learning in class demonstrates
that we can all grow our understanding [3]. Involving students
in discussion, becoming acquainted with several other students
in the class, and observing other students’ thinking could impact
students’ sense of self-belonging [52]. Peer Instruction also offers a
form of cognitive apprenticeship in learning to analyze programs.
By bringing analysis and discussion of code, which is often hidden
behind the focus on code writing in introductory programming
classes, Peer Instruction supports the “enculturation of students
into authentic practices through activity and social interaction” [5].

2.2 Media Computation
Media Computation is a contextualized computing curriculum

developed to teach programming to a broader range of students than
solely those focused on becoming computing professionals [11, 15,
38]. The curriculum teaches standard introductory programming
concepts in the context of manipulating images and sounds [11, 14].

Adoption of media computation has been connected to reduced
failure rates [12, 35] as well as improved retention of students in
computing [35, 43, 45]. A goal of the media computation curricu-
lum was to improve outcomes for women in computing [12] and
researchers found that women find the course more motivating
than prior offerings [9], appreciate the media context [38], and may
appreciate the opportunities for creative expression [2]. Passing
rates were found to be balanced between men and women in the
media computation version of the course [12].

Media Computation as a context for introducing computer pro-
gramming is also grounded in the theory of situated cognition [20].
It recognizes that (as of the early 2000’s) computers had, in general
society, moved from being considered a computational tool to being
a generally used communication tool.WithMedia Computation, stu-
dents experience programming as “situated in activity bound to so-
cial, cultural and physical contexts” [10]. Additionally, as described
in Forte and Guzdial [9], media computation-based assignments
allow for much more creativity than traditional computational-
focused assignments. These may improve learning as “the construc-
tionist approach to learning asserts that people learn particularly
well when they are engaged in constructing a public artifact that is
personally meaningful” [9]. For extended summaries of the work
on media computation, please see Guzdial [12, 13].

2.3 Pair Programming
Pair Programming is a cooperative learning approach that in-

volves students working closely together while programming by
alternating roles as “driver” (the person controlling the keyboard
and mouse) and “navigator” (the person providing guidance and
suggestions) [51]. Pair programming has been extensively studied
in computing with three meta reviews appearing between 2011 and

Day 3: CS-1, Novices ICER ‘20, August 10–12, 2020, Virtual Event, New Zealand

183

2019 [17, 39, 47]. These meta-reviews find that pair programming
is broadly associated with improved outcomes in computer science,
including increased enjoyment and satisfaction [17] as well as im-
proved grades on programming assignments, overall grades, and
pass rates [47]. Pair programming has also been shown to improve
retention of women in computing [26].

Not all pairings of students are equally effective as students
with similar programming skills appear to be more successful [17].
Moreover, a recent qualitative study explored the components of
inequitable pairings [22]. A longstanding concern with pair pro-
gramming is that some students may not contribute enough to the
pair to learn effectively [39, 54], however findings remain mixed.

Pair programming, and possible benefits from its use, can be
explored through the lens of several theories of learning also seen
in the two previous best practices. Pair programming is not just a
constructivist learning approach but specifically a socioconstruc-
tivist one [48]. Pair programming, if explained to students as an
industry-practice, can also contribute to students’ sense of social
belonging, although it is not really a form of legitimate peripheral
participation as their community of practice only contains other
novices [20]. Please see Simon et al. [41] for a detailed summary of
Pair Programming.

3 COURSE CONTEXT
The quantity and quality of empirical computer science educa-

tion research in 2008 was significantly less than it is today—even
for research on introductory programming. In 2008, the redesign
was centered around practices with quantified impacts on learn-
ing and/or outcomes with a focus on improving student retention,
particularly for women and underrepresented groups.

The easiest choice was in adopting pair programming. The lead
faculty member on the redesign was well aware of the research
on pair programming and was heavily swayed by the 2004–2006
studies by Werner et al. [50], Werner [49], and McDowell et al. [26]
on the value of pair programming for improving student retention
and confidence, with a particular benefit for retention of women in
computing. Additionally, because these studies had been performed
by an institution with comparably large class sizes, we felt we could
successfully implement similar processes.

In our CS1 course, we implemented pair programming in both
a closed-lab setting (with TAs present) and for programming as-
signments completed outside class. To emphasize the importance
of both students understanding what they produced, an additional
requirement was added to each assignment for each student to
complete a brief in-person comprehension check with the course
staff (2 simple questions worth 10% of the assignment grade). In
practice, these checks allowed the course staff to encourage stu-
dents to participate more when pair programming and as an excuse
for students to ask their partner to engage more.

Similarly, the choice to adopt Peer Instruction was bolstered by a
relatively large pool of research—most in large, research-intensive
university settings similar to our university. The difference for Peer
Instruction was that research existed outside of the discipline of
computer science, with many studies in introductory physics and
other STEM disciplines [7, 16, 19, 44]. In this case, the faculty mem-
ber leading the redesign (Author Simon) had extensive experience

working with science courses that had adopted Peer Instruction
during her sabbatical with the Carl Wieman Science Education
Initiative at the University of British Columbia. By engaging with
instructors using Peer Instruction in their classes, she gained a deep
understanding of how to create quality Peer Instruction questions
along with successful tips for integrating Peer Instruction into a
course (how to motivate it, how to give students credit, etc.).

The media computation approach for introducing CS1 Java pro-
gramming concepts and skills was relatively lacking in formal doc-
umentation of success at the time of adoption. The 2003 article by
Guzdial [11] described a semester long implementation at Georgia
Institute of Technology and that the targeted audience of the course
was non-computing and engineering majors required to take a com-
puting course. This focus on a non-traditional “computer science
major” was in alignment with the goals of our redesign. The fact
that the course in that study was taken as a requirement rather than
elective made the limited assessment at the time more impressive
than it would have been otherwise: in a 120 student course, 2/3 of
whom were female, only 2 students dropped the course. Student
comments, such as “very applicable to everyday life” and “program-
ming is fun and ANYONE can do it”, were quite appealing. Lastly,
the addition of a major at the intersection of visual arts and comput-
ing at UC San Diego, and the likelihood these students would take
the revised course, made the approach a good fit for the course.

4 METHODS
Our study focuses on the following research questions:
• RQ1—How do student outcomes compare between the ver-
sion of the course before and after the redesign to include
best practices?

• RQ2—Can changes in student outcomes be attributed to
possible changes over time?

• RQ3—Which groups of students benefited from the intro-
duction of these best practices?

The first question is used to gain an overview of how the introduc-
tion of best practices changed student performance and retention in
the major. Our second research question was motivated by the pos-
sibility that any significant difference in performance and retention
could be explained away by changes over time. The third question
addresses how the course revision impacts students belonging to
underrepresented groups in computing. Our analysis focuses on
the two introductory programming courses which are the starts of
two separate paths into the CS major at our institution: CS1-NPE
(No Prior Experience) and CS1-PE (Prior Experience), both of
which act as an introduction to fundamental topics and techniques
of programming. CS1-NPE is the first in a two-term course that
serves as this introduction. The course is designed for students
with little to no programming experience and is the course that
experienced the redesign to include the three best practices. CS1-PE
is designed for students with prior programming experience and
leverages that prior experience to teach the same learning goals in
a single term, rather than two terms.

We focus on two time periods: academic years 2001–2007 and
2008–2012. Academic years will be referred to by the year in which
they begin, as all academic years span across two different calendar
years. The first-time period, 2001–2007 (Fall 2001–Spring 2008),
refers to the time period before best practices were implemented

Day 3: CS-1, Novices ICER ‘20, August 10–12, 2020, Virtual Event, New Zealand

184

Table 1: Metrics evaluated in this study

Metric Description

Fail Rate The percentage of students who received a D, F, or Withdrawal among students enrolled in the course.

Retained The percentage of students who graduated with a degree in computing after entering CS1-NPE or CS1-PE
already majoring in computing.

Switched The percentage of students who graduated with a degree in computing after entering CS1-NPE or CS1-PE
majoring in another discipline than computing (or as undeclared).

Upper-Division GPA Average grades received (GPA), including counting withdrawals as failures, for students who attempted at
least 5 upper-division computer science courses required for the major.

Time-to-Degree Number of years from starting at our institution until graduation for students who receive a bachelor’s in
a computing major.

in CS1-NPE. The second time period, 2008–2012 (Fall 2008–Spring
2013), refers to the time period when best practices were imple-
mented in CS1-NPE. CS1-PE had no significant change in course
delivery over the time period between 2001—2012 and, as such, is
useful for comparison. We gathered student data from those who
enrolled in CS1-NPE and CS1-PE across the twelve-year time period
(including their grades and graduation outcomes after the end of
that period).

The analysis ends with the Spring of 2013 as our institution
began restricting students’ ability to major in computing at that
time. The restrictionswere significant, creating a highly competitive
environment for those hoping to major and still turning away many
students who were interested in the major. As many of the metrics
we evaluate would likely be impacted by this change, particularly
for underrepresented students based on recent work by Nguyen
and Lewis [30], we end our analysis at the point those changes
were made. In addition, we need to allow students time to graduate
after they take the CS1 course for a number of our metrics to be
accurate (e.g., retention and time-to-degree).

The primary metrics used in our evaluation appear in Table 1.
Students included in the analysis are those who took CS1-NPE or
CS1-PE during the regular school year as the courses are infre-
quently taught in the summer. Summer terms are accelerated and
are typically taught by outside instructors. In addition, students
needed to have earned a letter grade or withdrew from the CS1-
NPE or CS1-PE course. Students who enrolled initially but dropped
before the 4th week drop deadline were not present in the data
provided and are hence not part of our analysis.

The data was provided from UC San Diego’s educational services
office in accordance with Human Subjects approval. The charac-
teristics of the courses and students appear in Table 2. One special
challenge in the data was how to handle students who failed CS1-
PE or CS1-NPE but then later retook either CS1-PE or CS1-NPE.
For Fail Rate, the student is counted in each course they received a
grade. But all other metrics are tracked based on the final attempt
outcomes of each student. As such, we grouped students based
on their final attempt of a course. For example, if a student took
CS1-NPE and received an “F” in 2007 and then took CS1-PE in 2009
and received a “C”, they are considered a CS1-PE student in the
2008-2012 time period for metrics other than Fail Rate.

Once the student data was filtered, we ensured that the data
matched with results in the prior evaluation of this course [35].

Table 2: Overall group breakdown of the classes. Unique stu-
dents are students who took their last attempt in the given
time period. Percentages are based on unique students.

CS1-NPE CS1-PE
2001– 2008– 2001– 2008–
2007 2012 2007 2012

Enrolled 1732 2046 1513 1265
Unique 1510 1868 1365 1179
% Female 25.4% 31.6% 15.4% 18.9%
% URM 10.5% 14.5% 5.3% 9.0%

% Comp Major 25.6% 41.7% 39.2% 53.7%

Specifically the Fail Rates in CS1-NPE and CS1-PE reported in the
previous study matched the rates in our data.2

4.1 Data Analysis
Throughout our analysis, we note that different subsets of stu-

dents are considered for different calculations, dependent on a
pre-selected criteria. For example, a student who took CS1-NPE but
earned a non-CS degree would not be considered in our calculation
for Time-to-Degree. Rather than reporting the number of students
for each metric throughout, we provide these numbers in Tables 3
and 4.

To answer our research questions, we use a combination of de-
scriptive statistics, statistical tests for significance with significance
set atp = 0.05, and effect sizes. To determine whether particular fac-
tors impacted outcomes for students when compared against other
factors, we used a likelihood ratio test on regression models [29].
For clarity, more details regarding the particular tests performed
are included along with the results.

5 RESULTS
5.1 RQ1: All Students

Tables 5 and 6 summarize the average metrics across both time
periods for both courses. The overall average for each metric is
followed by the significance and effect size test used to analyze
the results. For binary metrics, such as Fail Rates, Retained, and
Switched rates, we used aZ -test to test for significance. Relative risk

2Numbers matched or were within 1% of those previously reported. Conversations
with the office providing the data explained that different databases handle some
students differently (e.g., students who withdrew for medical leave, etc.).

Day 3: CS-1, Novices ICER ‘20, August 10–12, 2020, Virtual Event, New Zealand

185

Table 3: CS1-NPE Sample Sizes

All Male Female Non-URM URM
2001– 2008– 2001– 2008– 2001– 2008– 2001– 2008– 2001– 2008–
2007 2012 2007 2012 2007 2012 2007 2012 2007 2012

Enrollment 1732 2046 1289 1398 443 647 1517 1749 215 297
Unique 1510 1868 1126 1276 384 591 1351 1597 159 271
CS Majors Entered 739 1037 599 807 140 229 642 875 97 162
Non-CS Majors Entered 771 831 527 469 244 362 709 722 62 109
>= 5 Upper Div Courses 405 763 321 618 84 174 366 699 39 94
CS Graduates 387 779 303 600 84 178 355 695 32 84

Table 4: CS1-PE Sample Sizes

All Male Female Non-URM URM
2001– 2008– 2001– 2008– 2001– 2008– 2001– 2008– 2001– 2008–
2007 2012 2007 2012 2007 2012 2007 2012 2007 2012

Enrollment 1513 1265 1261 1023 252 241 1431 1140 82 125
Unique 1365 1179 1155 955 210 224 1292 1073 73 106
CS Majors Entered 669 730 588 615 81 115 627 664 42 66
Non-CS Majors Entered 696 449 567 340 129 109 665 409 31 40
>= 5 Upper Div Courses 567 664 494 562 73 102 540 613 27 51
CS Graduates 535 633 465 532 70 101 512 590 23 43

Table 5: An overall summary of average values for binary metrics, including significance test (* for p<0.05) and effect size.

CS1-NPE CS1-PE

2001–2007 2008–2012 p (Z-test) Relative Risk 2001–2007 2008–2012 p (Z-test) Relative Risk

Fail Rate 0.236 0.099 2.909e-31* 0.418 0.200 0.179 0.161 0.895
Retained 0.471 0.624 9.482e-11* 0.711 0.714 0.767 0.024* 0.816
Switched 0.051 0.159 1.101e-12* 0.886 0.083 0.163 3.469e-05* 0.914

Table 6: An overall summary of average values for continuous metrics, including significance test (* for p<0.05) and effect size.

CS1-NPE CS1-PE

2001–2007 2008–2012 p (T-test) Cohen’s D 2001–2007 2008–2012 p (T-test) Cohen’s D

Upper-Division GPA 2.708 2.842 0.002* 0.187 2.875 2.921 0.290 0.061
Time-to-Degree 4.490 4.490 0.937 -0.002 4.070 4.196 0.042* 0.063

was used in order to analyze the effect size of the intervention in our
data [1]. Relative risk conveys the risk of a negative outcome (failure,
leaving the major, not joining the major) after an intervention
relative to the risk before. Values less than 1 express a reduction in
risk (e.g., the relative risk for Fail Rates for CS1-NPE of 0.418 means
the risk of failing after the best practices intervention is 41.8% of
the average risk before the intervention).

For continuous metrics, such as Upper-Division GPA and Time-
to-Degree, we used aT -test for significance and Cohen’s D for effect
size. Since standard Cohen’s D uses high variance in the data to
calculate an accurate effect size, standard Cohen’s D does not work
well with GPA data. Hence, we used a variation of the Cohen’s D
appropriate for GPA analysis [53].

Looking at students in CS1-NPE in Tables 5 and 6 we see substan-
tial positive impacts occurring in Fail Rates, Retention rates in the
major, Switch rates into the major, and upper-division course per-
formance. The reduced failure rates for CS1-NPE also led to fewer
students retaking CS1 (from 8.6% of all students in the course failing
and retaking it to 4.1%) whereas CS1-PE saw an rise in students
retaking CS1 between the time periods (from 11% to 14.8%).

The relative risk indicates that students who took CS1-NPE with
the intervention were at around 42% of the total average risk of
failing the course, 71% of the total average risk of not being retained
in the major, and at around 89% of the total average risk of not
switching into the major. The positive effect, per Cohen’s D, on
Upper-Division GPA is small (where a small effect size is considered
at 0.2) [53]. For all these metrics, students in the best practices

Day 3: CS-1, Novices ICER ‘20, August 10–12, 2020, Virtual Event, New Zealand

186

Figure 1: Average annual Fail Rates for CS1-NPE and CS1-
PE.

Figure 2: Average annual Retained rates for studentswho en-
tered CS1-NPE and CS1-PE as computer science majors and
graduated with a computer science degree. Y-axis begins at
0.3 to help show differences over time.

time period saw statistically significantly improved outcomes with
varying effect sizes. There was no perceivable impact to Time-
to-Degree as the average is the same for both time periods. We
note that a myriad of factors impact Time-to-Degree but this is
consistent with the other findings that there is no evidence students
were harmed by the best-practices course.

5.2 RQ2: Effect of Time Periods
5.2.1 Comparing CS1-NPE and CS1-PE statistics. Recall that there
was no intervention implemented in CS1-PE during the time period
of the intervention in CS1-NPE. Hence, our first step in answering
RQ2 is to explore how students performed when taking CS1-PE
in each time period. Tables 5 and 6 provide the results for CS1-PE.
Here we see that CS1-PE also experienced statistically significant
improvements to Retained and Switched. Unfortunately, it also saw
a statistically significant increase in Time-to-Degree. For Fail Rates
and Upper-Division GPA, it appears CS1-NPE uniquely benefited in
a statistically significant way during the best practices time period.
For Retained and Switched, both courses benefited which might
be expected given the increased interest in computing nationally
during the same time period. Examining the effect size for Retained
and Switched, we see the impact on CS1-NPE appears larger than
for CS1-PE as the relative risk is higher for CS1-PE. We hesitate to
draw too large a conclusion from this, however, as CS1-PE started
with better values for each metric. Lastly, although Time-to-Degree
remained roughly constant between time periods for CS1-NPE, it
worsened significantly for CS1-PE.

Figure 3: Average annual Switched rates for studentswho en-
tered CS1-NPE and CS1-PE as non-computer science majors
and graduated with a computer science degree.

5.2.2 Outcomes per Year. One possible reason for the improve-
ments for the two averages between time periods could simply be
a steady improvement over time (e.g., a steady positive slope from
2001–2012 would result in lower averages in 2001-2007 than 2008–
2012). To explore this possible explanation, Figures 1–5 contain the
average for each metric over each academic year. The black vertical
bar indicates the year when best practices were introduced into
CS1-NPE.

The Fail Rates in Figure 1 varied year to year with no general
trend (although there might have been a negative trend for CS1-
NPE starting in 2005). The decline in Fail Rates for CS1-NPE stands
out relative to CS1-PE. Retained rates for CS1-PE in Figure 2 remain
relatively constant with a slight increase in the later time period
whereas CS1-NPE sees a marked increase over time (2004 is a partic-
ularly poor year for CS1-NPE). CS1-PE and CS1-NPE appear rather
comparable for the rate of students switching into the major over
time, in Figure 3, with perhaps CS1-NPE catching up to CS1-PE
during the best practices time period.

Upper-Division GPA over time, found in Figure 4, shows that
students in CS1-NPE during the earlier time frame under-performed
in later courses relative to those who took CS1-PE. Encouragingly,
after the change to best practices, CS1-NPE appears to close that
gap. Figure 5 shows that Time-to-Degree over time remains mostly
consistent. The fact that Time-to-Degree is longer for students
in CS1-NPE is expected as CS1-NPE is the first of a two course
sequence relative to a single CS1-PE course. Both courses feed into
a long dependency chain of required courses for computing majors
that might explain the additional quarter (approximately).

5.2.3 Regression Modelling for Time. Another approach to examin-
ing the impact of time on the results is to use regression modeling
on CS1-NPE. Specifically, the goal is to build a regression model
(logistical for binary outcomes, linear for continuous outcomes)
to predict student outcomes. The first model is given years as de-
pendent variables (along with an offset) to predict the particular
outcome. The second model is provided with the dependent vari-
able of best practices (a binary variable false for 2001–2007 and true
for 2008–2012) on top of the year and offset variables. The question
becomes whether the model’s accuracy improves by adding the best
practices variable. If the model’s accuracy improves significantly,
this means more of the variance in the outcomes can be explained
if the model knows about the course revision than without. This

Day 3: CS-1, Novices ICER ‘20, August 10–12, 2020, Virtual Event, New Zealand

187

Figure 4: Average annual Upper-Division GPA for students
who had at least five upper division course attempts. Y-axis
begins at a GPA of 2.5 to help show the differences over time.

Figure 5: Average annual Time-to-Degree for computer sci-
ence graduates. Y-axis begins at 3.9 years as expected time-
to-degree is 4 years at UC San Diego.

Table 7: Results of likelihood ratio test and corresponding
chi-squared p-values between regression models. For Fail
Rates, Upper-Division GPA, and Retained, a best-practices
feature significantly improves the model beyond the model
that includes only time in years.

Metric Likelihood Ratio p

Fail Rates 11.021 0.0009*
Retained 5.089 0.024*
Switched 1.529 0.216
Upper-Division GPA 4.000 0.046*
Time-to-Degree 2.800 0.094

would provide evidence that the transition to best practices changed
the outcomes for CS1-NPE students beyond changes over time.

To accomplish this, we use the likelihood ratio test [29]. Specif-
ically, we observe the likelihood ratio between models for each
metric and their corresponding chi-squared p-value, with degree
of freedom 1, to see if the addition of the intervention feature is
significant in predicting student outcomes. The results of these
tests appear in Table 7. For Fail Rates, Retained, and Upper-Division
GPA, including the best-practices feature better informs the model
than time alone. This provides further evidence that the course-
redesign impacted outcomes beyond what one might expect from
just changes over time.

5.3 RQ3: Underrepresented Groups
Table 8 provides the outcomes for male and female students

across both time periods in CS1-NPE. The addition of best practices
into CS1-NPE appears to have a positive benefit for both male and
female students. Recall that our data set is heavily skewed towards
males in each year observed in the study. Similar to our overall
results, Fail Rates, Retained and Switched rates, and Upper-Division
GPA improved significantly for male and female students after best
practices were enacted. Examining the scale of the benefits, women
appear to benefit more for some metrics and men for others.

Table 9 provides the outcomes for CS1-PE where Switch rates
are significant for both genders whereas Fail Rates, Upper-Division
GPA, and Time-to-Degree are significant only for women. It appears
that much of the benefits that we saw overall for CS1-PEwere due to
large improvements for women over this time period. It is unclear
what may have changed between these time periods to benefit
female students in CS1-PE and remains a topic for future analysis.

Similar benefits can be seen when comparing non-URM versus
URM students throughout both courses and time periods in Ta-
bles 10 and 11. However, it is important to acknowledge that the
number of URM students that were considered in each metric analy-
sis was small compared to non-URM students. The first finding that
stands out is simply than URM students struggle at our institution
relative to non-URM students in CS1-NPE and CS1-PE. Fail Rate
is particularly striking as the failure rate for URMs for CS1-NPE
was nearly twice that of CS1-PE (44.7% versus 24.4%) before the
transition to best practices. After the transition, CS1-NPE Fail Rate
for URM dropped remarkably from 44.7% to 17.5% between time
frames whereas CS1-PE saw an increase for URM students from
24.4% to 28.0%. Also striking is that the percentage of URM students
switching into the major for CS1-NPE and CS1-PE was 0 during
the 2001-2007 time period. The numbers were small (between 2001–
2007, only 62 URM students took CS1-NPE as non-majors and only
31 URM students took CS1-PE), but the fact none switched remains
jarring. In the best practices time period, the Switch rate for CS1-PE
increased to 7.5% while CS1-NPE rose to 14.7%.

Overall, for CS1-NPE, both URM and non-URM students bene-
fited statistically significantly for three of the five metrics. In ad-
dition, for CS1-NPE, effect sizes for improvements for URMs were
comparable to non-URMs except for Upper-Division GPA where
URMs experienced a considerably larger improvement than non-
URM. In contrast, for CS1-PE, none of the metrics are statistically
significant for URM students. This is likely due to a combination
of lower effect sizes for all students and lower numbers of URM
students in the course (relative to CS1-NPE).

6 DISCUSSION
6.1 Better Instructors?

One concern for our analysis was that there might have just been
an improvement in the quality of teachers in the later time period.
Perhaps more dedicated teachers were willing to teach the best
practices version of the course than those who taught the course
previously. We examined this in two separate ways. First, we looked
at four instructors who had taught both before and after the course
redesign. Because sample sizes reduced when looking at individual
instructors who might have taught only a single term during one of

Day 3: CS-1, Novices ICER ‘20, August 10–12, 2020, Virtual Event, New Zealand

188

Table 8: CS1-NPE Results by Gender

Male Female

2001–2007 2008–2012 p (Z-test) Relative Risk 2001–2007 2008–2012 p (Z-test) Relative Risk

Fail Rate 0.231 0.094 4.514-23* 0.405 0.251 0.110 4.799e-10* 0.438
Retained 0.471 0.634 5.660e-10* 0.691 0.471 0.585 0.033* 0.785
Switched 0.040 0.188 1.763e-14* 0.846 0.074 0.122 0.057 0.948

2001–2007 2008–2012 p (T-test) Cohen’s D 2001–2007 2008–2012 p (T-test) Cohen’s D

Upper-Division GPA 2.736 2.849 0.023* 0.156 2.599 2.824 0.016* 0.323
Time-to-Degree 4.489 4.505 0.786 0.008 4.509 4.433 0.477 -0.038

Table 9: CS1-PE Results by Gender

Male Female

2001–2007 2008–2012 p (Z-test) Relative Risk 2001–2007 2008–2012 p (Z-test) Relative Risk

Fail Rate 0.177 0.172 0.764 0.973 0.313 0.203 0.005* 0.649
Retained 0.707 0.771 0.012* 0.784 0.765 0.748 0.779 1.075
Switched 0.088 0.171 0.0002* 0.910 0.062 0.138 0.048* 0.919

2001–2007 2008–2012 p (T-test) Cohen’s D 2001–2007 2008–2012 p (T-test) Cohen’s D

Upper-Division GPA 2.894 2.905 0.815 0.014 2.748 3.011 0.018* 0.366
Time-to-Degree 4.126 4.177 0.464 0.025 3.693 4.297 1.275e-05* 0.302

Table 10: CS1-NPE Results for non-URM and URM Students

Non-URM URM

2001–2007 2008–2012 p (Z-test) Relative Risk 2001–2007 2008–2012 p (Z-test) Relative Risk

Fail Rate 0.206 0.086 1.548e-23* 0.416 0.447 0.175 2.839e-12* 0.392
Retained 0.492 0.662 1.748e-11* 0.666 0.330 0.420 0.150 0.866
Switched 0.055 0.161 7.005e-11* 0.888 0 0.147 0.001* 0.853

2001–2007 2008–2012 p (T-test) Cohen’s D 2001–2007 2008–2012 p (T-test) Cohen’s D

Upper-Division GPA 2.754 2.877 0.007* 0.175 2.273 2.581 0.033* 0.409
Time-to-Degree 4.461 4.453 0.884 -0.004 4.859 4.792 0.744 -0.034

Table 11: CS1-PE Results for non-URM and URM Students

Non-URM URM

2001–2007 2008–2012 p (Z-test) Relative Risk 2001–2007 2008–2012 p (Z-test) Relative Risk

Fail Rate 0.197 0.168 0.055 0.850 0.244 0.280 0.567 1.148
Retained 0.726 0.783 0.016* 0.791 0.548 0.606 0.551 0.871
Switched 0.087 0.171 3.303e-05* 0.908 0 0.075 0.118 0.925

2001–2007 2008–2012 p (T-test) Cohen’s D 2001–2007 2008–2012 p (T-test) Cohen’s D

Upper-Division GPA 2.894 2.938 0.318 0.059 2.503 2.720 0.307 0.248
Time-to-Degree 4.061 4.190 0.044* 0.064 4.261 4.279 0.947 0.009

the time periods, we expected few findings to be statistically signifi-
cant. However, we still found statistically significant reductions for
Fail Rates, Retained, and Switched. Figure 6 provides the results per
instructor and sample sizes for each instructor appears in Table 12.
From Figure 6, we see that student outcomes improved for each
instructor during the best practices time period for all significant

differences in performance. Overall, it appears the transition to best
practices by these instructors corresponded to improved student
outcomes (Fail Rates, Retained, and Switched).

Second, we also used a likelihood ratio test to examine whether
our linear or logistic model that includes offset, years, and instructor
parameters would improve if given best practices improved the

Day 3: CS-1, Novices ICER ‘20, August 10–12, 2020, Virtual Event, New Zealand

189

(a) Fail Rate (b) Retained (c) Switched

(d) Upper-Division GPA (e) Time-to-Degree

Figure 6: Averages for each metric for each instructor who taught CS1-NPE in both time periods. Instructor significance for a
given metric between time periods is indicated with an asterisk next to the instructor’s label.

Table 12: CS1-NPE sample sizes for instructors who taught during both time frames.

Instructor 1 Instructor 2 Instructor 3 Instructor 4
2001– 2008– 2001– 2008– 2001– 2008– 2001– 2008–
2007 2012 2007 2012 2007 2012 2007 2012

Enrolled 333 499 453 168 129 502 612 172
Unique 280 455 404 158 113 481 522 163
CS Majors Entered 178 260 224 67 47 271 265 69
Non-CS Majors Entered 102 195 180 91 66 210 257 94
>= 5 Upper Div Courses 101 195 110 53 34 209 146 44
CS Graduates 101 187 102 52 31 210 142 43

Table 13: Results of likelihood ratio test and correspond-
ing chi-squared p-values comparing a model with time and
instructor features against a model that also includes the
best-practices feature. For Fail Rates and Retained, the best-
practices feature significantly improves the model.

Metric Likelihood Ratio p

Fail Rate 62.926 2.146e-15*
Retained 6.580 0.010*
Switched 0.819 0.365
Upper-Division GPA 3.000 0.083
Time-to-Degree 2.000 0.157

models’ accuracy. Results can be found in Table 13. For both Fail
Rates and Retained, the best practices feature improves the model’s
performance significantly, suggesting it was the adoption of best
practices that resulted in the improved outcomes for those metrics.

6.2 Implications of Findings
Challenges from Colleagues: A motivation for this study was
faculty colleagues challenging research results on Peer Instruction,
Media Computation, and Pair Programming. A common refrain
was that although these approaches may have succeeded in lower-
ing failure rates or briefly improving retention, it was really just
bringing in poorly prepared students who were bound to struggle
and leave the program later. We are quite pleased that, for this
particular redesign, the larger body of students went on to succeed
in the rest of the program at the same rate as before (or better).
Factors in Success: Given the positive outcomes related to the
redesign, what factors led to its success? We suspect there were at
least two main contributors. The first was the mandate to adopt
evidence-based practices and the selection of three practices that,
although they each seemed promising at the time, have each been
shown to be broadly effective in the research since. The second was
a broad commitment to the redesign from the faculty who drove the
changes themselves, the graduate and undergraduate instructional
staff who helped enact those changes, and the other faculty who
adopted the course when they later taught it.

Day 3: CS-1, Novices ICER ‘20, August 10–12, 2020, Virtual Event, New Zealand

190

Underrepresented Groups: A recent meta-analysis of pedagogy
in STEM found that active learning causes the achievement gap
for underrepresented groups (relative to represented groups) to be
narrowed [46]. We found that students from both groups benefited
from the course redesign and hence found no consistent reduction
in the achievement gap for our metrics. However, the raw differ-
ence in the benefit was larger in many cases because the outcomes
for students from underrepresented groups (particularly URMs)
were worse at the start. For example, the Fail Rate for represented
students in CS1-NPE dropped from 20.6% to 8.6% after the addition
of best practices while the Fail Rate for URM students in CS1-NPE
dropped from 44.7% to 17.5%. As raw percentages, URM students
could be seen as benefiting more from the change. However, as a
ratio, URM students failed CS1-NPE 2.16 times more than repre-
sented groups before the change and 2.04 times after the change.
Although the improved outcomes for URM students is encouraging,
the resistant disparity in outcomes for URM students is a clear
problem that urgently requires more research and critical analysis.
Longitudinal Studies: This project suffered f rom several chal-
lenges due to its longitudinal nature, including gaining approval
to collect sensitive data and inconsistent data reporting within in-
ternal databases. Despite these challenges, we strongly encourage
similar studies so that the community can improve understanding
of the long-term impact of pedagogical changes.

6.3 Threats to Validity
Change in Time: Our comparisons of the CS1-PE and CS1-NPE
courses, as well as regression modeling of course outcomes, both
suggest that the redesign of the course explains the improvement in
Fail Rates and Retained. However, it is impossible to know if there
were changes in the perception of the computing field at the time
of the redesign—particularly given the increases in enrollments in
CS between 2008 and 2013 at UC San Diego and nationally [27].
In addition, changes elsewhere in the major may have impacted
student outcomes. However, there were no significant systemic
changes to our major over the examined time period.
Better Teachers: Although the improved Fail Rates and Retained
for the four instructors who taught before and after the course
redesign suggest that the improvement in the course are associ-
ated with the better outcomes found more broadly, there were still
differences in instructors between time frames. For example, one
instructor who had slightly higher Fail Rates in general taught the
course more during the earlier time frame than the later. As such,
it is difficult to know definitely how large an impact the variation
in instructors had on the outcomes of this study.
Combining Best Practices: One challenge in interpreting these
results is that by combining multiple best practices in one course,
we cannot distinguish which were more important or if they were
needed in combination. As such, we can only conclude the combi-
nation appears to have been successful.

6.4 Call to Action
Jobs in the computing industry are plentiful and pay well. Unfor-

tunately, diversity in the computing industry continues to languish.
We adopted practices in one single course that increased the num-
ber of successful students graduating with computing degrees. To

be candid, the implementation of the course itself was significantly
less challenging (and more fun and rewarding) than conducting this
longitudinal analysis. Given the extensive evidence showing these
best practices provide substantial benefit to our students, why are
more institutions not replicating or implementing similar changes?
We do not know for sure, but can posit several factors. First, we
recognize faculty change can be hard [18]. Second, we suspect
institutions feel the need to distinguish themselves. In particular,
computer scientists may feel the need to build their own solutions
as the computing field favors the “new” (albeit un- or less-tested)
and denigrates anything “old” (where old is a handful years?). Are
these self-centered factors worth the cost of keeping the discipline
less accessible to students who could succeed?

We also recognize US society is biased and does not provide a
level playing field for many subgroups, but especially people of
color. The computing profession is infamous for its lack of diversity
and for limited results in efforts to make change in this area. While
URM students benefited substantially from the best practices we
implemented, at the end they were still 2 times more likely to fail
the course than majority students. We as a community should find
this deeply concerning. The time has come for CS instructors to
adopt evidence-based instructional practices to improve outcomes
for their underrepresented students and for the CER community to
prioritize finding further solutions to help URM students.

7 CONCLUSION
In this longitudinal study that spans two decades, we examined

the impact of redesigning a CS1 course for students without prior
programming experience to include Peer Instruction, Media Com-
putation, and Pair Programming. We find that over the five years
after the redesign, students in the course had lower failure rates and
computing majors had a higher chance of being retained through
graduation. These improvements appear connected to the course
revisions, even when examining changes in other courses (without
changes) and examining changes over time. Moreover, instructors
who taught before and after the revision saw similar improvements
to student outcomes after the course revision.

Despite this larger group of students succeeding and progress-
ing into later computer science courses, we find no evidence that
their outcomes were worse than those of students from before
the redesign. Although there are encouraging signs that students
from underrepresented and represented groups benefited from the
changes and that the magnitude of those benefits were higher for
URM students, there remains a large gap between URM students
and represented students that deserves further study. Given the
multiple research studies documenting the success of each of these
instructional practices and the evidence from this study that these
improved outcomes are sustained over many years, we hope CS1 in-
structors will be further encouraged to adopt these evidence-based
instructional practices for the betterment of their students.

ACKNOWLEDGMENTS
The authors thank Rita Keil, Laura Kertz, Carolyn Sandoval, and

Ying Xiong for their assistance as well as the reviewers for their
helpful feedback. This work was supported in part by NSF award
1712508 as well as a UCSD Sloan Scholar Fellowship, a UCSD STARS
Fellowship, and a Gates Millennium Scholarship.

Day 3: CS-1, Novices ICER ‘20, August 10–12, 2020, Virtual Event, New Zealand

191

REFERENCES
[1] D. G. Altman. Practical statistics for medical research. CRC press, 1990.
[2] American Association of University Women. Educational Foundation. Commis-

sion on Technology and Gender and Teacher Education. Tech-savvy: Educating
girls in the new computer age. American Association of University Women, 2000.

[3] L. S. Blackwell, K. H. Trzesniewski, and C. S. Dweck. Implicit theories of intelli-
gence predict achievement across an adolescent transition: A longitudinal study
and an intervention. Child development, 78(1):246–263, 2007.

[4] D. Bouvier, E. Lovellette, J. Matta, J. Bai, J. Chetty, S. Kurkovsky, and J. Wan.
Factors affecting the adoption of peer instruction in computing courses. In
Proceedings of the Working Group Reports on Global Computing Education, pages
1–25, 2019.

[5] J. S. Brown, A. Collins, and P. Duguid. Situated cognition and the culture of
learning. Educational researcher, 18(1):32–42, 1989.

[6] M. T. Chi and R. Wylie. The ICAP framework: Linking cognitive engagement to
active learning outcomes. Educational psychologist, 49(4):219–243, 2014.

[7] C. H. Crouch and E. Mazur. Peer instruction: Ten years of experience and results.
American Journal of Physics, 69, 2001.

[8] P. Deshpande, C. B. Lee, and I. Ahmed. Evaluation of peer instruction for cy-
bersecurity education. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, pages 720–725, 2019.

[9] A. Forte and M. Guzdial. Computers for communication, not calculation: Media
as a motivation and context for learning. In 37th Annual Hawaii International
Conference on System Sciences, pages 10–pp, 2004.

[10] J. Greeno, D. Smith, and J. Moore. Transfer of situated learning. In D. Detterman
and R. Sternberg, editors, Transfer on trial: intelligence, cognition, and instructionh,
pages 99–167. 1993.

[11] M. Guzdial. A media computation course for non-majors. In Proceedings of the 8th
Annual Conference on Innovation and Technology in Computer Science Education,
pages 104–108, 2003.

[12] M. Guzdial. Exploring hypotheses about media computation. In Proceedings of
the 9th Annual ACM Conference on International Computing Education Research,
pages 19–26, 2013.

[13] M. Guzdial. Computing for other disciplines. In S. A. Fincher and A. V. Robins,
editors, The Cambridge Handbook of Computing Education Research, chapter 19,
pages 584–605. Cambridge University Press, 2019.

[14] M. Guzdial and B. Ericson. Introduction to computing & programming in Java: a
multimedia approach. Pearson Prentice Hall, 2007.

[15] M. Guzdial and A. Forte. Design process for a non-majors computing course. In
Proceedings of the 36th ACM Technical Symposium on Computer Science Education,
pages 361–365, 2005.

[16] R. R. Hake. Interactive-engagement versus traditional methods: A six-thousand-
student survey of mechanics test data for introductory physics courses. American
Journal of Physics, 66(1):64–74, 1998.

[17] B. Hanks, S. Fitzgerald, R. McCauley, L. Murphy, and C. Zander. Pair programming
in education: A literature review. Computer Science Education, 21(2):135–173,
2011.

[18] C. Henderson and M. H. Dancy. Barriers to the use of research-based instruc-
tional strategies: The influence of both individual and situational characteristics.
Physical Review Special Topics-Physics Education Research, 3(2):020102, 2007.

[19] J. K. Knight and W. B. Wood. Teaching more by lecturing less. Cell biology
education, 4(4):298–310, 2005.

[20] J. Lave and E. Wenger. Situated learning: Legitimate peripheral participation.
Cambridge university press, 1991.

[21] C. B. Lee, S. Garcia, and L. Porter. Can peer instruction be effective in upper-
division computer science courses? Transactions on Computing Education, 13(3),
Aug. 2013.

[22] C. M. Lewis and N. Shah. How equity and inequity can emerge in pair pro-
gramming. In Proceedings of the 11th Annual ACM Conference on International
Computing Education Research, pages 41–50, 2015.

[23] S. N. Liao, D. Zingaro, C. Alvarado, W. G. Griswold, and L. Porter. Exploring the
value of different data sources for predicting student performance in multiple
cs courses. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, pages 112–118, 2019.

[24] S. N. Liao, D. Zingaro, M. A. Laurenzano, W. G. Griswold, and L. Porter. Light-
weight, early identification of at-risk cs1 students. In Proceedings of the 12th
Annual ACM Conference on International Computing Education Research, pages
123–131, 2016.

[25] S. N. Liao, D. Zingaro, K. Thai, C. Alvarado,W. G. Griswold, and L. Porter. A robust
machine learning technique to predict low-performing students. Transactions on
Computing Education, 19(3):1–19, 2019.

[26] C. McDowell, L.Werner, H. E. Bullock, and J. Fernald. Pair programming improves
student retention, confidence, and program quality. Communications of the ACM,
49(8):90–95, 2006.

[27] National Academies of Sciences, Engineering, and Medicine and others. Assess-
ing and responding to the growth of computer science undergraduate enrollments.
National Academies Press, 2018.

[28] National Center for Science and Engineering Statistics. Women, minorities, and
persons with disabilities in science and engineering: Special report NSF 19-340.
2019.

[29] M. Natrella. NIST/SEMATECH e-handbook of statistical methods. http://www.
itl.nist.gov/div898/handbook, 2010.

[30] A. Nguyen and C. M. Lewis. Competitive enrollment policies in computing depart-
ments negatively predict first-year students’ sense of belonging, self-efficacy, and
perception of department. In Proceedings of the 51st ACM Technical Symposium
on Computer Science Education, pages 685–691, 2020.

[31] L. Porter, D. Bouvier, Q. Cutts, S. Grissom, C. Lee, R. McCartney, D. Zingaro,
and B. Simon. A multi-institutional study of peer instruction in introductory
computing. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education, pages 358–363, 2016.

[32] L. Porter, S. Garcia, J. Glick, A. Matusiewicz, and C. Taylor. Peer instruction in
computer science at small liberal arts colleges. In Proceedings of the 18th Annual
Conference on Innovation and Technology in Computer Science Education, 2013.

[33] L. Porter, C. B. Lee, and B. Simon. Halving fail rates using peer instruction: A
study of four computer science courses. In Proceedings of the 44th Special Interest
Group on Computer Science Education Technical Symposium, 2013.

[34] L. Porter, C. B. Lee, B. Simon, and D. Zingaro. Peer instruction: Do students really
learn from peer discussion in computing? In Proceedings of the 7th Annual ACM
Conference on International Computing Education Research, 2011.

[35] L. Porter and B. Simon. Retaining nearly one-third more majors with a trio of
instructional best practices in CS1. In Proceedings of the 44th Special Interest
Group on Computer Science Education Technical Symposium, 2013.

[36] L. Porter and B. Simon. A Case Study of Peer Instruction: From University of
California, San Diego to the Computer Science Community. In S. A. Fincher and
A. V. Robins, editors, The Cambridge Handbook of Computing Education Research,
chapter 30, pages 861–874. Cambridge University Press, 2019.

[37] L. Porter, D. Zingaro, and R. Lister. Predicting student success using fine grain
clicker data. In Proceedings of the 10th Annual ACM Conference on International
Computing Education Research, pages 51–58, 2014.

[38] L. Rich, H. Perry, and M. Guzdial. A CS1 course designed to address interests of
women. ACM SIGCSE Bulletin, 36(1):190–194, 2004.

[39] N. Salleh, E. Mendes, and J. Grundy. Empirical studies of pair programming
for CS/SE teaching in higher education: a systematic literature review. IEEE
Transactions on Software Engineering, 37(4):509–525, 2010.

[40] B. Simon, S. Esper, L. Porter, and Q. Cutts. Student experience in a student-
centered peer instruction classroom. In Proceedings of the 9th Annual ACM
Conference on International Computing Education Research, 2013.

[41] B. Simon, C. Hundhausen, C. McDowell, L. Werner, H. Hu, , and C. Kussmaul.
Students as teachers and communicators. In S. A. Fincher and A. V. Robins,
editors, The Cambridge Handbook of Computing Education Research, chapter 29,
pages 827–857. Cambridge University Press, 2019.

[42] B. Simon, J. Parris, and J. Spacco. Howwe teach impacts learning: peer instruction
vs. lecture in CS0. In Proceedings of the 44th ACM Technical Symposium on
Computer Science Education, 2013.

[43] R. H. Sloan and P. Troy. CS 0.5: a better approach to introductory computer
science for majors. In Proceedings of the 39th ACM Technical Symposium on
Computer Science Education, pages 271–275, 2008.

[44] M. K. Smith, W. B. Wood, W. K. Adams, C. Wieman, J. K. Knight, N. Guild, and
T. T. Su. Why peer discussion improves student performance on in-class concept
questions. Science, 323(5910):122–124, 2009.

[45] A. E. Tew, C. Fowler, and M. Guzdial. Tracking an innovation in introductory cs
education from a research university to a two-year college. In Proceedings of the
36th ACM Technical Symposium on Computer Science Education, pages 416–420,
2005.

[46] E. J. Theobald,M. J. Hill, E. Tran, S. Agrawal, E. N. Arroyo, S. Behling, N. Chambwe,
D. L. Cintrón, J. D. Cooper, G. Dunster, et al. Active learning narrows achieve-
ment gaps for underrepresented students in undergraduate science, technol-
ogy, engineering, and math. Proceedings of the National Academy of Sciences,
117(12):6476–6483, 2020.

[47] K. Umapathy and A. D. Ritzhaupt. A meta-analysis of pair-programming in
computer programming courses: Implications for educational practice. ACM
Transactions on Computing Education, 17(4):1–13, 2017.

[48] L. S. Vygotsky. Mind in society: The development of higher psychological processes.
Harvard University Press, 1980.

[49] L. L. Werner. Female computer science students who pair program persist. In
ACM Journal of Educational Resources in Computing. Citeseer, 2004.

[50] L. L. Werner, B. Hanks, and C. McDowell. Pair-programming helps female
computer science students. Journal on Educational Resources in Computing,
4(1):4–es, 2004.

[51] L. Williams and R. Kessler. Pair programming illuminated. Addison-Wesley
Longman Publishing Co., Inc., 2002.

[52] T. D. Wilson, M. Damiani, and N. Shelton. Improving the academic performance
of college students with brief attributional interventions. In J. Aronson, editor,
Improving Academic Achievement: Impact of Psychological Factors on Education,
chapter 5, pages 91–110. Academic Press, 2002.

Day 3: CS-1, Novices ICER ‘20, August 10–12, 2020, Virtual Event, New Zealand

192

http://www.itl.nist.gov/div898/handbook
http://www.itl.nist.gov/div898/handbook

[53] K. Wuensch. Standardized effect size esitmation: Why and how? http://core.ecu.
edu/psyc/wuenschk/StatHelp/Effect%20Size%20Estimation.pdf, 2015. Accessed:
2020-04-02.

[54] H. Yuan and Y. Cao. Hybrid pair programming-a promising alternative to standard
pair programming. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, pages 1046–1052, 2019.

[55] D. Zingaro. Peer instruction contributes to self-efficacy in CS1. In Proceedings
of the 45th ACM Technical Symposium on Computer Science Education, pages

373–378, 2014.
[56] D. Zingaro, C. Bailey Lee, and L. Porter. Peer instruction in computing: the role of

reading quizzes. In Proceeding of the 44th ACM Technical Symposium on Computer
Science Education, pages 47–52, 2013.

[57] D. Zingaro and L. Porter. Peer instruction in computing: The value of instructor
intervention. Computers and Education, 71, 2014.

Day 3: CS-1, Novices ICER ‘20, August 10–12, 2020, Virtual Event, New Zealand

193

http://core.ecu.edu/psyc/wuenschk/StatHelp/Effect%20Size%20Estimation.pdf
http://core.ecu.edu/psyc/wuenschk/StatHelp/Effect%20Size%20Estimation.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Peer Instruction
	2.2 Media Computation
	2.3 Pair Programming

	3 Course Context
	4 Methods
	4.1 Data Analysis

	5 Results
	5.1 RQ1: All Students
	5.2 RQ2: Effect of Time Periods
	5.3 RQ3: Underrepresented Groups

	6 Discussion
	6.1 Better Instructors?
	6.2 Implications of Findings
	6.3 Threats to Validity
	6.4 Call to Action

	7 Conclusion
	Acknowledgments
	References

