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Recent advances in video manipulation techniques have made the generation of fake videos more accessible
than ever before. Manipulated videos can fuel disinformation and reduce trust in media. Therefore detection of
fake videos has garnered immense interest in academia and industry. Recently developed Deepfake detection
methods rely on Deep Neural Networks (DNNs) to distinguish AI-generated fake videos from real videos.
In this work, we demonstrate that it is possible to bypass such detectors by adversarially modifying fake
videos synthesized using existing Deepfake generation methods. We further demonstrate that our adversarial
perturbations are robust to image and video compression codecs, making them a real-world threat. We present
pipelines in both white-box and black-box attack scenarios that can fool DNN-based Deepfake detectors into
classifying fake videos as real. Finally, we study the extent to which adversarial perturbations transfer across
different Deepfake detectors and create more accessible attacks using universal adversarial perturbations that
pose a very feasible attack scenario since they can be easily shared amongst attackers. 1.
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1 INTRODUCTION
Deepfakes are a new genre of synthetic videos, in which a subject’s face is modified into a target
face in order to simulate the target subject in a certain context and create convincingly realistic
footage of events that never occurred. With the advent of sophisticated image and video synthesis
techniques, it has become increasingly easier to generate high-quality convincing fake videos.
Video manipulation methods like Face2Face [67], Neural Textures [66] and FaceSwap [38] operate
end-to-end on a source video and target face and require minimal human expertise to generate
fake videos in real-time.
The intent of generating such videos can be harmless and has led to advances in research on

synthetic video generation for movies, storytelling, and modern-day streaming services. However,
they can also be used maliciously to spread misinformation, harass individuals or defame famous
personalities [63]. These videos are now an emerging threat, especially within the realms of
politics and misinformation. Deepfakes have been used to create fake news aggravating political
and religious tensions, with the aim to influence results in election campaigns [31, 36, 49]. Such
extensive spread of fake videos through social media platforms has raised significant concerns
worldwide, particularly hampering the credibility of digital media. Recent research has found
evidence that widespread misinformation not only misleads individuals and reduces public trust on
digital media but also leads to increased cynicism within democratic societies [68].

While there are plenty of potential good uses for deepfakes, its misuse has been found in several
cases of defamation or impersonation. Moreover, the fact that there are plenty of free and easy to
use applications that allow users to swap their faces into movie clips and videos has accelerated
the widespread usage of deepfake to create new content thus increasing the prospects for abuse of
this technology.

Fig. 1. Adversarial Deepfakes for an EfficientNet [65] based Deepfake detector. Top: Frames of of a fake video
generated by Face2Face being correctly identified as fake by the detector. Bottom: Corresponding frames of
the adversarially modified fake video being classified as real by the detector.

To address the threats imposed by Deepfakes, the machine learning community has proposed
several countermeasures to identify forgeries in digital media [69]. The state-of-the-art methods for
detecting manipulated facial content in videos rely on Convolutional Neural Networks (CNNs) [1,
2, 21, 43, 56, 57]. Deepfake detection is typically modeled as a per-frame classification problem.
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Additionally, the best performing models employ a face-tracking method following which the
cropped face from a frame is passed on to a CNN-based classifier for classification as real or
fake [1, 15, 33, 60]. Some of the recent Deepfake detection methods also use models that operate on
a sequence of frames as opposed to a single frame to exploit temporal dependencies in videos [17].

While the above neural network based detection methods achieve promising results in accurately
detecting manipulated videos, in this paper we examine their vulnerabilities to adversarial examples.
An adversarial example is an intentionally perturbed input that can fool a victim classification
model [64]. Even though several works have demonstrated that neural networks are vulnerable
to adversarial inputs (Section 2.4), we want to explicitly raise this issue that has been ignored
by existing works on Deepfake detection (Section 2.2). Deepfakes have the potential to be very
damaging, therefore attacks designed to evade Deepfake detectors can cause immense harm when
compared to other attack scenarios. In addition, as Deepfakes are rare compared to the set of all
videos, detection of Deepfakes is already an extremely difficult problem.

To this end, we quantitatively assess the vulnerability of Deepfake detectors to adversarial
examples in different threat scenarios. Assuming a complete access (white-box) threat scenario, we
find that it is trivial to bypass a Deepfake detector with an imperceptible adversarial modification
to a given video. However, in a practical threat scenario the attacker may not have knowledge of
the victim detection model and parameters. Next we assume a more challenging threat scenario
in which the attacker can only query a victim model to get the detection scores for a video frame.
Even in this attack scenario, we find that it is possible to bypass the detector with a slightly higher
amount of adversarial perturbation. Additionally, to ensure the adversarial videos remain effective
even after video compression, we incorporate expectation over input transforms [4] while training
the adversarial perturbation to craft robust adversarial videos.

While the above attacks can effectively bypass Deepfake detectors, they can be easily thwarted by
the service provider. Detection models and parameters can be kept private to prevent the white-box
attack and query access can be limited to prevent the black-box attack. Adversarial examples pose
a practical threat to Deepfake detection if they are transferable across different detection methods.
That is, if adversarial videos designed to fool some open source Deepfake detection method can
also reliably fool other unseen CNN-based detection methods, this would pose a real security threat
to deploying CNN-based detectors in production. We experimentally demonstrate that it is possible
to design highly transferable adversarial examples by ensuring robustness to input-transformation
functions while training the perturbation. Finally, we design more accessible adversarial attacks by
creating transferable universal adversarial perturbations that can be universally added across all
frames of all videos to reliably fool a number of Deepfake detection methods.

A preliminary version of this work will appear in the conference: IEEE WACV, 2021 [34]. In this
work we extend our previous version of the paper in the following ways:

• We study adversarial threats to Deepfake detection from a practical perspective. First, we
address explainability of Deepfake detectors and provide insightful visualizations to explain
how the decisions are made by a detector (Section 2.3). We perform a transferability study
(Section 5.2) of adversarial perturbations, and report that our robust attack (Section 3.4)
results in highly transferable adversarial examples that can bypass unseen detection models
thereby posing a feasible threat in a black-box scenario.
• We propose a more accessible attack on Deepfake detectors using universal adversarial
perturbations (Section 3.7). Our algorithm finds a single universal perturbation that can
be added to all frames of a given video and fool multiple seen and unseen detectors to a
significant extent (Section 5.3).
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• We extend our attacks to new models and the DeepFake Detection Challange (DFDC) dataset
(Section 4, 5.2, 5.3).We attack the state-of-the-art detectors from theDFDChosted by Facebook,
Inc in 2020. The three detectors we choose to evaluate are the top three winners of the
challenge.

2 BACKGROUND
2.1 Generating Deepfakes
Until recently, the ease of generating manipulated videos has been limited by manual editing tools.
However, since the advent of deep learning and inexpensive computing services, there has been
significant work in developing new techniques for automatic digital forgery. To aid research on
Deepfake detection, there have been efforts in curating datasets of real and deepfake videos. In
our work, we generate adversarial examples for videos in the FaceForensics++2 [57] and DeepFake
Detection Challenge (DFDC) Dataset [21]. The FaceForensics++ dataset employs the following four
Deepfake generation techniques:
1. FaceSwap (FS): FaceSwap [38] is a classical computer graphics-based approach for face replace-
ment in videos. In this method, sparse facial landmarks are detected to extract the face region in an
image. These landmarks are then used to fit a 3D template model which is back-projected onto
the target image by minimizing the distance between the projected shape and localized landmarks.
Finally, the rendered model is blended with the image and color correction is applied.
2. Face2Face (F2F): Face2Face [67] is a facial reenactment system that transfers the expressions of
a person in a source video to another person in a target video, while maintaining the identity of
the target person. In this method, faces are compressed into a low-dimensional expression space,
where expressions can be easily transferred from the source to the target.
3. DeepFakes (DF): While the term ‘Deepfake’ has commonly been used in mainstream media
as a blanket term for deep-learning based face replacement, it is also the name of a specific
manipulation [18] method that was spread via online forums. In the learning phase, two auto-
encoders with a shared encoder are trained to reconstruct the images of source and target face. To
create a fake image, the encoded source image is passed as input to the target image decoder.
4. NeuralTextures (NT): NeuralTextures [66] is a Generative Adversarial Network (GAN) based
facial reenactment technique. In this method, a generative model is trained to learn the neural
texture of a target person using original video data. The GAN objective is a combination of an
adversarial and photometric reconstruction loss.
Aside from the FaceForensics++ dataset, another prominent collection of Deepfake videos was

released by Facebook, Inc in 2019. To the best of our knowledge, this recently developed DeepFake
Detection Challenge (DFDC) dataset [20, 21] is the largest collection of real and Deepfake videos,
consisting of over one million training clips of face swaps produced with a variety of methods. For
synthesizing the fake videos in the DFDC dataset, 8 different video manipulation techniques were
used, many of which are CNN-based techniques. These methods include the traditional Deepfake
auto-encoder architecture, a non-learned morphable mask face swap algorithm, and several Gener-
ative Adversarial Networks (GAN) techniques like Neural Talking Heads [76], FSGAN [50] and
StyleGAN [37]. In conjunction with the dataset, a corresponding competition3 was launched in

2Handling, analysis and processing of data related to the FaceForensics++ dataset was conducted by the two first authors
(S.Hussain and P.Neekhara) while at University of California in San Diego. Facebook researchers were not involved with
the FaceForensics++ dataset in any extent.
3https://www.kaggle.com/c/deepfake-detection-challenge
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which competitors were encouraged to submit models trained for Deepfake detection on the train-
ing set. These models were then ranked on a hidden, held-out test set, and the winning competitors
released their architectures and training strategies publicly.

2.2 Detecting Manipulated Videos
Traditionally, multimedia forensics investigated the authenticity of images [11, 27, 71] using hand-
engineered features and/or a-priori knowledge of the statistical and physical properties of natural
photographs. However, video synthesis methods can be trained to bypass hand-engineered detectors
bymodifying their training objective.We direct readers to [7, 10] for an overview of counter-forensic
attacks to bypass traditional (non-deep learning based) methods of detecting forgeries in multimedia
content.
More recent works have employed CNN-based approaches that decompose videos into frames

to automatically extract salient and discriminative visual features pertinent to Deepfakes. Some
efforts have focused on segmenting the entire input image to detect facial tampering resulting from
face swapping [79], face morphing [55] and splicing attacks [5, 6]. Other works [1, 30, 41, 42, 57, 58]
have focused on detecting face manipulation artifacts resulting from Deepfake generation methods.
The authors of [42] reported that eye blinking is not well reproduced in fake videos, and therefore
proposed a temporal approach using a CNN + Recurrent Neural Network (RNN) based model to
detect a lack of eye blinking when exposing Deepfakes. Similarly, [75] used the inconsistency in
head pose to detect fake videos. However, this form of detection can be circumvented by purposely
incorporating images with closed eyes and a variety of head poses in training [24, 70].

The Deepfake detectors proposed in [1, 21, 57] model Deepfake detection as a per-frame binary
classification problem. The authors of [57] demonstrated that XceptionNet can outperform several
alternative classifiers in detecting forgeries in both uncompressed and compressed videos, and
identifying forged regions in them. Since the task is to specifically detect facial manipulation, these
models incorporate domain knowledge by using a face tracking method [67] to track the face in the
video. The face is then cropped from the original frame and fed as input to a classification model to
be labelled as real or fake. Experimentally, the authors of [57] demonstrate that incorporation of
domain knowledge helps improve classification accuracy as opposed to using the entire image as
input to the classifier. The best performing classifiers amongst others studied by [57] were both
CNN based models: XceptionNet [15] and MesoNet [1].
Some detectors have also focused on exploiting temporal dependencies for detecting Deepfake

videos. Such detectors work on sequence of frames as opposed to a single frame using a CNN +
RNN model or a 3D CNN model. One such model based on a 3D EfficientNet [65] architecture, was
used by the third place winner [17] of DFDC in addition to a per-frame classification model. For
completeness, we also evaluate our attacks against the 3D CNNmodel to expose the vulnerability of
temporal Deepfake detectors. While intuitively, exploiting temporal dependencies using sequence
models should improve a detector’s ability to detect manipulated videos, the insights from the
results of the DFDC challenge [21] show that the best performing models operate on a frame level.
In fact, the winning team [60] of the DFDC challenge explicitly noted that other ideas besides
frame-by-frame detection did not improve their performance on the public leaderboard. The first
two winning submissions were both CNN based per-frame classification models similar to the ones
described above.

2.3 Explainability of Deepfake Detectors
It is important to gain insight about what the detector is looking at when it makes a decision about
a video being Real or Fake. This is typically done by obtaining the gradient of the score of the
predicted class with respect to the input image and plotting the magnitude of these gradients as a
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heat-map. Back-propagating gradients naively does not result in very interpretable visualizations.
This is because it is more important to consider pixels which activate a neuron and do not suppress
it (suppression is indicated by negative gradients). Therefore, we use guided back-propagation
which defines custom gradient estimates for activation functions like ReLU and suppresses negative
gradients during the backward pass. We then standardize the gradient obtained with respect to the
input and overlay the heat-map on the frame to visualize the areas of an image that trigger the
network’s output. Figure 2 shows some examples of the saliency maps obtained while analyzing
two different detectors on Deepfake videos.
Our initial observations on these saliency maps suggest that different CNN based detection

methods attend to similar aspects of the input frame for predicting the label. These aspects include
the edges of the face, the eyes, lips, teeth etc. These similarities across different detection methods
indicate that adversarially modifying such aspects of the image could potentially fool multiple
detection methods. We validate this hypothesis in our work by studying the transferability of
adversarial examples (Section 5.2) across different detection methods and proposing techniques
(Section 3.4) that improve the transferability.

Fig. 2. Gradient saliency maps obtained on Deepfake videos using guideded-backpropogation on a CNN-
based detector [60]. The highlighted areas indicate the image regions that strongly influence the detector’s
predictions.

2.4 Adversarial Examples
Adversarial examples are intentionally designed inputs to a machine learning (ML) model that
cause the model to make a mistake [64]. Prior work has shown a series of first-order gradient-based
attacks to be fairly effective in fooling DNN based models in images [13, 28, 45, 51, 52, 61, 62],
audio [14, 48, 54] and text [9, 26, 47] domains. The objective of such adversarial attacks is to find
a good trajectory that (i) maximally changes the value of the model’s output and (ii) pushes the
sample towards a low-density region. This is equivalent to the ML model’s gradient with respect to
input features. One type of adversarial perturbation known as universal adversarial perturbations
(UAPs), requires relatively low computing power during the attacks because the same perturbation
can be added to any input image to cause mis-classification by a victim model [45]. UAPs have
also been reported to show excellent transferability on attacking different models rather than the
target in various data domains [8, 45, 46, 48]. An adversarial attack typically involves several attack
parameters, such as the number of steps for iterative attack [22], the distance metric to quantify
the perturbation magnitude, the bound used to clip the perturbation, and the weight ratio of two
losses (adversarial goal and perturbation bound). The effectiveness of an adversarial attack method
can be quantified by the ‘attack success rate’ metric. Attack success rate is typically defined as
the probability that an image with the crafted adversarial perturbation is predicted as the attack
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target class (for targeted attacks) or as the non-original class (for untargeted attacks). Prior work
on defenses [73] against adversarial attacks, propose to perform random operations over the input
images, e.g. random cropping and JPEG compression. However, such defenses are shown to be
vulnerable to attack algorithms that are aware of the randomization approach. Particularly, one line
of adversarial attack [3, 4] computes the expected value of gradients for each of the sub-sampled
networks/inputs and performs attacks that are robust against compression.

3 METHODOLOGY
In this section, we propose threat models for Deepfake detectors in various attack settings assuming
different attacker capabilities. We first describe the victim Deepfake detectors we wish to attack
(Section 3.1). Then we mathematically define the threat model and attack goal (Section 3.2). Next, we
propose a white-box attack to achieve the attack goal in a scenario when the attacker has complete
access to the victim model architecture and parameters (Section 3.3). In our experiments, we find
that while the simple white-box attack works well on uncompressed videos, the attack success rate
drops significantly on compressed videos. Another challenge in the simple white-box attack is the
limited transferability of the attack to unseen models. We tackle these two challenges using our
robust and transferable attack which poses a real world threat — the adversarial videos are more
robust to compression and can also fool unseen detectors to a significant extent thereby posing a
real-world threat (Section 3.4). Next we propose query based black-box attacks which do not require
access to any surrogate model but only require query access to the model scores (Section 3.5, 3.6).
Finally, we propose a highly accessible attack using universal adversarial perturbations — we find
that it is possible to craft a single input-agnostic perturbation that can be added across all frames
of any given video to cause classification to the target label by many seen and unseen detectors.
Once crafted, this perturbation can be easily shared amongst adversaries thereby posing a very
practical challenge to Deepfake detection (Section 3.7).

3.1 Victim Models: Deepfake Detectors
3.1.1 Frame-by-Frame detectors: To demonstrate the effectiveness of our attack on Deepfake
detectors, we first choose detectors which rely on frame level CNN based classification models.
These victim detectors work on the frame level and classify each frame independently as either
Real or Fake using the following two-step pipeline:
1. A face tracking model [67] extracts the bounding box of the face in a given frame.
2. The cropped face is then resized appropriately and passed as input to a CNN based classifier to
be labelled as either real or fake.
In our work, we consider two victim CNN classifiers: XceptionNet [15] and MesoNet [1]. De-

tectors based on the above pipeline have been shown to achieve state-of-the-art performance in
Deepfake detection as reported in [21, 57, 77]. The accuracy of such models on the FaceForensics++
Dataset [57] is reported in Table 1.

3.1.2 Sequence basedmodels: We also demonstrate the effectiveness of our attacks on detectors
that utilize temporal dependencies. Such detectionmethods typically use a CNN + RNN or a 3D-CNN
architecture to classify a sequence of frames as opposed to a single frame. A 3D-CNN architecture
performs convolutions across height, width and time axis thereby exploiting temporal dependencies.
In Section 5.4, we evaluate our attacks against one such detection method [17] that uses a 3D
EfficientNet [65] CNN model for classifying a sequence of face-crops obtained from a face tracking
model. In this model, a 3D convolution is added to each block of the EfficientNet model to perform
convolutions across time. The length of the input sequence to the model is 7 frames and the step
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𝟄+      C Fake Real

Adversarially modified fake video

=       C

Fake video

Fig. 3. An overview of our attack pipeline to generate Adversarial Deepfakes. We generate an adversarial
example for each frame in the given fake video and combine them together to create an adversarially modified
fake video.

between frames is 1/15th of a second. This 3D CNN model was used by the third place winner of
the recently conducted DFDC challenge.

3.2 Threat Model
Given a video (Real or Fake), our task is to adversarially modify the video such that the label
predicted by a victim Deepfake detection method is incorrect. That is, we want to modify the videos
such that the Fake videos are classified as Real and vice-versa. Misclassifying a Fake video as Real
can be used by the adversary to propagate false information. Misclassifying a Real video as Fake
can be used by the adversary to cover up an event that did actually happen.

3.2.1 Distortion Metric. To ensure imperceptibility of the adversarial modification, the 𝐿𝑝 norm is
a widely used distance metric for measuring the distortion between the adversarial and original
inputs. The authors of [28] recommend constraining the maximum distortion of any individual
pixel by a given threshold 𝜖 , i.e., constraining the perturbation using an 𝐿∞ metric. Additionally,
Fast Gradient Sign Method (FGSM) [28] based attacks, which are optimized for the 𝐿∞ metric, are
more time-efficient than attacks which optimize for 𝐿2 or 𝐿0 metrics. Since each video can be
composed of thousands of individual frames, time-efficiency becomes an important consideration
to ensure the proposed attack can be reliably used in practice. Therefore, in this work, we use
the 𝐿∞ distortion metric for constraining our adversarial perturbation and optimize for it using
gradient sign based methods.

3.2.2 Notation. We follow the notation previously used in [13, 53]; we define 𝐹 to be the full neural
network (classifier) including the softmax function, 𝑍 (𝑥) = 𝑧 to be the output of all layers except
the softmax (that is 𝑧 are the logits). That is:

𝐹 (𝑥) = softmax (𝑍 (𝑥)) = 𝑦
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The classifier assigns the label 𝐶 (𝑥) = argmax𝑖 (𝐹 (𝑥)𝑖 ) to input frame 𝑥 .

3.2.3 Problem Formulation. Mathematically, for each video frame 𝑥 , we aim to find an adversarial
frame 𝑥adv such that:

𝐶 (𝑥adv) = y and | |𝑥adv − 𝑥0 | |∞ < 𝜖

where 𝑦 is the target label. In our case the target label is Real for Fake videos and Fake for Real
videos. In the upcoming sections, we study this attack goal in various attacker knowledge settings
and constraints.

3.2.4 Attack Pipeline. An overview of the process of generating adversarial fake videos is depicted
in Figure 3. For any given frame, we craft an adversarial example for the cropped face, such that after
going through some image transformations (normalization and resizing), it gets classified as Real
by the classifier. The adversarial face is then placed in the bounding box of face-crop in the original
frame, and the process is repeated for all frames of the video to create an adversarially modified
fake video. In the following sections, we consider our attack pipeline under various settings and
goals. Note that, the proposed attacks can also be applied on detectors that operate on entire frames
as opposed to face-crops. We choose face-crop based victim models because they have been shown
to outperform detectors that operate on entire frames for detecting facial-forgeries.

3.3 Simple White-box attack
In this setting, we assume that the attacker has complete access to the detection model, including
the face extraction pipeline and the architecture and parameters of the classification model. To
construct adversarial examples using the attack pipeline described above, we use the iterative
gradient sign method [39] to optimize the following objective:

Minimize loss(𝑥 ′) where
loss(𝑥 ′) = max (𝑍 (𝑥 ′)o − 𝑍 (𝑥 ′)y, 0)

(1)

Here, 𝑍 (𝑥)y is the final score for target label 𝑦 and 𝑍 (𝑥)𝑜 is the score of the original label 𝑜 before
the softmax operation in the classifier𝐶 . The loss function we use is recommended by [13] because
it is empirically found to generate less distorted adversarial samples and is robust against defensive
distillation. We use the iterative gradient sign method to optimize the above loss function while
constraining the magnitude of the perturbation as follows:

𝑥𝑖 = 𝑥𝑖−1 − clip𝜖 (𝛼 · sign(∇loss(𝑥𝑖−1))) (2)

We continue gradient descent iterations until success or until a given number of maximum iterations,
whichever occurs earlier. We solve the optimization problem for each frame of the given video and
combine all the adversarial frames together to generate the adversarial video. In our experiments,
we demonstrate that we are able to successfully fool all the detection methods studied in our work
in the white-box attack setting using the above attack. However, the transferability of adversarial
examples generated using this attack across different methods is limited. In the next section we
propose techniques to overcome this challenge.

3.4 Robust and Transferable attack
Generally, videos uploaded to social networks and other media sharing websites are compressed.
Standard operations like compression and resizing are known to remove adversarial perturbations
from an image [16, 25, 32]. To ensure that the adversarial videos remain effective even after
compression, it is important to ensure robustness to input-transformation functions while training
the perturbation.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: April 2021.
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Also, past works [22, 23, 44, 51, 74, 80] have studied that adversarial inputs can transfer across
different models. That is, an adversarial input that was designed to fool a particular victim model
can possibly fool other models that were trained for the same task. This is because different models
learn similar decision boundaries and therefore have similar vulnerabilities. However, for Deepfake
detectors, the goal of making transferable adversarial videos is more challenging due to multiple
steps involved in the Deepfake detection pipeline and the differences in these steps across various
methods.

• Different face detection methods result in different face-crops.
• Different data-augmentation procedures during training result in different levels of robustness
to adversarial examples.
• Different input pre-processing pipelines, such as image resizing, cropping and channel
normalization parameters vary across different detection methods.

Therefore ensuring robustness to input transformation functions not only helps create adversarial
videos that are robust to compression, but can also potentially result in adversarial videos that are
transferable across different detection methods. We use the expectation over transforms [4] attack
to craft robust and transferable adversarial examples. Given a distribution of input transformations
𝑇 , input image 𝑥 , and target class 𝑦, our objective is as follows:

𝑥adv = argmax𝑥E𝑡∼𝑇 [𝐹 (𝑡 (𝑥))𝑦] s.t. | |𝑥 − 𝑥0 | |∞ < 𝜖

That is, we want to maximize the expected probability of target class 𝑦 over the distribution of
input transforms𝑇 . To solve the above problem, we update the loss function given in Equation 1 to
be an expectation over input transforms 𝑇 as follows:

loss(𝑥) = E𝑡∼𝑇 [max (𝑍 (𝑡 (𝑥))o − 𝑍 (𝑡 (𝑥))y, 0)]

Following the law of large numbers, we estimate the above loss functions for 𝑛 samples as:

loss(𝑥) = 1
𝑛

∑
𝑡𝑖∼𝑇
[max (𝑍 (𝑡𝑖 (𝑥))o − 𝑍 (𝑡𝑖 (𝑥))y, 0)] (3)

Since the above loss function is a sum of differentiable functions, it is tractable to compute the
gradient of the loss w.r.t. to the input 𝑥 . We minimize this loss using the iterative gradient sign
method given by Equation 2. We iterate until a given number of maximum iterations or until the
attack is successful under the sampled set of transformation functions, whichever happens first.

Next we describe the class of input transformation functions we consider for the distribution 𝑇 :

• Gaussian Blur: Convolution of the original image with a Gaussian kernel k. This transform
is given by 𝑡 (𝑥) = 𝑘 ∗ 𝑥 where ∗ is the convolution operator.
• Gaussian Noise Addition: Addition of Gaussian noise sampled from Θ ∼ N(0, 𝜎) to the
input image. This transform is given by 𝑡 (𝑥) = 𝑥 + Θ
• Translation:We pad the image on all four sides by zeros and shift the pixels horizontally
and vertically by a given amount. Let 𝑡𝑥 be the transform in the 𝑥 axis and 𝑡𝑦 be the transform
in the 𝑦 axis, then 𝑡 (𝑥) = 𝑥 ′

𝐻,𝑊 ,𝐶
s.t. 𝑥 ′[𝑖, 𝑗, 𝑐] = 𝑥 [𝑖 + 𝑡𝑥 , 𝑗 + 𝑡𝑦, 𝑐]

• Downsizing and Upsizing: The image is first downsized by a factor 𝑟 and then up-sampled
by the same factor using bilinear re-sampling.

The details of the hyper-parameter search distribution used for these transforms can be found in
the Section 5.1.2.
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3.5 Query based Black-box Attack
In the black-box setting, we consider the more challenging threat model in which the adversary
does not have access to the classification network architecture and parameters. We assume that the
attacker has knowledge of the detection pipeline structure and the face trackingmodel. However, the
attacker can solely query the classification model as a black-box function to obtain the probabilities
of the frame being Real or Fake. Hence there is a need to estimate the gradient of the loss function
by querying the model and observing the change in output for different inputs, since we cannot
backpropagate through the network.
We base our algorithm for efficiently estimating the gradient from queries on the Natural

Evolutionary Strategies (NES) approach of [35, 72]. Since we do not have access to the pre-softmax
outputs 𝑍 , we aim to maximize the class probability 𝐹 (𝑥)y of the target class y. Rather than
maximizing the objective function directly, NES maximizes the expected value of the function
under a search distribution 𝜋 (𝜃 |𝑥). That is, our objective is:

Maximize: E𝜋 (𝜃 |𝑥) [𝐹 (𝜃 )y]

This allows efficient gradient estimation in fewer queries as compared to finite-difference methods.
From [72], we know the gradient of expectation can be derived as follows:

∇𝑥E𝜋 (𝜃 |𝑥)
[
𝐹 (𝜃 )𝑦

]
= E𝜋 (𝜃 |𝑥)

[
𝐹 (𝜃 )𝑦∇𝑥 log (𝜋 (𝜃 |𝑥))

]
Similar to [35, 72], we choose a search distribution 𝜋 (𝜃 |𝑥) of random Gaussian noise around the
current image 𝑥 . That is, 𝜃 = 𝑥 + 𝜎𝛿 where 𝛿 ∼ N(0, 𝐼 ). Estimating the gradient with a population
of 𝑛 samples yields the following variance reduced gradient estimate:

∇E[𝐹 (𝜃 )] ≈ 1
𝜎𝑛

𝑛∑
𝑖=1

𝛿𝑖𝐹 (𝜃 + 𝜎𝛿𝑖 )𝑦

We use antithetic sampling to generate 𝛿𝑖 similar to [35, 59]. That is, instead of generating
𝑛 values 𝛿 ∼ N(0, 𝐼 ), we sample Gaussian noise for 𝑖 ∈ {1, . . . , 𝑛2 } and set 𝛿 𝑗 = −𝛿𝑛−𝑗+1 for
𝑗 ∈ {( 𝑛2 + 1), . . . , 𝑛}. This optimization has been empirically shown to improve the performance of
NES. Algorthim 1 details our implementation of estimating gradients using NES. The transformation
distribution 𝑇 in the algorithm just contains an identity function i.e., 𝑇 = {𝐼 (𝑥)} for the black-box
attack described in this section.

After estimating the gradient, we move the input in the direction of this gradient using iterative
gradient sign updates to increase the probability of the target class:

𝑥𝑖 = 𝑥𝑖−1 + clip𝜖 (𝛼 · sign(∇𝐹 (𝑥𝑖−1)𝑦)) (4)

3.6 Query based Robust Black-box Attack
To ensure robustness of adversarial videos to compression, we incorporate the Expectation over
Transforms (Section 3.4) method in the black-box setting for constructing adversarial videos.

To craft adversarial examples that are robust under a given set of input transformations 𝑇 , we
maximize the expected value of the function under a search distribution 𝜋 (𝜃 |𝑥) and our distribution
of input transforms 𝑇 . That is, our objective is to maximize:

E𝑡∼𝑇 [E𝜋 (𝜃 |𝑥)
[
𝐹 (𝑡 (𝜃 ))𝑦

]
]
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Following the derivation in the previous section, the gradient of the above expectation can be
estimated using a population of size 𝑛 by iterative sampling of 𝑡𝑖 and 𝛿𝑖 :

∇E[𝐹 (𝜃 )] ≈ 1
𝜎𝑛

𝑛∑
𝑖=1,𝑡𝑖∼𝑇

𝛿𝑖𝐹 (𝑡𝑖 (𝜃 + 𝜎𝛿𝑖 ))𝑦

Algorithm 1 NES Gradient Estimate
Input: Classifier 𝐹 (𝑥), target class 𝑦, image 𝑥
Output: Estimate of ∇𝑥𝐹 (𝑥)𝑦
Parameters: Search variance 𝜎 , number of samples 𝑛, image dimensionality 𝑁

𝑔← 0𝑛
for 𝑖 = 1 to 𝑛 do
𝑡𝑖 ∼ 𝑇
𝑢𝑖 ← N(0𝑁 , 𝐼𝑁 ·𝑁 )
𝑔← 𝑔 + 𝐹 (𝑡𝑖 (𝑥 + 𝜎 · 𝑢𝑖 ))𝑦 · 𝑢𝑖
𝑔← 𝑔 − 𝐹 (𝑡𝑖 (𝑥 − 𝜎 · 𝑢𝑖 ))𝑦 · 𝑢𝑖

end for
return 1

2𝑛𝜎𝑔

We use the same class of transformation functions listed in Section 3.4 for the distribution 𝑇 .
Algorithm 1 details our implementation for estimating gradients for crafting robust adversarial
examples. We follow the same update rule given by Equation 4 to generate adversarial frames. We
iterate until a given a number of maximum iterations or until the attack is successful under the
sampled set of transformation functions.

3.7 Universal attack
While the transferability of adversarial perturbations poses a practical threat to Deepfake detectors
in production, creating an adversarial video requires significant technical expertise in adversarial
machine learning — the attacker needs to solve an optimization problem for each frame of the
video to fool the detector.

To ease the process of fooling Deepfake detectors, we aim to design more accessible adversarial
attacks that can be easily shared amongst attackers. Past works [8, 45, 48] have shown the existence
of universal adversarial perturbations that can fool classification models in various input domains.
We aim to find a single universal adversarial perturbation which when added across all frames of
any video, will cause the victim Deepfake Detector to classify the video to a target label.

That is, we aim to find a targeted universal perturbation 𝛿 such that:

𝐶 (𝑥 + 𝛿) = 𝑦 s.t | |𝛿 | |∞ < 𝜖

for “most” 𝑥 in our dataset
(5)

where 𝑦 is the target class. We train separate perturbations for Real and Fake target labels. In order
to ensure robustness to differences across detection methods, we incorporate the transformation
functions described in Section 3.4. We train the universal adversarial perturbation on a dataset of
videos that are labelled opposite from our target label. On this dataset of videos, we aim to maximize
the log-likelihood of predicting our target label 𝑦. Additionally to ensure the imperceptibility of the
adversarial perturbation we penalize the 𝐿2 distortion of the perturbation by adding a regularization
term in our objective. Thus, our final objective to train a universal perturbation for a target label 𝑦
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is as follows:

Minimize
∑
𝑥 in 𝐷

E𝑡∼𝑇 [𝐿(𝐹 (𝑡 (𝑥 + 𝛿)), 𝑦)] + 𝑐 | |𝛿 | |2

such that | |𝛿 | |∞ < 𝜖

(6)

Here, 𝐿 is the cross-entropy loss between the predictions and our target label, 𝑐 is a hyper-
parameter to control the regularization loss and 𝑥 is an input frame of a video from our dataset 𝐷 .
Similar to Equation 3, we estimate the above expectation using 𝑛 samples as follows:

E𝑡∼𝑇 [𝐿(𝐹 (𝑡 (𝑥 + 𝛿)), 𝑦)] =
1
𝑛

∑
𝑡𝑖∼𝑇
[𝐿(𝐹 (𝑡𝑖 (𝑥 + 𝛿)), 𝑦)] (7)

To ensure the constraint | |𝛿 | |∞ < 𝜖 , we express 𝛿 as follows:

𝛿 = 𝜖 · tanh(𝑝)
where 𝑝 is a trainable unconstrained parameter having the same dimensions as 𝛿 . We fix the size
of the perturbation vector 𝑝 to be 3 × 256 × 256 in our experiments, but resize the perturbation
using bilinear interpolation to match the size of our input 𝑥 . We iteratively optimize the objective
given by Equation 6 using gradient descent. In our experiments, we find that targeting certain
Deepfake detectors not only results in input-agnostic universal perturbations but also model-
agnostic universal perturbations.

4 EXPERIMENTAL SETUP
We conduct our experiments on the FaceForensics++ [57] and the DFDC datasets [21] and choose
the best performing models on these datasets as the victim models for our attacks. We first craft
adversarial videos for the FaceForensics++ dataset and target the XceptionNet and MesoNet mod-
els which are the best reported architectures reported in the paper [57] introducing this dataset
(Section 5.1). We use these two models as a test-bed to study the robustness of our attacks to video
compression and demonstrate the using our robust attack helps significantly improve attack perfor-
mance on compressed videos. Next we conduct the transferable and universal attack experiments
on the DFDC dataset. We choose the models from top three winning entries in the DFDC Kaggle
competition as the victim models for these experiments (Section 5.2, 5.3). Finally, we evaluate our
attacks on a sequence based 3D CNN model to demonstrate that adversarial examples are a threat
to not only frame by frame detectors but also sequence based models (Section 5.4).

4.1 Dataset and Models
On the FaceForensics++ dataset, XceptionNet [15] and MesoNet [1] CNN classifiers have been
reported to achieve the best performance in the paper introducing the dataset [57]. For these two
models, we perform our attack on the test set of the FaceForensics++ Dataset [57], consisting of
manipulated videos from the four methods described in Section 2.1. We construct adversarially
modified fake videos on the FaceForensics++ test set, which contains 70 videos (total 29,764 frames)
from each of the four manipulation techniques. For simplicity, our experiments are performed on
high quality (HQ) videos, which apply a light compression on raw videos. The accuracy of the
detector models for detecting facially manipulated videos on this test set is reported in Table 1.
For the DFDC dataset, we choose the top three winners of the challenge, which was hosted

by Facebook on the Kaggle website. The top two winning entries of the challenge rely solely on
face detection models and per-frame CNN classifiers similar to the best performing models on the
FaceForensics++ dataset. The third place winner of the challenge uses a combination of per-frame
classifiers and a 3D CNN based sequence model (Section 3.1). Table 2 lists the Deepfake detection
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DF F2F FS NT
XceptionNet [57] Acc % 97.49 97.69 96.79 92.19
MesoNet [57] Acc % 89.55 88.6 81.24 76.62

Table 1. Accuracy of Deepfake detectors on the FaceForensics++ HQ Dataset as reported in [57]. The results
are for the entire high-quality compressed test set generated using four manipulation techniques (DF:
DeepFakes, F2F: Face2Face, FS: FaceSwap and NT: NeuralTextures).

Model Team Name Classifier Face detection AUC

EN-B7 Selim [60] Selim EfficientNet B7 [65] MTCNN [78] 0.717
XN WM [33] Team WM XceptionNet [15] RetinaFace [19] 0.724
EN-B3 WM [33] Team WM EfficientNet B3 [65] RetinaFace [19] 0.724
EN-B7 NLab [17] NTech Lab EfficientNet B7 [65] DSFD [40] 0.717

Table 2. Different Deepfake detection systems studied in our work with their respective classification models,
face detection models and detection AUC scores on the DFDC test set.

methods studied in this work along with their respective CNN architectures used for classification
and face detection. We use the DFDC dataset and these top three winning models as the test
bed for evaluating the transferability of our attacks across different models. In our transferability
experiments we use the terms victim model and test model and define them as:
• Victim model: The detection model that the attack/adversarial perturbation is trained on, in
the complete-knowledge (white-box) attack scenario.
• Test model: The model on which we evaluate the attack. This can be the same as the victim
model (white-box) or an unseen detection model (black-box).

We craft adversarial videos for the first 100 Fake and 100 Real videos in the public DFDC validation
set [21]. These videos contain a total of 30,300 frames. The videos are recorded in various lighting
and background conditions and include people with different skin-tones.

4.2 Evaluation Metrics
Once the adversarial frames are generated, we combine them and save the adversarial videos in the
following formats:

• Uncompressed (Raw): Video is stored as a sequence of uncompressed images.
• Compressed (MJPEG): Video is saved as a sequence of JPEG compressed frames.
• Compressed (H.264): Video is saved in the commonly used mp4 format that applies temporal
compression across frames.

We conduct our primary evaluation on the Raw and MJPEG. We also study the effectiveness of
our white box robust attack using different compression levels in the H264 codec. We report the
following metrics for evaluating our attacks:
• Success Rate (SR): The percentage of frames in the adversarial videos that get classified to
our target label. We report: SR-U- Attack success rate on uncompressed adversarial videos
saved in Raw format; and SR-C- Attack success rate on compressed adversarial videos saved
in MJPEG format.
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• Accuracy: The percentage of frames in videos that get classified to their original label by
the detector. We report Acc-C- accuracy of the detector on compressed adversarial videos.
• Mean distortion (L∞): The average 𝐿∞ distortion between the adversarial and original
frames. The pixel values are scaled in the range [0,1], so changing a pixel from full-on to
full-off in a grayscale image would result in 𝐿∞ distortion of 1 (not 255).

5 RESULTS
5.1 Evaluation on FaceForensics++ dataset
5.1.1 Simple white-box attack. To craft adversarial examples in the white-box setting, in our attack
pipeline, we implement differentiable image pre-processing (resizing and normalization) layers for
the CNN. This allows us to backpropagate gradients all the way to the cropped face in-order to
generate the adversarial image that can be placed back in the frame. We set the maximum number
of iterations to 100, learning rate 𝛼 to 1/255 and max 𝐿∞ constraint 𝜖 to 16/255 for both our attack
methods described in Sections 3.3 and 3.4.

XceptionNet MesoNet

Attack Dataset L∞ SR - U SR - C Acc-C % L∞ SR - U SR - C Acc-C %

DF 0.004 99.67 43.11 56.89 0.006 97.30 92.27 7.73
Simple White-box F2F 0.004 99.85 52.50 47.50 0.007 98.94 96.30 4.70

(Section 3.3) FS 0.004 100.00 43.13 56.87 0.009 97.12 86.10 13.90
NT 0.004 99.89 95.10 4.90 0.007 99.22 96.20 3.80

All 0.004 99.85 58.46 41.54 0.007 98.15 92.72 7.53
DF 0.016 99.56 98.71 1.29 0.030 99.94 99.85 0.15

Robust and Transferable F2F 0.013 100.00 99.00 1.00 0.020 99.71 99.67 0.33
(Section 3.4) FS 0.013 100.00 95.33 4.67 0.026 99.02 98.50 1.50

NT 0.011 100.00 99.89 0.11 0.025 99.99 99.98 0.02

All 0.013 99.89 98.23 1.77 0.025 99.67 99.50 0.50
DF 0.055 89.72 55.64 44.36 0.062 96.05 93.33 6.67

Query based F2F 0.055 92.56 81.40 18.60 0.0627 84.08 77.68 22.32
Black-box (Section 3.5) FS 0.045 96.77 23.50 76.50 0.0627 77.55 62.44 37.56

NT 0.024 99.86 94.23 5.77 0.0627 85.98 79.25 20.75

All 0.045 94.73 63.69 36.31 0.0626 85.92 78.18 21.83

DF 0.060 88.47 79.18 20.82 0.047 96.19 93.80 93.80
Query based Robust F2F 0.058 97.68 94.42 5.58 0.054 84.14 77.50 77.50

Black-box (Section 3.6) FS 0.052 98.97 63.26 36.74 0.061 77.34 61.77 61.77
NT 0.018 99.65 98.91 1.09 0.053 88.05 80.27 80.27

All 0.047 96.19 83.94 16.06 0.053 86.43 78.33 78.33
Table 3. Evaluation of various attacks on the two models XceptionNet and MesoNet on the FaceForensics++
dataset. We report the average 𝐿∞ distortion between the adversarial and original frames and the attack
success rate on uncompressed (SR-U) and compressed (SR-C) videos. Acc-C denotes the accuracy of the
detector on compressed adversarial videos.
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Table 3 shows the results of the white-box attack (Section 3.3). We are able to generate adversarial
videos with an average success rate of 99.85% for fooling XceptionNet and 98.15% for MesoNet when
adversarial videos are saved in the Raw format. However, the attack average success rate drops to
58.46% for XceptionNet and 92.72% for MesoNet when MJPEG compression is used. This result is
coherent with past works [16, 25, 32] that employ JPEG compression and image transformations to
defend against adversarial examples.

5.1.2 Robust attack. For our robust white box attack, we sample 12 transformation functions from
the distribution 𝑇 for estimating the gradient in each iteration. This includes three functions from
each of the four transformations listed in Section 3.4. Table 4 shows the search distribution for
different hyper-parameters of the transformation functions.

Transform Hyper-parameter search distribution

Gaussian Blur Kernel 𝑘 (𝑑,𝑑, 𝜎), 𝑑 ∼ U[3, 7], 𝜎 ∼ U[5, 10]
Gaussian Noise 𝜎 ∼ U[0.01, 0.02]
Translation 𝑑𝑥 ∼ U[−20, 20], 𝑑𝑦 ∼ U[−20, 20]

Down-sizing & Up-sizing Scaling factor 𝑟 ∼ U[2, 5]

Table 4. Search distribution of hyper-parameters of different transformations used for our Robust White box
attack. During training, we sample three functions from each of the transforms to estimate the gradient of
our expectation over transforms.

Table 3 shows the results of our robust white-box attack. It can be seen that robust white-box is
effective in both Raw and MJPEG formats. The average distortion between original and adversarial
frames in the robust attack is higher as compared to the non-robust white-box attack. We achieve
an average success rate (SR-C) of 98.07% and 99.83% for XceptionNet and MesoNet respectively in
the compressed video format.

H.264 Quantization Factor
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Fig. 4. Attack success rate vsQuantization factor used for compression in H264 codec for robust white box
attack.

We also study the effectiveness of our robust white box attack under different levels of com-
pression in the H.264 format which is widely used for sharing videos over the internet. Figure 4
shows the average success rate of our attack across all datasets for different quantization parameter
𝑐 used for saving the video in H.264 format. The higher the quantization factor, the higher the
compression level. In [57], fake videos are saved in HQ and LQ formats which use 𝑐 = 23 and 𝑐 = 40
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respectively. It can be seen that even at very high compression levels (𝑐 = 40), our attack is able to
achieve 80.39% and 90.50% attack success rates for XceptionNet and MesoNet respectively, without
any additional hyper-parameter tuning for this experiment.

5.1.3 Query based black-box attack. We construct adversarial examples in the black-box setting
using the methods described in Sections 3.5 and ??. The number of samples 𝑛 in the search distribu-
tion for estimating gradients using NES is set to 20 for black-box attacks and 80 for robust black-box
to account for sampling different transformation functions 𝑡𝑖 . We set the maximum number of
iterations to 100, learning rate 𝛼 to 1/255 and max 𝐿∞ constraint 𝜖 to 16/255.

Table 3 shows the results of our Black-box attack (Section 3.5) without robust transforms. Note
that the average 𝐿∞ norm of the perturbation across all datasets and models is higher than our
white-box attacks. We are able to generate adversarial videos with an average success rate of 97.04%
for XceptionNet and 86.70% for MesoNet when adversarial videos are saved in the Raw format.
Similar to our observation in the white-box setting, the success rate drops significantly in the
compressed format for this attack. The average number of queries to the victim model for each
frame is 985 for this attack.

5.1.4 Query based Robust Black-box Attack: We perform robust black-box attack using the algo-
rithm described in (Section 3.6). For simplicity, during the robust black-box attack we use the same
hyper-parameters for creating a distribution of transformation functions𝑇 (Table 4) as those in our
robust white-box attack. The average number of network queries for fooling each frame is 2153 for
our robust black-box attack. Table 3 shows the results for our robust black-box attack. We observe
a significant improvement in the attack success rate for XceptionNet when we save adversarial
videos in the compressed format as compared to that in the naive black-box attack setting. When
attacking MesoNet in robust black-box setting, we do not observe a significant improvement even
though the overall success rate is higher when using robust transforms.

5.2 Transferability of adversarial attacks
We evaluate the transferability of adversarial perturbations across different detectors trained on the
DFDC dataset. We train adversarial videos targeting a given victim model and test the videos against
different test models. For our simple whitebox attack, while we achieve 100% attack success rate
for the same test model as the victim model, the attack success rate drops significantly on alternate
models. EfficientNet-B7 by NTech Lab requires the highest amount of adversarial perturbation
under the 𝐿∞ metric as compared to other methods in this study. We find that perturbations trained
to fool EfficientNet-B7 by Team NTech Lab result in the most transferable attacks as indicated by
the higher success rates on other test models. This suggests that EN-B7 NLab is relatively more
robust to adversarial perturbations in comparison to the other models used in this study (also
indicated by higher 𝐿∞ perturbation required to fool EN-B7 NLab).

To improve the transferability of adversarial examples across different methods, we perform our
robust transfer attack described in Section 3.4 and evaluate the adversarial videos against unseen
detection methods in a black-box setting. The hyper-parameters of the transformation functions
used for the attack have been provided in Table 4. All other attack hyper-parameters are kept the
same as our simple white-box attack.

As indicated by the results in Table 5, we are able to significantly improve the transferability of
adversarial perturbations across different detection methods as compared to our simple white-box
attack. The adversarial perturbations are most transferable across models with the same architecture.
For example, we are able to achieve high cross-transferability between EN-B7 Selim vs EN-B7 NLab.
Similar to our observation in the previous section, attacking EN-B7 NLab results in the most
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transferable adversarial attacks - we are able to achieve at least 72% success rate across all other
detection methods when attacking EN-B7 NLab.

Original Label: Fake Prediction: Real Prediction: Real Prediction: Real Prediction: Real

Benign Frame Adversarial Frames
EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

Original Label: Real Prediction: Fake Prediction: Fake Prediction: Fake Prediction: Fake

Original Label: Fake Prediction: Real Prediction: Real Prediction: Real Prediction: Real

Benign Frame Adversarial Frames
EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

Original Label: Real Prediction: Fake Prediction: Fake Prediction: Fake Prediction: Fake

Simple White-box attack examples on DFDC detectors Robust and Transferable attack examples on DFDC detectors

Fig. 5. Randomly selected frames of adversarial videos from attacks on the DFDC detectors.

Test Model
Victim Model 𝐿∞ EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM
EN-B7 Selim 0.007 100.0 % 59.5 % 57.0 % 38.5 %

Simple EN-B7 NLab 0.013 94.0 % 100.0 % 66.5 % 49.5 %
White-box (Section 3.3) XN WM 0.006 13.0 % 12.5 % 100.0 % 12.0 %

EN-B3 WM 0.005 21.0 % 15.5 % 22.0 % 100.0 %
EN-B7 Selim 0.010 100.0 % 89.0 % 72.5 % 62.0 %

Robust and EN-B7 NLab 0.018 99.0 % 100.0 % 72.0 % 76.5 %
Transferable (Section 3.4) XN WM 0.018 49.0 % 33.5 % 100.0 % 46.0 %

EN-B3 WM 0.008 46.5 % 35.0 % 47.5 % 100.0 %
Table 5. Attack success rates (SR-U) of the white-box (Section 3.3) and robust and transferable attacks (Sec-
tion 3.4) on different victim models and their transferability to seen and unseen detectors (test models).

5.3 Universal attacks
To create more accessible attacks, we train a universal adversarial perturbation using the procedure
described in Section 3.7. We set the 𝐿2 regularization term 𝑐 = 0.01 and use the Adam optimizer
with a learning rate of 0.001. For our initial experiments, we set the 𝐿∞ threshold 𝜖 = 40/255 for all
victim models. Since the goal of finding a single input-agnostic perturbation is more challenging
than finding one perturbation per video frame, a higher amount of distortion is required for a
successful attack as compared to the per-frame attacks described earlier. We train the universal
perturbation on a dataset of 100 videos from the DFDC train set which are separate from our
evaluation dataset. We train the perturbation using a batch size of 8 for 10, 000 iterations.
We target one victim model at a time and test the transferability of the universal perturbation

on seen and unseen detectors. Table 6 presents the results of performing the universal attack on
different victim models at 𝜖 = 40/255 = 0.156. We are able to achieve 100% attack success rate on
the same test model as the victim model using a single perturbation across all frames and videos
of the same label. Also, the universal perturbation is transferable to a significant extent across
different models which poses an extremely practical threat to Deepfake detectors in production.
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Test Model
Victim Model 𝐿∞ EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

EN-B7 Selim 0.156 100.0% 94.5% 65.0% 69.0%
EN-B7 NLab 0.156 94.5% 100.0% 75.0% 81.5%
XN WM 0.156 77.5% 61.0% 100.0% 20.0%

EN-B3 WM 0.156 66.5% 50.5% 60.0% 100.0%

Table 6. Attack success rates (SR-U) of the universal attacks (Section 3.7) on different victim models and their
transferability to unseen detectors (test models).

Attacking EN-B7 NLab results in the most transferable perturbations where we are able to achieve
at least a 75% success rate across all unseen detectors.

Benign
Label: FAKE

UAP

 Adversarial
Prediction: REAL

EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

Fig. 6. Visualization of universal adversarial perturbations trained on different Deepfake detection models at
𝜖 = 0.156.

Visually, the universal perturbations at 𝜖 = 0.156 are more perceptible than our per-frame attacks
discussed in the sections above. Figure 6 shows examples of universal adversarial perturbations
trained on different Deepfake detectors and the resulting adversarial images obtained after adding
the perturbation to the face-crop of the benign frame.

We perform an additional experiment to study the effectiveness of universal adversarial pertur-
bations at different magnitudes of added perturbations. We choose EN-B7 NLab as the victim model
and perform our universal attack at different values of 𝜖 . The attack success rates across different
models are shown in Figure 7. Figure 7 also shows what a perturbed image looks like at different
values of 𝜖 . At 𝜖 < 0.1, the perturbation is fairly imperceptible but can still achieve high success
rates on various test models.
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𝟄 = 0.039    𝟄 = 0.078    Benign   

𝟄 = 0.235    𝟄 = 0.313    𝟄 = 0.156    

𝝐 (L∞ Norm)

Fig. 7. Left: Visualization of the perturbed images using different magnitudes (𝜖) of universal adversarial
perturbations trained on EN-B7 NLab. Right: Attack success rates of the universal attacks (Section 3.7) on
different victim models and their transferability to unseen detectors (test models).

3D CNN Sequence Model

Attack Type L∞ SR - U SR - C Acc. - C%

None - - - 91.74

Simple White-box (Section 3.3) 0.037 100.00 77.67 22.33
Robust and Transferable (Section 3.4) 0.059 100.00 100.00 0.00
Query based Black-box (Section 3.5) 0.061 87.99 24.43 75.57
Query based robust Black-box (Section 3.5) 0.062 88.21 51.02 48.98

Table 7. Evaluation of different attacks on a sequence based detector on the DFDC validation dataset. The
first row indicates the performance of the classifier on benign (non adversarial) videos.

5.4 Evaluation on Sequence Based Detector
We consider the 3D CNN based detector described in Section 3.1. The detector performs 3D
convolution on a sequence of face-crops from 7 consecutive frames. We perform our attacks on
the pre-trained model checkpoint (trained on the DFDC [21] train set) released by the NTech-Lab
team [17]. We evaluate our attacks on the Deepfake videos from the DFDC public validation set
which contains 200 Fake videos. We report the accuracy of the detector on the 7-frame sequences
from this test set in the first row of Table 7.

Similar to our attacks on frame-by-frame detectors, in the white-box setting we back-propagate
the loss through the entire model to obtain gradients with respect to the input frames for crafting
the adversarial frames. While both white-box and robust white-box attacks achieve 100% success
rate on uncompressed videos, the robust white-box attack performs significantly better on the
compressed videos and is able to completely fool the detector. As compared to frame-by-frame
detectors, a higher magnitude of perturbation is required to fool this sequence model in both
the white-box attacks. In the black-box attack setting, while we achieve similar attack success
rates on uncompressed videos as the frame-by-frame detectors, the attack success rate drops after
compression. The robust black-box attack helps improve robustness of adversarial perturbations to
compression as observed by higher success rates on compressed videos (51.02% vs 24.43% SR-C).
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6 ETHICS AND PRACTICAL IMPACT
The threat posed by Deepfake videos is already apparent - there are malicious users using such
videos to defame famous personalities, spread disinformation, influence elections and polarize
citizens. With more convincing and accessible Deepfake video synthesis techniques, this threat
has become even bigger in magnitude. Since the intent of Deepfake generation can be malicious,
their detection is a practical security concern. Deepfake synthesis and detection, closely follow the
virus and anti-virus dynamic and is often considered an arms race with no end. It is important to
thoroughly test the reliability of such detectors in practice since the task of Deepfake detection is
inherently adversarial. In this paper, we show that the current state-of-the-art methods for Deepfake
detection can be easily bypassed if the adversary has complete or even partial knowledge of the
detector. We demonstrate that adversarial videos designed using our robust attacks can significantly
transfer across various detection models. This poses a practical security threat in a black-box setting
since the attacker may attack a surrogate open-source model and use the adversarial videos to
bypass alternate detection models in production. More alarmingly, we show that it is possible to
craft universal adversarial perturbations which can be added to all the frames of any given video
to fool a number of seen and unseen detection models. Deploying such attacks, therefore require
minimal computational overhead and makes them more effective for real-time scenarios. Since
such a perturbation can be easily shared amongst attackers, it makes these attacks more accessible
and escalates the vulnerabilities of state-of-the-art Deepfake detection systems. We demonstrate
that the current works on Deepfake detectors [1, 12, 21, 29, 57, 65] have been majorly ignoring the
issue of adversarial inputs and can be fairly easily bypassed.
Our work therefore motivates the need to incorporate defenses to adversarial examples while

training Deepfake detection systems. By actively incorporating adversarial images and videos
while training the detection systems, it is possible to train more robust classification models. We
recommend approaches similar to Adversarial Training [28] to train robust Deepfake detectors.
That is, during training, an adaptive adversary continues to generate novel Deepfakes that can
bypass the current state of the detector and the detector continues improving in order to detect the
new Deepfakes.

7 CONCLUSION
In this work, we study the vulnerabilities of various DNN based Deepfake systems. We consider
both per-frame and sequence-based Deepfake detection models and demonstrate that they can be
bypassed under various attack settings and attacker capabilities. We first design an attack pipeline
to bypass Deepfake detectors in a white-box attack setting and propose techniques to increase the
robustness of such attacks to video compression codecs. Next, we demonstrate that adversarial
videos crafted using our robust attacks can fool alternate models to a significant extent thereby
posing a real-world threat in a black-box attack setting. Finally, we demonstrate the existence of
universal adversarial perturbations which pose a more practical threat since they can be easily
shared amongst attackers and applied to any video in real-time. The threats proposed in this work
motivate the need for training Deepfake detection systems that are robust to adversarial examples.
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