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ABSTRACT
Sequential recommenders aim to capture users’ dynamic interests
from their historical action sequences, but remain challenging due
to data sparsity issues, as well as the noisy and complex relation-
ships among items in a sequence. Several approaches have sought
to alleviate these issues using side-information, such as item content
(e.g., images), action types (e.g., click, purchase). While useful, we
argue one of the main contextual signals is largely ignored—namely
users’ queries. When users browse and consume products (e.g., mu-
sic, movies), their sequential interactions are usually a combination
of queries, clicks (etc.). Most interaction datasets discard queries,
and corresponding methods simply model sequential behaviors
over items and thus ignore this critical context of user interactions.

In this work, we argue that user queries should be an important
contextual cue for sequential recommendation. First, we propose a
new query-aware sequential recommendation setting, i.e. incorpo-
rating explicit user queries to model users’ intent. Next, we propose
a model, namelyQuery-SeqRec, to (1) incorporate query information
into user behavior sequences; and (2) improve model generaliza-
tion ability using query-item co-occurrence information. Last, we
demonstrate the effectiveness of incorporating query features in
sequential recommendation on three datasets.1
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Figure 1:Motivating Examples. Given the same item sequence
with different users’ queries, the recommendation results are
different, and ‘boundaries’ of useful historical interactions
(shaded) also differ.

1 INTRODUCTION
Sequential recommender systems play an essential role in person-
alized online services (e.g. e-commerce, streaming media) on the
basis of users’ historical action sequences, but extracting relevant
and accurate signals remains challenging; for example, user intent
may gradually evolve—or change suddenly—leading to an erosion
of the sequential context among items.

To mitigate such problems and capture users’ intent among com-
plex and noisy behavior sequences, various methods have been
proposed that target different aspects, including model architec-
tures [6, 9, 20] and side information [11, 12, 14]. Various side infor-
mation has been exploited, such as item content [7, 12, 24] (e.g. re-
views, images), user action types [14] (e.g. clicks, downloads, pur-
chases) as well as temporal information [1, 11] (e.g. time intervals).

Despite the success of models that leverage rich side-information,
some important signals remain under-explored. In this paper, we
are specifically interested in users’ queries that punctuate their
interaction sequences. In many recommendation scenarios (e.g. e-
commerce, music, photo-sharing), users interact with the system by
alternately posing queries and browsing relevant items. However,
such informative signals are usually discarded from sequential
recommendation datasets, as demonstrated in Figure 1. We seek to
investigate the use of explicit queries in sequential recommendation
settings, namely query-aware sequential recommendation.

Queries can be an important contextual clue to reflect and predict
users’ evolving intent. The benefits of using queries are three-fold:
(1) Queries reflect intent granularity. For example, Figure 1 shows
queries such as ‘wallpaper’, ‘hot-air balloon’ suggest not only the
recommendation target but also the desire for content diversity in a
particular context. (2) Queries provide connections among interac-
tions, which can be used to enrich item representations, especially
for items that are rarely interacted with. (3) Queries help to detect
user intent ‘boundaries’. Figure 1 shows that a query of ‘wallpaper’
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followed by ‘desktop landscape’ may indicate a refinement of in-
terests, whereas ‘mountain & water’ followed by ‘hot-air balloon’
would indicate unrelated intent; both scenarios have different se-
mantics in terms of how we should regard relationships among
sequential interactions (e.g. clicks or purchases).

In this work, we argue user queries should be considered in
sequential recommendation, and propose a model for the query-
aware sequential recommendation setting. First, we organize query
and item information as heterogeneous query- and item-sequences.
Second, we use query-item co-occurrence to improve the model
generalization ability via graph-based sequence augmentation. Fur-
thermore, we show how to technically handle large item embedding
tables (e.g. 10 million items) in model training, at a scale rarely
discussed in sequential recommendation papers. Our main contri-
butions are summarized as follows:

• We propose a new query-aware sequential recommendation
setting, i.e. incorporating explicit user queries as an impor-
tant contextual cue to reflect and predict user intent.

• We propose a query-aware sequential recommender Query-
SeqRec using heterogeneous user sequences and graph-based
sequence augmentation. We also introduce a self-attentive
model under this framework.

• We consider two existing datasets2 for the new query-aware
sequential recommendation setting, and use a new industrial
dataset with millions of items. Experiments show the impact
of incorporating explicit user queries and how our method
outperforms state-of-the-art baselines.

2 METHODOLOGY
2.1 Input Sequence Formulation
Conventional Item Sequences. In conventional sequential rec-
ommendation, we are given a user setU, an item set I, and a set of
user item interaction sequences S = {𝑆1, . . . , 𝑆 |U | }. Each sequence
𝑆𝑢 consists of user 𝑢’s (chronologically ordered) item interactions:

𝑆𝑢 =

[
𝑖
(𝑢 )
1 , 𝑖

(𝑢 )
2 , . . . , 𝑖

(𝑢 )
𝑇𝑢

]
, (1)

where 𝑆𝑢 ∈ S, 𝑢 ∈ U. 𝑖 (𝑢 )𝑡 ∈ I is the item that the user clicked at
the timestep 𝑡 . 𝑇𝑢 is the sequence length.
Query-awareHeterogeneous Sequence.We consider user queries
by introducing an additional query set Q and word vocabularyV ,
where a query 𝑞 ∈ Q consists of a list of words [𝑣1, . . . , 𝑣 |𝑞 | ], 𝑣 ∈ V .
We enrich the sequence 𝑆𝑢 to a heterogeneous sequence 𝑆𝑢 , contain-
ing user 𝑢’s queries and item interactions in chronological order:

𝑆𝑢 =

[
𝑠
(𝑢 )
1 , 𝑠

(𝑢 )
2 , . . . , 𝑠

(𝑢 )
𝑇𝑢

]
, (2)

where𝑇𝑢 is the length of this query-aware heterogeneous sequence.
𝑠
(𝑢 )
𝑡 can be an item interaction or a query action. We use 𝛿 to
indicate whether 𝑠 (𝑢 )𝑡 at 𝑡-th step is a query or an item interaction:

𝑠
(𝑢 )
𝑡 ∈

{
I, if 𝛿 (𝑠 (𝑢 )𝑡 ) = 0,
Q, otherwise.

(3)

2For these datasets, the queries and clicks are collected for broader applications, but
the user queries are discarded in conventional sequential recommendation settings.

We also examine other ways [13, 24] to incorporate user queries into
item interaction sequences in our empirical studies (see Section 3.3).
Recommendation Goal. Given the query-aware heterogeneous
sequence 𝑆𝑢 , the model predicts the next item for user 𝑢, which is
formalized as modeling the probability over all possible items for
this user’s next item interaction, i.e.:

𝑃

(
𝑠
(𝑢 )
𝑇𝑢+1

= 𝑖∗ | 𝑆𝑢 , 𝛿 (𝑠 (𝑢 )
𝑇𝑢+1

) = 0
)
. (4)

𝛿 (𝑠 (𝑢 )
𝑇𝑢+1

) = 0 assumes the next step is an item interaction. 𝑠 (𝑢 )
𝑇𝑢+1

= 𝑖∗

denotes that 𝑖∗ ∈ I is the item the user interacts with at step𝑇𝑢 + 1.
We omit the user identifier 𝑢 to simplify notation below.

2.2 Graph-Based Sequence Augmentation
Query-item co-occurrence is unique information unavailable in
conventional sequential recommendation, which can be used to
construct a query-item graph and improve model generalization
ability via input sequence augmentation. Our intuition is a sequence
𝑆 can be augmented as𝐾 sequences 𝑆 (1) , . . . , 𝑆 (𝐾 ) by stochastically
replacing item 𝑖 (query 𝑞) with similar items (queries), where query-
item co-occurrence provides hints as to semantic similarities.
Graph Construction. We denote the query-item graph as G =

(A, E), where A = Q ∪ I represents item and query nodes. The
edge set E denotes all linkages between queries and items (i.e., (𝑞, 𝑖)
or (𝑖, 𝑞) ∈ E).We define the neighbors of item 𝑖 asN(𝑖) = {𝑞 | (𝑖, 𝑞) ∈
E}, and defineN(𝑞) similarly. The initial edge set E1 is constructed
by connecting item 𝑖 with its latest query 𝑞. Then, to further reduce
noises and retain confident linkages, we set a threshold 𝛼 over E1 to
retain the top ⌈𝛼 |N (𝑖) |⌉ linkages for item 𝑖 and top ⌈𝛼 |N (𝑞) |⌉ link-
ages for query 𝑞. Thus we have E = E𝛼 . Note that 𝛼 trades off the
coverage and confidence of query-item linkages, where 0 < 𝛼 ≤ 1.
Graph-Based Sequence Augmentation.We augment input se-
quences by adopting a stochastic shared embedding (SSE) idea [22]
based on our constructed query-item graph. For 𝑠𝑡 ∈ 𝑆 , we replace
𝑠𝑡 with probability 𝛽 following:

𝑖 ∼ 𝑠𝑡 , 𝑗 ≁ 𝑠𝑡 → 𝑝 (𝑖, 𝑠𝑡 )/𝑝 ( 𝑗, 𝑠𝑡 ) = 𝜌, if 𝛿 (𝑠𝑡 ) = 0, 𝑖, 𝑗 ∈ I (5)
𝑞 ∼ 𝑠𝑡 , 𝑘 ≁ 𝑠𝑡 → 𝑝 (𝑞, 𝑠𝑡 )/𝑝 (𝑘, 𝑠𝑡 ) = 𝜌, if 𝛿 (𝑠𝑡 ) = 1, 𝑞, 𝑘 ∈ Q . (6)

Here 𝑝 (·, ·) is the replacement probability, and 𝜌 is a constant
greater than 1. We use ∼ (≁) to denote whether two nodes are simi-
lar or not. Given a graph G, we define similar queries 𝑞 ∼ 𝑘 when 𝑞
and 𝑘 have some common neighbour(s), i.e.,N(𝑞)∩N (𝑘) ≠ ∅. This
is motivated by the fact that nodes (e.g. “cafe” and “coffee” ) which
connect to many common neighbors are potentially similar, so are
more likely to be replaced by each other for data augmentation. We
can augment sequences ‘on-the-fly’ for each training epoch rather
than generating all augmented sequences in advance.

2.3 Transformer-Based Model Backbone
Query-aware sequential recommendation is a new setting where
various sequential recommendation backbones can build; here, we
propose a Transformer-based [9, 21] model for query-aware setting,
namely Query-SeqRec. Then we show model training, including
some practices to handle large item pool sizes (e.g. 10 million items).
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Representation.We use embeddingsM0 ∈ R | I |×𝑑 ,M1 ∈ R | Q |×𝑑 ,
P ∈ R𝑇×𝑑 , B ∈ R2×𝑑 to represent 𝑑-sized items, queries, timestep,
interaction type, respectively. We represent the inputs: (1) Item,
timestep: Given item 𝑖 and timestep (position) 𝑡 , we directly look
up corresponding embeddings M0

𝑖
,P𝑡 respectively. (2) Query: For

query 𝑞 = [𝑣1, . . . , 𝑣 |𝑞 | ], we retrieve corresponding word embed-
dings and adopt an average pooling operation to get our query
representation M1

𝑞 ∈ R1×𝑑 . Note that other methods (e.g. a hidden
vector from an LSTM [8], sentence vector from BERT [2]) can also
be used to obtain M1

𝑞 . Note that the length of user query words is
often short (e.g. less than 3 on average in our datasets), and usually
lack strong sequential patterns. So average pooling that follows a
bag-of-words paradigm can be a simple yet effective way to repre-
sent queries. (3) Interaction type: We look up B ∈ R2×𝑑 to get
embeddings for different interaction types (i.e., item or query).
Query-Aware Transformer Layer. Given a heterogeneous se-
quence 𝑆 described in Section 2.1, we retrieve the input embedding
matrix from the embedding layer Emb as:

E(0) = Emb(𝑆) =


M
𝛿 (𝑠1 )
𝑠1

+ B𝛿 (𝑠1 ) + P1

· · ·
M
𝛿 (𝑠𝑇 )
𝑠𝑇

+ B𝛿 (𝑠𝑇 ) + P
𝑇

 . (7)

E(0) ∈ R𝑇×𝑑 is the input embedding matrix and + denotes element-
wise addition. Here item and query representations (with interac-
tion type embeddingsB) are learned in a joint embedding space and
are aware of sequential order by positional (timestep) embeddings.
We build 𝐿 Transformer [21] blocks on top of the embedding layer
Emb, which works as sequential encoder to generate E(𝐿) ∈ R𝑇×𝑑
as the output embedding matrix. The details of the stacked trans-
former block construction refer to [9, 19].
Predictor Layer. Given the output E(𝐿)

𝑡 ∈ R1×𝑑 at timestep 𝑡
(i.e., the 𝑡-th row in matrixE(𝐿) ∈ R𝑇×𝑑 ), we follow BERT4Rec [19]
to calculate output probability over a target 𝑖 as:

𝑃

(
𝑠𝑡+1 = 𝑖 | 𝑆, 𝛿 (𝑠𝑡+1) = 0

)
= softmaxi

(
E
(𝐿)
𝑡 M0⊤

)
, (8)

where softmaxi denotes the 𝑖-th probability from the softmax layer
and the logits are interpreted as inner product similarities between
the output E(𝐿)

𝑡 with the original item embeddings fromM0.

2.4 Handling Large Item Vocabularies
Loss with Sampled Softmax. Technically, a large item embedding
matrixM0 ∈ R | I |×𝑑 due to item vocabulary size |I | (e.g. 10 million
items [15]) may be prohibitive in terms of GPU memory with the
softmax layer in Equation (8) in backpropagation (e.g. in the order
of 100 GiB). Previous models like BERT4Rec [19] did not encounter
this problem because the experimental datasets are small (e.g. 30
thousand items). In such cases, we use sampled softmax to reduce
the memory cost in backpropagation, and revise Equation (8):

𝑃𝑛

(
𝑠𝑡+1 = 𝑖 | 𝑆, 𝛿 (𝑠𝑡+1) = 0

)
= softmax1

(
E
(𝐿)
𝑡 M(𝑛)⊤

)
. (9)

M(𝑛) ∈ R𝑛×𝑑 denotes sampled item embeddings. 𝑃𝑛 is the proba-
bility that item 𝑖 should be the target rather than the other 𝑛 − 1

Table 1: Data Statistics. Inter for item interaction; S for se-
quence; I for item; Q for query; A-I for average number of
interactions per item; A-S for average sequence length and
A-Q for average number of query occurrences.

#Inter #I #S #Q A-I A-S A-Q

Diginetica 52,164 22,587 8,020 5,870 2.31 6.50 1.92
Unsplash 1,623,566 22,517 240,993 56,634 72.10 6.74 9.63
Stock 25,731,635 8,633,462 987,173 1,516,020 2.98 26.07 1.95

candidates. This cross-entropy loss with sampled softmax also uni-
fies the widely used BPR loss [17] when 𝑛 = 2. We use the same full
/ sampled softmax for baselines and our models for fair comparison.
Multi-GPU Embedding. To feed a large item embedding table
M0 ∈ R | I |×𝑑 into GPU memory, the embedding tableM0 is split
along the hidden size dimension (rather than item dimension),
i.e. loading M0

1 ∈ R | I |×𝑑1 , . . . ,M0
m ∈ R | I |×𝑑𝑚 onto𝑚 GPUs re-

spectively; then we retrieve and concatenate needed item embed-
dings onto a single GPU during training in the form ofmini-batches.

3 EXPERIMENTS
3.1 Experimental Setting
Datasets.We use three datasets (see statistics in Table 1) for query-
aware sequential recommendation. (1) Diginetica3 is released in
the CIKM 2016 CUP, containing user search and browsing logs
on diginetica.com. This dataset is commonly used in session-based
or sequential recommendation, only using transaction data and
ignoring user queries. But our experiments use both users’ clicks
(on items) and queries (in sessions). (2) Unsplash4 is a dataset from
the freely-usable photography website unsplash.com with users’
search and download logs. We use the lite-version data. (3) Stock-
Industrial is the largest dataset we constructed for experiments. It
is collected from Adobe Stock Image platform 5 from Oct. 16—31,
2020. We use users’ search and click logs.
Metrics.We follow [9, 19] to conduct a leave-last-out data split. We
use truncated Hit Ratio (HR@K) and Normalized Discounted Cu-
mulative Gain (N@K) [9, 19] (𝐾 = 20) to measure ranking quality.
Baselines. The first group of baselines are item-only sequential rec-
ommenders: (1) FPMC [18] combines Markov chains with matrix
factorization. (2) GRU4Rec+ [5] is a improved RNN-based model
for users’ item interaction sequences for session-based recommen-
dation [5, 6]. (3) SASRec [9] is a uni-directional self-attentive
sequential recommender. (4) BERT4Rec [19] is a BERT-like [2]
sequential recommender capturing bi-directional contextual infor-
mation. (5) SSE-PT [23] extends SASRec by using explicit user
representations. The second group includes context-aware base-
lines incorporating query information but do not consider the se-
quence order of item interactions: (1) Non-personalized Search
(NS) projects query and item representations into a joint embed-
ding space and defines similarities using inner product. We use co-
occurrence of queries and items in the data (i.e., non-personalized).
(2) QBPR: We adopt VBPR [3] to incorporate query (instead of
3https://competitions.codalab.org/competitions/11161
4https://unsplash.com/data
5https://stock.adobe.com

https://competitions.codalab.org/competitions/11161
https://unsplash.com/data
https://stock.adobe.com
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Table 2:MethodComparison. Highest/second highest scores are bolded/underlined. Here Δ1 represents the relative improvement
from SASRec to Query-SeqRec, Δ2 represents the relative improvement from the best baselines to Query-SeqRec. ∗ denotes
sampled-item-ranking (1k negatives) rather than all-item-ranking metrics (which is infeasible for the industrial-scale dataset).

Item-Only Sequential Baseline Query-Aware Baseline Query-Aware Seq. Rec.

Dataset Metric FPMC GRU4Rec+ SASRec BERT4Rec SSE-PT NS QBPR FM NeuFM Query-SeqRec Δ1 Δ2

Diginetica HR@20 0.2996 0.2174 0.3508 0.3221 0.3425 0.2948 0.1438 0.3571 0.3359 0.4037 +15.1% +13.0%
N@20 0.1953 0.1160 0.1979 0.1714 0.2315 0.1760 0.0986 0.2323 0.2245 0.2361 +19.3% +01.6%

Unsplash HR@20 0.5307 0.5874 0.5881 0.5912 0.5912 0.5317 0.2723 0.5199 0.5499 0.6796 +15.6% +15.0%
N@20 0.2669 0.2924 0.2972 0.2697 0.2985 0.2039 0.1221 0.1984 0.2109 0.3439 +15.7% +15.2%

Stock∗ HR@20 0.3832 0.4284 0.4527 0.4472 0.4549 0.2215 0.2153 0.1749 0.2625 0.4831 +06.7% +06.2%
N@20 0.2993 0.3412 0.3404 0.3445 0.3541 0.1677 0.1129 0.1319 0.1955 0.3708 +08.9% +04.7%

Table 3: Ablation study for the effectiveness of query in-
formation and sequence augmentation. Here Q represents
incorporating query information as Section 2.1; A represents
our sequence augmentation method as Section 2.2; R means
using a uniform random replacement strategy to replace A.

Dataset Metric Query-SeqRec w/ R w/o A w/o Q

Diginetica HR@20 0.4037 0.3996 0.3908 0.3508
N@20 0.2361 0.2351 0.2287 0.1979

Unsplash HR@20 0.6796 0.6672 0.6698 0.5881
N@20 0.3439 0.3335 0.3403 0.2972

Stock∗ HR@20 0.4831 0.4802 0.4758 0.4527
N@20 0.3708 0.3686 0.3653 0.3404

visual) information. (3) FM [16] is a classic context-aware rec-
ommendation technique. We use the same ‘bag-of-words’ query
representations as Section 2.3. (4) NeuFM [4] is a deep architecture
for context-aware recommendation. We use the same features as
FM and adopt MLPs for higher-order feature interactions.
Implementation Details. All models are trained with Adam [10]
(initial lr=1e-3). We set 𝑑=64, and select l2 from {0, 1e-6, 1e-4, 1e-2,
1, 10} and dropout probability from {0, 0.2, . . . , 0.8}. We search 𝛼
for sequential augmentation from {0.1, 0.2, . . . , 1} and 𝜌 from {1,
1.1, . . . , 2}. For three datasets, we set the maximum length of query
words as 5 and the maximum length of user sequences as 50.

3.2 Model Performance
General Performance Improvement. Table 2 shows our model
outperforms all baselines. Specifically, Δ1 is the relative improve-
ment against the backbone model (SASRec). It shows our model
gains 12.5% HR@20 and 14.6% N@20 against SASRec on average,
which shows the effectiveness of incorporating query information
and sequential augmentation strategies. Δ2 represents the relative
improvement against the best baselines for each dataset. For exam-
ple, our method gains 11.4% HR@20 and 7.2% N@20 on average.
Improvement across Datasets. The benefits of incorporating
queries varies across different datasets. The relative improvements
on Diginetica and Unsplash are relatively more than for the Stock
dataset. For example, Δ1 shows 15.6% HR@20 gain for Unsplash
but 6.7% HR@20 gain for Stock. Presumably, this is mainly be-
cause the average sequence lengths of Diginetica and Unsplash
are shorter than Stock (e.g. 6.74 for Unsplash vs. 26.07 for Stock
from Table 1). Shorter sequences bring insufficient information and
more uncertainty about user intent, so that user queries help more.

Incorporation HR@20 N@20
Heterogeneous 0.3908 0.2287
Early 0.3719 0.2169
FDSA [24] (Late) 0.3697 0.2081
NOVA [13] 0.3594 0.2031

Table 4: Query Incorporation.
FPMC GRU4Rec+ SSE-PT0.0

0.1

0.2

0.3

Backbone Query-Aware

Table 5: More Back-
bones (HR@20).

3.3 Ablation Study
Effectiveness of Each Component. Table 3 shows the ablation
studies of our essential components: (1) For incorporating queries,
compared with w/o Q, our model and w/o A show that incorporat-
ing query information can significantly improve recommendation
accuracy. (2) For the sequential augmentation, ours vs. w/o A shows
that our augmentation strategy can improve the query-aware se-
quential recommenders; ours vs. w/ R indicates that introducing the
query-item graph for augmentation outperforms uniform random
replacement (similar to SSE-PT [23]).
Different Query Incorporation Methods. Table 4 shows the
exploration of different query exploration methods on Diginetica.
To exclude the influence of data augmentation, we report results
without any augmentation strategies. Table 4 show empirically
Heterogeneous (in Section 2.1) achieves better performance than the
other threeways of organizing the query- and item-sequence, which
are Early fusion, FDSA [24] fusion (i.e., late fusion) and NOVA [13]
fusion. For example, Heterogeneous achieves 0.3908 HR@20 against
0.3719 from Early. 0.3697 from FDSA and 0.3594 from NOVA.
More Backbone Models. To show the generalization of the query-
aware sequential recommendation setting, we experimented with
other sequential recommenders as backbones. Table 5 shows that
though model architectures are different (e.g. FPMC is Markov-
Chain-based, GRU4Rec+ is RNN-based, SSE-PT is Transformer-
based), incorporating user query information under our framework
can consistently improve the ranking performance. For example,
on Diginetica, HR@20 of query-aware FPMC outperforms the cor-
responding backbone by 17.7% (relative improvement).

4 CONCLUSION
User queries are overlooked in sequential recommendation but can
be an important contextual clue to predict users’ evolving intent.
We propose a query-aware sequential recommendation setting and a
sequential recommender, Query-SeqRec, to incorporate query infor-
mation, and examine different incorporation designs, showing the
effectiveness of using user queries in sequential recommendation.
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