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ABSTRACT

Recently, self-attentive models have shown promise in sequential
recommendation, given their potential to capture user long-term
preferences and short-term dynamics simultaneously. Despite their
success, we argue that self-attention modules, as a non-local op-
erator, often fail to capture short-term user dynamics accurately
due to a lack of inductive local bias. To examine our hypothesis,
we conduct an analytical experiment on controlled ‘short-term’

scenarios. We observe a significant performance gap between self-
attentive recommenders with and without local constraints, which
implies that short-term user dynamics are not sufficiently learned
by existing self-attentive recommenders.

Motivated by this observation, we propose a simple framework,
(Locker) for self-attentive recommenders in a plug-and-play fash-
ion. By combining the proposed local encoders with existing global
attention heads, Locker enhances short-term user dynamics model-
ing, while retaining the long-term semantics captured by standard
self-attentive encoders. We investigate Locker with five different
local methods, outperforming state-of-the-art self-attentive recom-
menders on three datasets by 17.19% (NDCG@20) on average.
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Global Self-Attention: Overly focuses on distant items

Ours: Add local constraints (e.g. masking win. / conv.)
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Figure 1: Global self-attention tends to overly focus on dis-

tant items without inductive local bias.

1 INTRODUCTION

Sequential recommenders aim to balance long-term user preferences
(e.g. preference toward actionmovies) with the short-term context of
their recent actions (e.g. the last movie they watched). Considering
both long- and short-term patterns simultaneously often improves
recommendation accuracy, includingMarkov Chain (MC) based [10,
22] and RNN/CNN based approaches [5, 15, 24, 28].

To capture ‘flexible order’ (i.e., both long- and short-term pref-
erence) from sequential user data, self-attentive recommenders
(SAR) have recently emerged as the state-of-the-art for both item-
only [13, 17, 23, 26] and feature-rich [19, 30] sequential recom-
mendation tasks, where self-attention [25] plays a central role by
calculating item-to-item attention weights for the entire user be-
havior sequence. Some recent works [18, 26] improve self-attentive
recommenders by introducing user models for long-term semantics,
which implicitly assume self-attentive recommenders can handle
short-term user dynamics well. However in this paper we argue
that existing ‘vanilla’ self-attention (called global self-attention be-
low) in self-attentive recommenders fails to sufficiently capture the
importance of short-term user dynamics.

We first conduct a motivating experiment on a ‘short-term’
dataset. Though global self-attention could learn the correct seman-
tics with sufficient data theoretically [29], our experimental results
reveal that for real-world sequential recommendation tasks with
limited data, global self-attention — as a non-local operator — tends
to overly focus on distant historical items, resulting in performance
degradation. An illustrative example from Figure 1 shows some dis-
tant items (e.g. printer, camera) are less related to user short-term
interests (e.g. a mobile phone), while global self-attention is often
insufficient to learn short-term dynamics accurately (and overly
focuses on distant items in practice). Recent work in linguistics has
shown that appropriate inductive local and other biases improve
self-attention’s generalization ability [6, 7, 16, 27]; this idea is yet
to be widely adopted in the context of recommendation.

https://doi.org/10.1145/3459637.3482136
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① Keep Latest x% (e.g. 10%) Items (For Short-term Dynamics) :
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② Inject α% (e.g. 20%) Random (Unrelated) Items Before x% Items:
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(a) Short-term data processing example.
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0% 10% 20% 30% 40%
 (x=20%)

0.104

0.106

0.108

0.110

0.112

0.114

0.116

(c) N@20 vs. 𝛼

0.02

0.04

0.06

0.08

0.10

(d) Average attention map (len.=20, #sample=200).

Figure 2: Motivating experiments to show short-term user dynamics are not sufficiently learned my global self-attention.

In this work, we propose a simple framework, Locally Constrained
Self-attentive Recommender (Locker), building on self-attentive net-
works. Locker enhances the ability to capture short-term user
dynamics via local constraints (local encoder) while maintaining
the capability to model long-term user preferences. For the local
encoder, we investigate different local operators (e.g., model- or
masking-based local encoders); for the global encoder, we adopt
existing global self-attention networks. Experiments show that
Locker with different local encoders outperforms existing self-
attentive recommenders with small computational overhead.

2 PRELIMINARIES

2.1 Problem Setup

We are given a user setU, an item set I, and a set of user behavior
sequences S = {𝑆1, 𝑆2, . . . , 𝑆 |U |}. Each user sequence consists of
(chronologically ordered) item interactions 𝑆𝑢 = (𝑠 (𝑢)1 , 𝑠

(𝑢)
2 , . . . , 𝑠

(𝑢)
𝑁𝑢

),
where 𝑆𝑢 ∈ S, 𝑢 ∈ U, 𝑠 (𝑢)

𝑖
∈ I and 𝑁𝑢 is the sequence length.

Given the interaction history 𝑆𝑢 , we predict the next item 𝑠
(𝑢)
𝑁𝑢+1.

1

2.2 Self-Attentive Recommenders (SAR)

Self-attentive recommenders [13, 17, 23, 26, 30] rely heavily on
global self-attention, though input types, training, or masking strate-
gies vary. Global self-attention seeks to identify ‘relevant’ items
from users’ entire action sequences. Formally, H𝑙

𝑖
∈ R1×𝑑 is an

embedding for 𝑠𝑖 after the 𝑙 th self-attention layer. A value vector𝑉𝑖
from global multi-head (#heads=𝑀) self-attention is calculated as:

𝑉𝑖 = [𝑉 (1)
𝑖

; . . . ,𝑉
(𝑚)
𝑖

; . . . ;𝑉
(𝑀)
𝑖

]W𝑂 ,

where 𝑉 (𝑚)
𝑖

=

𝑁∑
𝑗=1

𝑓att

(
Q

(𝑚)
𝑖

→ K
(𝑚)
𝑗

)
· V(𝑚)

𝑗
,

(1)

where 𝑓att is an attention function (e.g. scaled dot-product atten-
tion [25]) to calculate the ‘relevance’ weight for any item-to-item
pair (i.e. Q𝑖 to K𝑗 ) in the input sequence; W(𝑚)

𝑄
,W

(𝑚)
𝐾

,W
(𝑚)
𝑉

∈
R𝑑×𝑑/𝑀 are the𝑚-th learnable projection matrices for input query
Q

(𝑚)
𝑖

= H𝑙
𝑖
W

(𝑚)
𝑄

, keyK(𝑚)
𝑖

= H𝑙
𝑖
W

(𝑚)
𝐾

and valueV(𝑚)
𝑖

= H𝑙
𝑖
W

(𝑚)
𝑉

;
W𝑂 ∈ R𝑑×𝑑 is a learnable projection matrix to get𝑉𝑖 from concate-
nated vectors. Then models generate the next layer 𝐻 𝑙+1𝑡 using 𝑉𝑖

1Without loss of generality, we omit the user identifier 𝑢 to simplify notation below.

from Equation (1) with Residual Connections [9], LayerNorm [1]
and Pointwise Feed-Forward Networks [25].

2.3 SAR Needs Local Constraints

To show global self-attention is not sufficient for capturing short-
term user dynamics in sequential recommendation, we design an
analytical task on the widely used ML-1M dataset [8] (see dataset
details in Section 4). We generate our training data from ML-1M
following two steps (Figure 2a shows an example): (1) To focus on
short-term dependencies, we truncate user sequences, retaining the
last 𝑥% of items. (2) To investigate the ability of global attention
to capture short-term dynmaics, we prepend 𝛼% random (non-
meaningful) items before these 𝑥% items. Ideally, if global self-
attention can capture ‘flexible order’ interactions from data, injected
random items should be given little attention weight and will not
harm recommendation performance significantly.

2.3.1 Model. We adopt BERT4Rec [23], a representative self-atten-
tive recommender to fit the dataset. We set hidden size 𝑑 = 64 with
other optimal hyper-parameters via grid search. Other self-attentive
recommenders [2, 13, 26, 30] use similar self-attention modules.

2.3.2 Evaluation. We follow [13, 23] to conduct a leave-last-out

data split (i.e. for each sequence, using the first N-2 items for train-
ing, the (N-1)th for validation and the Nth for testing). We choose
truncated Hit Ratio (HR@K) and Normalized Discounted Cumu-
lative Gain (N@K) [13, 23] to measure ranking quality (𝐾 = 20).
According to evaluation reviews [14], we use all-item ranking.

2.3.3 Observations. We evaluate recommendation performance
with different random item length ratios 𝛼 and observe:

• Performance gap: Figures 2b and 2c show that without
inductive bias, global self-attention consistently performs
significantly worse than the local model (i.e. 𝛼 = 0), even
though theoretically sufficient training data helps global
self-attention to capture short-term patterns correctly.

• Behavior sequence length: Figures 2b and 2c show that
performance consistently drops with increasing 𝛼 . Presum-
ably, global self-attention considers all tokens, absorbing
more noise from distant tokens as sequences get longer.

• Attention map: Figure 2d visualizes the average attention
map. Global self-attention assigns larger weight to closer
tokens (‘brighter’ neighbors) where the average attention
score 𝑓att is 0.062. However, without local constraints, the



model still absorbs noise from distant unrelated items with
average attention score 𝑓att score 0.038 (red box).

3 METHODOLOGY

Motivated by our preliminary experiment, we propose a generic
framework, Locker, for self-attentive recommenders in a plug-and-
play fashion, to enhance the ability to capture short-term dynamics,
while maintaining the ability to capture long-term semantics. We
then investigate different local encoders under Locker.

3.1 Locker Framework

Locker introduces local constraints into existing self-attention
networks seamlessly. Like Equation (1), we concatenate output
value vectors from𝑀 different attention heads, but Locker defines
𝑀𝑙 +𝑀𝑔 = 𝑀 to split attention heads as𝑀𝑙 local encoders and𝑀𝑔
global encoders. Formally,

𝑉𝑖 = [𝑉 (1)
𝑖,𝑙

; . . . ;𝑉
(𝑀𝑙 )
𝑖,𝑙

;𝑉
(1)
𝑖,𝑔

; . . . ;𝑉
(𝑀𝑔)
𝑖,𝑔

]W𝑂 , (2)

where 𝑉 (𝑚𝑙 )
𝑖,𝑙

(𝑉 (𝑚𝑔)
𝑖,𝑔

) is an output value vector from the local
(global) encoder. We are interested in the role of explicit local en-
coders. So we simply keep global encoders as the same global at-
tention head in Equation (1) and investigate several different local
encoders, including model-based and masking-based encoders.

3.2 Model-based Local Encoder

For the model-based local encoder, we generate𝑉 (𝑚𝑙 )
𝑖,𝑙

using neural-
network operators with inductive local bias.

3.2.1 Fixed-Depth RNN (Locker+RNN). Recurrent networks are ef-
fective at short-term sequence modeling [11]. For our local encoder,
to enhance the model’s ability to capture short-term dynamics
(while maintaining efficiency), it is natural to introduce a fixed-
depth RNN module as a local encoder:

𝑉
(𝑚𝑙 )
𝑖,𝑙

= 𝑔
(
V

(𝑚𝑙 )
𝑖,𝑙

, 𝑔(V(𝑚𝑙 )
𝑖−1,𝑙 , . . . )︸           ︷︷           ︸

recurrent depth 𝑠

)
, (3)

where 𝑔 is the recurrent neural unit; here we choose Gated Recur-
rent Units (GRU) [3] as in GRU4Rec [11]. Here we use a GRU with
fixed and small depth 𝑠 to simplify computation and concentrate
on short-term user dynamics.

3.2.2 Convolutional Network (Locker+Conv). Convolutional net-
work is another option to model neighborhood dynamics. We define
a convolution-based encoder for 𝑉 (𝑚𝑙 )

𝑖,𝑙
as:

𝑉
(𝑚𝑙 )
𝑖,𝑙

= [c1; . . . ; c𝑑/𝑀 ], 𝑐 𝑗 = act
(
𝑉

(𝑚𝑙 )
[𝑖 ]𝑠 ,𝑙 ⊙ W( 𝑗)

)
, (4)

where ⊙ denotes an inner product operator like [24], V(𝑚𝑙 )
[𝑖 ]𝑠 ,𝑙 ∈

R𝑠×𝑑/𝑀 denotes the local [i-(s-1)/2,...,i+(s-1)/2] rows (size 𝑠 is odd
number) in V

(𝑚𝑙 )
𝑙

∈ R𝑁×𝑑/𝑀 .𝑊 ( 𝑗) ∈ R𝑠×𝑑/𝑀 denotes the 𝑗-th
convolutional kernel. act is an activation function to introduce
non-linearity such as ReLU. Compared to CASER [24], which used
convolutional networks to capture point-level and union-level item
similarities, we adopt convolutional networks as a local operator
to enhance short-term user dynamics modeling.

3.3 Masking-based Local Encoder

For a masking-based local encoder, we reconsider the global at-
tention function 𝑓att by introducing locality-aware masking to en-
hance the ability to capture short-term dynamics. For Equation (1),
where 𝑓att in detail is defined by ‘relevance’ logit𝑤𝑖 𝑗 with position
𝑖, 𝑗 and fed into the softmax layer for normalization, i.e.:

𝑓att,𝑙 (Q𝑖 → K𝑗 ) =
exp(𝑤𝑖 𝑗 ) · 𝜎𝑖 𝑗∑𝑁
𝑘=1

exp(𝑤𝑖𝑘 ) · 𝜎𝑖𝑘
(5)

where masking score 𝜎𝑖 𝑗 ≡ 1 for global self-attention. In the
masking-based local encoder, we enhance the ability to capture
short-term dynamics by changing the masking score 𝜎𝑖 𝑗 with dif-
ferent strategies.

3.3.1 Fixed Window (Locker+Win). Fixed window simply deacti-
vates all distant tokens, where 𝜎𝑖 𝑗 is defined as:

𝜎𝑖 𝑗 = I( |𝑖 − 𝑗 | ≤ 𝑠), (6)

where I is an indicator function. Therefore, the attention map is
masked by a fixed-length window to deactivate the dependency on
distant (distance > 𝑠) tokens.

3.3.2 Gaussian Initialization (Locker+Initial). Locker+Win. pre-
defines ‘hard’ and ‘static’ masking scores for all training data, which
could be too rigid. We seek to introduce ‘trainable’ masking scores
with good initialization, which is one way to introduce a local-
ity prior into this encoder. The masking operation exp(𝑤𝑖 𝑗 ) · 𝜎𝑖 𝑗
in Equation (5) can be rewritten as exp(𝑤𝑖 𝑗 + ln𝜎𝑖 𝑗 ). We seek to
‘learn’ the unbounded adjustable weight 𝑝𝑖−𝑗 = ln𝜎𝑖 𝑗 , where 𝑖 − 𝑗

means we map different distance to a trainable weight 𝑝𝑖−𝑗 .
We can perform weight initialization following a Gaussian-like

function (e.g., 𝑝0
𝑖−𝑗 = 𝑎 exp(−(𝑖− 𝑗)

2/𝑏)), where local concentration
exists in the neighborhood. Note that changing weight initializa-
tion does not guarantee an explicit local ‘fixed window’ exists after
training, but the initialization bias encourages the model to cap-
ture local patterns from a better starting point than (e.g.) uniform
initialization and can adjust during training. To further encourage
trainable weights to capture locality from data, we remove the po-
sitional embeddings (in standard SAR [13, 23]) for local encoder
vectors, i.e., only incorporating positional embeddings into the
global encoder key and query vectors.

3.3.3 Adaptive Predictor (Locker+Adapt). Locker+Initial adjusts
soft scores but cannot encode additional information, such as a user
identifier 𝑢. We further extend Locker+Initial to a parameterized
adaptive predictor pred to predict different masking scores, i.e.:

𝑝
(𝑢)
𝑖−𝑗 = pred

(
V

(𝑚𝑙 )
𝑖,𝑙

+V
(𝑚𝑙 )
𝑗,𝑙

+ 𝑣𝑢 + 𝑏𝑖−𝑗
)
, (7)

where we can additionally encode user information 𝑣𝑢 ∈ R1×𝑑 , dis-
tance embedding 𝑏𝑖−𝑗 ∈ R1×𝑑 , and current value vectorsV(𝑚𝑙 )

𝑖,𝑙
and

V
(𝑚𝑙 )
𝑗,𝑙

. We construct user representations 𝑣𝑢 following FISM [12]
and FISSA [18] without extra user embeddings. Like Locker+Initial,
we remove positional embeddings for local encoder vectors to en-
courage the model to learn locality from data. pred is a two-layer
MLPmodel to learnmore flexible masking scores with user, distance
and current token information.



Baseline Models Locker (Backbone: BERT4Rec) Improvement
Dataset Metric PopRec BPR-MF SASRec BERT4Rec SSE-PT +RNN +Conv +Win +Initial +Adapt Avg. Max.

Beauty N@20 0.0048 0.0172 0.0206 0.0238 0.0232 0.0258 0.0297 0.0296 0.0303 0.0311 +23.11% +30.67%
HR@20 0.0131 0.0425 0.0496 0.0541 0.0547 0.0568 0.0661 0.0641 0.0652 0.0672 +16.78% +22.85%

Clothing N@20 0.0021 0.0035 0.0052 0.0062 0.0059 0.0070 0.0078 0.0074 0.0077 0.0079 +21.94% +27.42%
HR@20 0.0056 0.0089 0.0140 0.0153 0.0149 0.0166 0.0184 0.0174 0.0184 0.0187 +16.99% +22.22%

ML-1M N@20 0.0260 0.0498 0.1625 0.1783 0.1763 0.1930 0.1980 0.1831 0.1863 0.1893 +06.53% +11.05%
HR@20 0.0686 0.1298 0.3652 0.3870 0.3841 0.4012 0.4119 0.3972 0.3900 0.4047 +03.62% +06.43%

Table 1: Model comparision. We tune Locker with 𝑀={2,4} where 𝑀𝑙={1,...,M-1}, and use similar settings for the backbone.

Compared to the best baselines (underline), Avg. (Max.) for average (maximum) relative improvement of five local encoders.

#Interaction #Item #Sequence Average Length Density
Beauty 353,962 54,542 40,226 8.80 1e-4
Clothing 831,816 162,193 108,489 7.67 1e-5
ML-1M 1,000,000 3,416 6,040 165.56 1e-2

Table 2: Data statistics.

4 EXPERIMENTS

4.1 Experimental Setting

4.1.1 Data. We consider the following datasets from different do-
mains with various data distributions (see Table 2): Beauty, Cloth-
ing are datasets collected fromAmazon in [20].ML-1M [8] is a pop-
ular benchmark dataset for top-N recommendation. We follow the
data pre-processing and splitting from [23] (details in Section 2.3.2).

4.1.2 Baselines. PopRec, A baseline recommending items accord-
ing to item occurrences in the dataset. BPR-MF [21] A classic per-
sonalized ranking learning algorithm based on matrix factorization.
SASRec [13]: A seminal method using self-attention mechanism
for sequential recommendation. BERT4Rec [23]: A BERT-like [4]
model capturing bi-directional contextual item information via a
cloze task for next-item recommendation. SSE-PT [26]: A state-of-
the-art self-attentive recommender, extends SASRec by introducing
explicit user representations.

4.1.3 Evaluation and Implementation. We reuse the evaluation pro-
tocols in Section 2.3.2. We implement all models via PyTorch and
use grid search with the same granularity to tune baselines (follow-
ing each baseline’s suggestions). Locker uses the same training and
hyper-parameter searching strategy as our backbone (BERT4Rec)2.

4.2 Result Analysis

4.2.1 General Performance. Table 1 shows model ranking perfor-
mance on three datasets. (1) Self-attentive sequential recommenders
(SASRec, BERT4Rec, SSE-PT) consistently outperform classic meth-
ods by effectively leveraging sequential information with global
self-attention networks. BERT4Rec outperforms SASRec by using
bidirectional training. SSE-PT outperforms SASRec by introducing
explicit user representations. (2) Our Locker framework outper-
forms all baselines consistently. Compared to the strongest global
self-attention-based recommender (BERT4Rec, SSE-PT), our model
gains about 17.19% N@20 and about 12.46% HR@20 improvements
on average with a comparable number of parameters. Furthermore
Locker with the most effective local encoder gains about 23.04%
N@20 and about 17.67% HR@20 improvements on these three

2Locker implementation in https://github.com/AaronHeee/LOCKER

datasets. This shows the effectiveness of introducing inductive local
bias into self-attentive recommenders with different local encoders.

4.2.2 Local Encoder Discussion. For local encoders, (1) model- and
masking-based encoders all outperform pure global self-attentive se-
quential recommenders. Interestingly, on ML-1M (with the longest
average user sequences), model-based encoders exceed all (2) Pre-
sumably because RNN encodes actions ‘one-by-one’ and cannot
capture more flexible ‘skip’ behaviors like other encoders, RNN
performs the worst on these three datasets. (3) Conv. and Win. are
both fixed-size encoders and can capture flexible item dependencies.
The superiority of Conv. on three datasets may owe to introducing
extra model parameters. (4) Initial. and Adapt. perform better than
fixed-window Win. with learnable masking, where Adapt can en-
code more information (user, current tokens) thus further improves
performance (though with longer training time, shown below). The
characteristics of five encoders are summarized in Table 3.

Local
Encoder

Skipped
Behavior?

No Extra
Param.?

Adapt.
Size?

RNN
Conv ✓

Win ✓ ✓
Init./Adapt ✓ ✓

Table 3: Multiple local encoder

characteristics.

0 200 400 600
Epochs

0.01

0.02

0.03

0.04

BERT4Rec (5.1s/epoch)
Locker Max. (6.2s/epoch)
Locker Avg. (5.7s/epoch)

Table 4: NDCG@20

validation (Beauty).

4.2.3 Efficiency andConvergence. Table 4 records NDCG@20 curves
on the Beauty validation set on a single Nvidia 2080s GPU. Locker
Max. indicates Locker+Adapt with the slowest training speed,
Locker Avg. shows the average NDCG@20 scores and training time
of these five Locker models. Compared with BERT4Rec, we ob-
serve that (1) Our models achieve comparable performance with far
fewer training epochs (~200 versus ~500). (2) Our models converge
using similar training epochs with small computational overhead
(5.7s/epoch on average versus 5.1s/epoch).

5 CONCLUSION

Self-attentive recommenders have shown promise in sequential
recommendation, where global self-attention plays a critical role.
In this paper, we find that—without any inductive bias—global self-
attention cannot easily capture short-term user dynamics. Thus, we
propose a framework, Locker, to introduce local inductive bias. We
extend existing self-attention networks using five local encoders to
enhance short term dynamics modeling and show the effectiveness
of this idea on several datasets. In the future, more sophisticated
inductive biases can be considered in self-attentive recommenders.

https://github.com/AaronHeee/LOCKER
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