Candidate Generation with Binary Codes
for Large-Scale Top-N Recommendation

Wang-Cheng Kang
University of California, San Diego
La Jolla, CA, USA
wckang@ucsd.edu

ABSTRACT

Generating the Top-N recommendations from a large corpus is com-
putationally expensive to perform at scale. Candidate generation
and re-ranking based approaches are often adopted in industrial
settings to alleviate efficiency problems. However it remains to
be fully studied how well such schemes approximate complete
rankings (or how many candidates are required to achieve a good
approximation), or to develop systematic approaches to generate
high-quality candidates efficiently. In this paper, we seek to in-
vestigate these questions via proposing a candidate generation
and re-ranking based framework (CIGAR), which first learns a
preference-preserving binary embedding for building a hash table
to retrieve candidates, and then learns to re-rank the candidates
using real-valued ranking models with a candidate-oriented ob-
jective. We perform a comprehensive study on several large-scale
real-world datasets consisting of millions of users/items and hun-
dreds of millions of interactions. Our results show that CIGAR
significantly boosts the Top-N accuracy against state-of-the-art
recommendation models, while reducing the query time by orders
of magnitude. We hope that this work could draw more attention
to the candidate generation problem in recommender systems.

ACM Reference Format:

Wang-Cheng Kang and Julian McAuley. 2019. Candidate Generation with
Binary Codes for Large-Scale Top-N Recommendation. In The 28th ACM
International Conference on Information and Knowledge Management (CIKM
’19), November 3-7, 2019, Beijing, China. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3357384.3357930

1 INTRODUCTION

Top-N recommendation is a fundamental task of a recommender
system, which consists of generating a (short) list of N items that
are highly likely to be interacted with (e.g. purchased, liked, etc.) by
users. Precisely identifying these Top-N items from a large corpus
is highly challenging, both from an accuracy and efficiency perspec-
tive. The vast number of items, both in terms of their variability and
sparsity, makes the problem especially difficult when scaling up to
real-world datasets. In particular, exhaustively searching through

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM 19, November 3-7, 2019, Beijing, China

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6976-3/19/11...$15.00
https://doi.org/10.1145/3357384.3357930

Julian McAuley
University of California, San Diego
La Jolla, CA, USA
jmcauley@ucsd.edu

(——— Hash

LD:ED " Table
LB 1}

‘jl) Generate Candidates
item

codes

user \'_'/

codes

Ranking Model
(e.g. MF, CML, NeuMF)

‘ (2) Re-rank

') #1 #2 #3
Q || ||

(3) Recommend

Figure 1: A simplified illustration showing the candidate
generation and re-ranking procedures in our CIGAR frame-
work. The binary codes and ranking model are both learned
from user feedback.

all items to generate the Top-N ranking becomes intractable at scale
due to its high latency.

Recommender systems have received significant attention with
various models being proposed, though generally focused on the
goal of achieving better accuracy [4, 8, 16, 36, 38]. For example, BPR-
MF [32] adopts a conventional Matrix Factorization (MF) approach
as its underlying preference model, CML [15] employs metric em-
beddings, TransRec [12] adopts translating vectors, and NeuMF [13]
uses multi-layer perceptrons (MLP) to model user-item interactions.

As for the problem of latency/efficiency, a few works seek to
accelerate the maximum inner product (MIP) search step (for MF-
based models), via pruning or tree-based data structures [21, 31].
Such approaches are usually model-specific (e.g. they depend on
the specific structure of an inner-product space), and thus are hard
to generalize when trying to accelerate other models. Another line
of work seeks to directly learn binary codes to estimate user-item
interactions, and builds hash tables to accelerate retrieval time [24,
27, 44, 46-48]. While using binary codes can significantly reduce
query time to constant or sublinear complexity, the accuracy of such
models is still inferior to conventional (i.e., real-valued) models,
as such models are highly constrained, and may lack sufficient
flexibility when aiming to precisely rank the Top-N items.

As the vast majority of items will be irrelevant to most users at
any given moment, candidate generation and re-ranking strategies
have been adopted in industry where high efficiency is required.
Such approaches first generate a small number of candidates in an
efficient way, and then apply fine-grained re-ranking methods to
obtain the final ranking. To achieve high efficiency, the candidate

https://doi.org/10.1145/3357384.3357930
https://doi.org/10.1145/3357384.3357930

generation stage is often based on rules or heuristics. For example,
Youtube’s early recommender system treated users’ recent actions
as seeds, and searched among relevant videos in the co-visitation
graphs with a heuristic relevance score [7]. Pinterest performs ran-
dom walks (again using recent actions as seeds) on the pin-board
graph to retrieve relevant candidates [10], and also considers other
candidate sources based on various signals like annotations, content,
etc. [26]. Recently, Youtube adopted deep neural networks (DNNs)
to extract user embeddings from various features, and used an inner
product function to estimate scores, such that candidate generation
can be accelerated by maximum inner product search [5].

In this paper, we propose a novel candidate generation and re-
ranking based framework called CIGAR. During_the candidate gen-
eration stage, unlike existing work that adopts heuristics, or learns
real-valued embeddings first and then adopts indexing techniques
to accelerate, we propose to directly learn binary codes for both
preference ranking and hash table lookup. During the re-ranking
stage, we learn to re-rank candidates using existing ranking models
with candidate-oriented sampling strategies. Figure 1 shows the
procedure of generating recommendations using CIGAR.

Our main contributions are as follows:

e We propose a novel framework (CIGAR) which learns to gener-
ate candidates with binary codes, and re-ranks candidates with
real-valued models. CIGAR thus exhibits both the efficiency of
hashing and the accuracy of real-valued methods: binary codes
are employed to estimate coarse-grained preference scores and
efficiently retrieve candidates, while real-valued models are
used for fine-grained re-ranking of a small number of candi-
dates.

e We propose a new hashing-based method—HashRec—for
learning binary codes with implicit feedback. HashRec is opti-
mized via stochastic gradient descent, and can easily scale to
large datasets. CIGAR adopts HashRec for fast candidate gener-
ation, as empirical results show that HashRec achieves superior
performance compared to other hashing-based methods.

e We propose a candidate-oriented sampling strategy which en-
courages the models to focus on re-ranking candidates, rather
than treating all items equally. With such a sampling scheme,
CIGAR can significantly boost the accuracy of various exiting
ranking models, including neural-based approaches.

e Comprehensive experiments are conducted on several large-
scale datasets. We find that CIGAR outperforms the existing
state-of-the-art models, including those that rank all items,
while reducing the query time by orders of magnitude. Our
results suggest that it is possible to achieve similar or better
performance than existing approaches even when using only a
small number of candidates.

2 BACKGROUND

In this section, we briefly review relevant background including
representative ranking models for implicit feedback, and hashing-
based models for efficient recommendation.

2.1 Preference Ranking Models

2.1.1 Recommendation with Implicit Feedback. In our paper, we fo-
cus on learning user preferences from implicit feedback (e.g. clicks,

purchases, etc.). Specifically, we are given a user set U and an
item set 7, such that the set 7.} represents the items that user u
has interacted with, while 7,,; = I — I,} represents unobserved
interactions. Unobserved interactions are not necessarily negative,
rather for the majority of such items the user may simply be un-
aware of them. To interpret such in-actions, weighted loss [17] and
learning-to-rank [32] approaches have been proposed.

2.1.2 Bayesian Personalized Ranking (BPR). BPR [32] is a classic
approach for learning preference ranking models from implicit feed-
back. The core idea is to rank observed actions (items) higher than
unobserved items. BPR-MF is a popular variant that adopts con-
ventional Matrix Factorization (MF) approaches as its underlying
preference estimator:

Su,i = <Pu’Qi>, (1)

where py, q; are k-dimensional embeddings. BPR seeks to optimize
pairwise rankings by minimizing a contrastive objective:

- Z Ino(sy,i — Su,j)

(u,i,))€D (2)
D={(u,i,lueUnieI* NjeT }.

As enumerating all triplets in D is typically intractable, BPR-MF
adopts stochastic gradient descent (SGD) to optimize the model.
Namely, in each step of SGD, we dynamically sample a batch of
triplets from 9. Also, an ¢, regularization on user and item embed-
dings is adopted, which is crucial to alleviate overfitting.

2.1.3 Collaborative Metric Learning (CML). Conventional MF-
based methods operate in inner product spaces, which are flexible
but can easily overfit. To this end, CML [15] imposes the triangle
inequality constraint, by adopting metric embeddings to represent
users and items. Here the preference score is estimated by the
negative ¢, distance:

Su,i = ~Ilpu — qill2- ®)
CML adopts a hinge loss to optimize pairwise rankings. A significant

benefit of CML is that retrieval can be accelerated by efficient
nearest neighbor search, which has been heavily studied.

2.1.4 Neural Matrix Factorization (NeuMF). To estimate more com-
plex and non-linear preference scores, NeuMF [13] adopts multi-
layer perceptrons for modeling interactions:

T [P oq" }

4
MLP(p{Y, q*)

Su,i =
where O is the element-wise product, ‘MLP’ extracts a vector from
user and item embeddings, and w is used to project the concatenated
vector to the final score. Essentially NeuMF combines generalized
matrix factorization (GMF) and MLPs. Due to the complexity of the
scoring function, the retrieval process is generally hard to accelerate
for NeuMF.

2.2 Hashing-based Recommendation

To achieve efficient recommendation, various hashing-based models
have been proposed. These methods use binary representations to
represent users and items, and the retrieval time can be reduced to
constant or sublinear time by appropriate use of a hash table. We

Table 1: Notation.

Notation Description

Uu, 1 user and item set

reN binary embedding length (#bits)

keN real-valued embedding size

ceN number of candidates for re-ranking

Eu, Hi eR” auxiliary embeddings for user u and item i

by,d; € {-1,1}" binary embeddings for user u and item i
Pu-qi € Rk real embeddings for user u and item i
meN the number of substrings in MIH

heR the sampling ratio in eq. 10

briefly introduce the Hamming Space and two relevant hashing-
based recommendation method.

2.2.1 Hamming Space. A Hamming space contains 2" binary
strings with length r. Binary codes can be efficiently stored and
computed in modern systems. In this paper we use binary codes
by,d; € {~1,1}" to represent users and items.! The negative Ham-
ming distance measures the similarity between two binary strings:

r

st(bu,di) =) b,z = di,2)
z=1
1 r r (5)
= 3 Z by, =diz)+r - Z I(by,z # di,z)
z=1 z=1

1
const + 5<bu’ d;),

where I(-) is the indicator function. This provides a convenient way
to formulate the problem with the inner product.

2.2.2 Discrete Collaborative Filtering (DCF). DCF [44] is a repre-
sentative method that estimates observed ratings (scaled to [, r])
using (by, d;). Additional constraints of bit balance and bit uncor-
relation are adopted to learn efficient binary codes. DCF introduces
real-valued auxiliary variables, and adopts an optimization strategy
consisting of alternating sub-problems with closed-form solutions.

2.2.3 Discrete Personalized Ranking (DPR). To our knowledge,
DPR [46] is the only hashing-based method designed for implicit
feedback. DPR considers triplets 9 as in BPR, and optimizes
rankings using a squared loss. DPR also optimizes sub-problems
with closed-form solutions. However, the solutions to these sub-
problems rely on computing all triplets in O, which makes opti-
mization hard to scale to large datasets.

3 CIGAR: LEARNING TO GENERATE
CANDIDATES AND RE-RANK

In this section, we introduce CIGAR, a candidate generation and re-
ranking based framework. We propose a new method HashRec that
learns binary embeddings for users and items. CIGAR leverages the
binary codes generated by HashRec, to construct hash tables for fast
candidate generation. Finally, CIGAR learns to re-rank candidates
via real-valued ranking models with the proposed sampling strategy.
Our notation is summarised in Table 1.

!We use {-1,1} instead of {0,1} for convenience of formulations, though in practice we
can convert to binary codes (i.e., {0,1}) when storing them.

1.0, 1.0,

1y 1)
0.8 o—e L(eq.7) 8os
@ 0.6 o—e L(eq.8) § 0.6
2 2
- o S04 o4
-3 -2 -1 £ E—— =
— sgn(x) 0.2 S0.2{ 04
— epoch 10]
eSochz 0.0 0.0/ ha 000 0o
— epoch 1 0 20 40 60 80 100 020 40 60 80 100
epoch epoch

(a) sgn(x) vs. tanh(fx) (b) Training loss (c) Quantization loss

Figure 2: Training curves on MovieLens-20M. Figure (a) plots
sgn(x) and its approximation tanh(fx). Figure (b) plots the de-
sired loss L and surrogate loss L through training. Figure (c)
shows the quantization error (measured via mean squared
distances) between sgn(x) and tanh(fx).

3.1 Learning Preference-preserving Binary
Codes

We use binary codes by, d; € {-1,1}" to represent users and items,
and estimate interactions between them via the Hamming distance.
We seek to learn preference-preserving binary codes such that
similar binary codes (i.e., low Hamming distance) indicate high
preference scores. For convenience, we use the conventional inner
product (the connection is shown in eq. 5) in our formulation:

Su,i = (bu,d;). (6)
In implicit feedback settings, we seek to rank observed interac-
tions (u,i) higher than unobserved interactions. To achieve this, we
employ the classic BPR [32] loss to learn our binary codes. However,
directly optimizing such binary codes is generally NP-Hard [42].
Hence, we introduce auxiliary real-valued embeddings Eu, Hi eR"
as used by other learning-to-hash approaches [44]. Thus our objec-
tive is equivalent to:

L== 3 Inog ((sgn(bu).sen@)) - (sgnlbu).sgn@,)),
(u,i,j)eD -
7

where sgn(x) = 1if x > 0 (-1 otherwise), and o4(x) = o(ax) =
1/(1 + exp(—ax)). As the inner product between binary codes can
be large (i.e., £r), we set @ < 1 to reduce the saturation zone of the
sigmoid function. Inspired by a recent study for image hashing [3,
18], we seek to optimize the problem by approximating the sgn(-)
function:

sgn(x) = ﬂlim tanh(fx),

where f is a hyper-parameter that increases during training. With
this approximation, the objective becomes:

L=- Z Inoy ((tanh(ﬂgu) ,tanh(fd;))—
(i,))eD ®)

(tanh(fby), tanh(ﬂﬁj») .

As shown in Figure 2, when we optimize the surrogate loss L, the
desired loss L is also minimized consistently. Also we can see that
the quantization loss (i.e., the mean squared distances between
sgn(x) and tanh(fx)) drops significantly throughout the training
process. Note that we also employ £2-regularization on embeddings
Eu and Hi, as in BPR.

We name this method HashRec; the complete algorithm is given
in Algorithm 1.

Algorithm 1 Optimization in HashRec

Input: training data O, code length r, regularization coefficient A
Initialize embeddings B e RIUX" and D € RE™ (at random)
for epoch = 1 — num_epochs do
10 = (epoch — 1)
for iter = 1 — num_iterations do

Sample a batch of triplets a from D

Optimize loss (8) by updating by, and d; using the Adam [19] opti-
mizer
Obtain binary codes by b, « sgn(gu) andd; « sgn(H,—)
Output: B € {-1, 1}/UX" D e {-1, 1}/]x"

3.2 Building Multi-Index Hash Tables

Using binary codes to represent users and items can yield significant
benefits in terms of storage cost and retrieval speed. For example, in
our experiments, HashRec achieves satisfactory accuracy with r=64
bits, which is equivalent in space to only 4 single-precision floating-
point numbers (i.e., float16). Moreover, computing architectures are
amenable to calculating the Hamming distance of binary codes.?
In other words, performing exhaustive search with binary codes is
much faster (albeit by a constant factor) compared to real-valued
embeddings. However, using exhaustive search inevitably leads to
linear time complexity (in |7 |), which still scales poorly.

To scale to large, real-world datasets, we seek to build hash tables
to index all items according to their binary codes, such that we can
perform hash table lookup to retrieve and recommend items for
a given user. Specifically, for a query code by, we retrieve items
from buckets within a small radius [(i.e., dg(by, d;) < I). Hence
the returned items have low Hamming distances (i.e., high prefer-
ence scores) compared to the query codes, and search can be done
in constant time. However, for large code lengths the number of
buckets grows exponentially, and furthermore such an approach
may return zero items as nearby buckets will frequently be empty
due to dataset sparsity.

Hence we employ Multi-Index Hashing (MIH) [30] as our index-
ing data structure. The core idea of MIH is to split binary codes to
m substrings and index them by m hash tables. When we retrieve
items within Hamming radius [, we first retrieve items in each hash
table with radius [%J and then sort the retrieved items based on
their Hamming distances with the full binary codes. It can be guar-
anteed that such an approach can retrieve the desired items (i.e.,
within Hamming radius [), and that the search time is sub-linear in
the number of items [30].

Since we are interested in generating fixed-length (Top-N) rank-
ings, we seek to retrieve c items as candidates, instead of considering
Hamming radii. MIH proposes an adaptive solution that gradually
increases the radius [until enough items are retrieved (i.e., at least
¢). Empirically we found that the query time of MIH is extremely
fast and grows slowly with the number of items. The pseudo-code
for constructing and retrieving items in MIH, and more information
about this process is described in the appendix.

2The Hamming distance can be efficiently calculated by two instructions: XOR and
POPCNT (count the number of bits set to 1).

3.3 Candidate-oriented Re-ranking

So far we have learned preference-preserving binary codes for
users and items, and constructed hash tables to efficiently retrieve
items for users. However, as observed in previous hashing-based
methods, generating recommendations purely using binary codes
leads to inferior accuracy compared with conventional real-valued
ranking models. To achieve satisfactory performance in terms of
both accuracy and efficiency, we propose to use the retrieved items
as candidates, and adopt sophisticated ranking models to refine
the results. As the preference ranking problem has been heavily
studied [13, 15, 32], we employ existing models to study the effect of
the CIGAR framework, and propose a candidate-oriented sampling
strategy to further boost accuracy.

A straightforward approach would be to adopt ‘off-the-shelf’
ranking models (e.g. BPR-MF) for re-ranking. However, we argue
that such an approach is sub-optimal as existing models are typi-
cally trained to produce rankings for all items, while our re-ranking
models only rank the ¢ generated candidates. Moreover, the re-
trieved candidates are often ‘difficult’ items (i.e., items that are hard
for ranking models to discriminate) or at the very least are not a
uniform sample of items. Hence, it might be better to train ranking
models such that they are focused on the re-ranking objective. In
this section, we introduce our candidate-oriented sampling strategy,
and show how to apply it to existing ranking models in general.

The loss functions of preference ranking models can generally
be described as>:

min Z L(u, i, j). 9)
(u,i,j)eD
The choice of £ is flexible, for instance, BPR uses In o(+), and CML
adopts the margin loss. To make the model focus more on learning to
re-rank the candidates, we propose a candidate-oriented sampling
strategy, which substitutes O with

Dt = { sample from D, with probability 1 — h , (10)

sample from C, with probability h

where C={(u,i,j)lu € U Ai € I} Aje I, NCy,}, C, contains
¢ candidates for user u generated by hashing, and & controls the
probability ratio. Note that the sampling is equivalent to assigning
larger weights to the candidates (for h>0). We empirically find that
the best performance is obtained with 0<h<1; when h=0, the model
is not aware of the candidates that need to be ranked, while h=1
may lead to overfitting due to the limited number of samples.

As for constructing C, one approach is online generation, as we
did for D. Namely, in each step of SGD, we sample a batch of users
and obtain candidates by hashtable lookup. Another approach is to
pre-compute and store all candidates. Both approaches are practical,
though we adopt the latter for better time efficiency.

Finally, taking BPR-MF as an example, the candidate-oriented
re-ranking model is trained with the following objective:

)

(u,i,j)eD*

Ino ((pu. qi) = (Pu-q)) - (11)
We denote this model as BPR-MF", to distinguish against the vanilla
model. CML* and NeuMF" (etc.) are denoted in the same way.

3For pairwise learning based methods (e.g. NeuMF), we have L(u, i, j) = L*(u, i) +
L7 (w, j).

3.4 Summary

To summarize, the training process of CIGAR consists of: (1)
Learning preference-preserving binary codes b, and d; using
HashRec (Algorithm 1); (2) Constructing Multi-Index Hash tables
to index all items; (3) Training a ranking model (e.g. BPR-MF") for
re-ranking candidates (i.e., using a candidate-oriented sampling
strategy). We adopt SGD to learn binary codes as well as our re-
ranking model, such that optimization easily scales to large datasets.

During testing, for a given user u, we first retrieve ¢ candidates
via hashtable lookup, then we adopt a linear scan to calculate their
scores estimated by the re-ranking model, and finally return the
Top-N items with the largest scores. Using candidates generated by
hash tables significantly reduces the time complexity from linear
(i.e., exhaustive search) to sub-linear, and in practice is over 1,000
times faster for the largest datasets in our experiments.

For hyper-parameter selection, by default, we set the number
of candidates ¢=200, the number of bits r=64, the scaling factor
a=10/r, and sampling ratio h=0.5. The £, regularizer A is tuned via
cross-validation. In MIH, the number of substrings m is manually
set depending on dataset size. For example, we set m=4 for datasets
with millions of items. Further details are included in the appendix.

4 EXPERIMENTS

We conduct comprehensive experiments to answer the following
research questions:

RQ1: Does CIGAR achieve similar or better Top-N accuracy com-
pared with state-of-the-art models that perform exhaustive
rankings (i.e., which rank all items)?

RQ2: Does CIGAR accelerate the retrieval time of inner-product-,
metric-, or neural-based models on large-scale datasets?

RQ3: Does HashRec outperform alternative hashing-based ap-
proaches? Do candidate-oriented sampling strategies
(e.g. BPR-MF™) help?

RQ4: What is the influence of key hyper-parameters in CIGAR?

The code and data processing script are available at https://
github.com/kang205/CIGAR.

4.1 Datasets

We evaluate our methods on four public benchmark datasets. A pro-
prietary dataset from Flipkart is also employed to test the scalability
of our approach on a representative industrial dataset. The datasets
vary significantly in domains, sparsity, and number of users/items;
dataset statistics are shown in Table 2. We consider the following
datasets:

e MovieLens* A widely used benchmark dataset for evaluating
collaborative filtering algorithms [11]. We use the largest ver-
sion that includes 20 million user ratings. We treat all ratings
as implicit feedback instances (since we are trying to predict
whether users will interact with items, rather than their ratings).

e Amazon® A series of datasets introduced in [29], including
large corpora of product reviews crawled from Amazon.com.
Top-level product categories on Amazon are treated as separate

“https://grouplens.org/datasets/movielens/20m/
Shttp://jmcauley.ucsd.edu/data/amazon/index.html

Table 2: Dataset statistics (after preprocessing)

Dataset #ltems #Users #Actions % Density
MovieLens-20M 18K 138K 20M 0.81
Yelp 103K 244K 3.7M 0.015
Amazon Books 368K 604K 8.9M 0.004
GoodReads 1.6M 759K 167M 0.014
Flipkart 2.9M 9.0M 274M 0.001

datasets, and we use the largest category ‘books.” All reviews
are treated as implicit feedback.

Yelp® Released by Yelp, containing various metadata about busi-
nesses (e.g. location, category, opening hours) as well as user
reviews. We use the Round-12 version, and regard all review
actions as implicit feedback.

e Goodreads.” A recently introduced large dataset containing
book metadata and user actions (e.g. shelve, read, rate) [39]. We
treat the most abundant action (‘shelve’) as implicit feedback.
As shown in [39], the dataset is dominated by a few popu-
lar items (e.g. over 1/3 of users added Harry Potter #1 to their
shelves), such that always recommending the most popular
books achieves high Top-N accuracy; we ignore such outliers
by discarding the 0.1% of most popular books.

Flipkart A large dataset of user sessions from Flipkart.com,
a large online electronics and fashion retailer in India. The
recorded actions include ‘click, ‘purchase, and ‘add to wishlist’
Data was crawled over November 2018. We treat all actions as
implicit feedback.

For all datasets, we take the k-core of the graph to ensure that all
users and items have at least 5 interactions. Following [4, 32], we
adopt a leave-one-out strategy for data partitioning: for each user,
we randomly select two actions, put them into a validation set and
test set respectively, and use all remaining actions for training.

4.2 Evaluation Protocol

We adopt two common Top-N metrics: Hit Rate (HR) and Mean Re-
ciprocal Rank (MRR), to evaluate recommendation performance [4,
12]. HR@N counts the fraction of times that the single left-out item
(i.e., the item in the test set) is ranked among the top N items, while
MRR@N is a position-aware metric which assigns larger weights
to higher positions (i.e., 1/i for the i-th position). Note that since
we only have one test item for each user, HR@N is equivalent to
Recall@N, and is proportional to Precision@N. Following [4], we
set N to 10 by default.

4.3 Baselines

We consider three representative recommendation models that es-
timate user-item preference scores with inner-products, Euclidean
distances, and neural networks:

e Bayesian Personalized Ranking (BPR-MF) [32] A classic
model that seeks to optimize a pairwise ranking loss. We employ
MF as its preference predictor as shown in eq. 1. When recom-
mending items, a maximum inner product search is needed.

®https://www.yelp.com/dataset/challenge
https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home

https://github.com/kang205/CIGAR
https://github.com/kang205/CIGAR
https://grouplens.org/datasets/movielens/20m/
http://jmcauley.ucsd.edu/data/amazon/index.html
https://www.yelp.com/dataset/challenge
https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home

Table 3: Recommendation performance. The best performing method in each row is boldfaced, and the second best method
in each row is underlined. All the numbers are shown in percentage. - means the training fails due to lack of memory.

@1 (@2 (a3) (a-4)

(b-1) (b-2) (b-3) CIGARO CIGAR

Dataset Metri © Metri I %
atase €M pOP BPRB DCF HashRec | "¢ BPRMF CML NeuMF HashRectBPR-MF HashRectBPR-MF® T 0"
ML-20M HR@10 8.15 11.85 6.90 15.72 | HR@10 21.05 21.41 18.43 21.56 25.42 18.7
HR@200 4235 5188 4331 6296 ' MRR@10 882 892 7.01 8.78 1146 28.4
I
Yel HR@10 103 021 130 139 | HR@10 264 212 170 2.82 3.33 26.1
P HR@200 7.82 3.38 10.19 18.49 ! MRR@10 0.88 0.69 0.57 0.97 1.22 38.6
Amagon HR@10 074 126 091 2.08 | HR@10 417 347 159 3.73 4.56 9.4
I
HR@200 5.14 6.56 6.45 11.69 ! MRR@10 1.73 141 0.67 1.91 2.23 28.9
I
HR@10 0.06 0.44 0.40 1.19 | HR@10 3.07 3.20 2.20 2.46 3.39 5.9
GoodReads | bl
HR@200 161 286 399 810 ' MRR@10 142 126 091 115 173 21.8
Fliokart HR@10 005 034 . 092 | HR@10 268 081 . 1.68 2.74 2.2
I
P HR@200 1.24 1.92 - 613 | MRR@10 1.03 0.30 - 0.64 1.19 136
|+ HashRec+BPR-MF* (CIGAR) - O HashRec+BPR-MF (CIGARO) = = = All items+BPR-MF werfp= DCF+BPR-MF [m] POP+BPR-MF @@= RAND+BPR-MF
0.30 0.05 0.035 0.035
025 £ ot e) 0.04 0.030 0.030

0.20

0.025 0.025

0.15

0.10

0.020
0.015

0.020
0.015

0.010 0.010

0.05

0.00

0.005 0.005

050 100 200 300 400 500
#Candidate Items

(a) ML-20M

050100 200 300 400 500
#Candidate Items

(b) Yelp

00185680 200
#Candidate Items

(c) Amazon Books

0.000. 0.000.

300 400 500

2 0
#Candidate Items

(d) Goodreads

#Candidate Items

(e) Flipkart

Figure 3: Effect of the number of candidates.

e Collaborative Metric Learning (CML) [15] CML represents
users and items in a metric space, and measures their com-
patibility via the Euclidean distance (as shown in eq. 3). The
recommended items for a user can be retrieved via nearest
neighbor search.

e Neural Matrix Factorization (NeuMF) [13] NeuMF models
non-linear interactions between user and item embeddings via
a multi-layer perceptron (MLP). A generalized matrix factoriza-
tion (GMF) term is also included in the model as in eq. 4.

We also compare HashRec with various hashing-based recom-
mendation approaches:

e POP A naive popularity-oriented baseline that simply ranks
items by their global popularity.
o BPR-B A simple baseline that directly quantizes embeddings
from BPR-MF (i.e., applying sgn(x) to the embeddings).
Discrete Collaborative Filtering (DCF) [44] DCF learns bi-
nary embeddings to estimate observed ratings. To adapt it to the
implicit feedback setting, we treat all actions as having value
1 and randomly sample 100 unobserved items (for each user)
with value 0.
Discrete Personalized Ranking (DPR) [46] DPR is a
hashing-based method designed for optimizing ranking with
implicit feedback. However, due to its high training complexity,
we only compare against this approach on MovieLens-1M.

The comparison against other hashing-based methods is omitted,
as they are either content-based [24, 27, 48], designed for explicit
feedback [47], or outperformed by our baselines [28].

Finally, our candidate generation and re-ranking based frame-
work CIGAR, which first retrieves ¢ = 200 candidates from the
Multi-Index Hash (MIH) table, and adopts ranking models to re-
rank the candidates to obtain final recommendations. By default,
CIGAR employs HashRec to learn binary user/item embeddings,
and BPR-MF" as the re-ranking model. The effect of CIGAR with
different candidate generation methods, re-ranking models, and
hyper-parameters are also studied in the experiments. More details
on hyperparameter tuning are included in the appendix.

4.4 Recommendation Performance

Table 3 shows Top-N recommendation accuracy on all datasets.
Columns (a-1) to (a-4) contain ‘efficient’ recommendation methods
(i.e., based on popularity or hashing), while (b-1) to (b-3) represent
real-valued ranking models. For hashing-based methods, we use
HR@200 to evaluate the performance of candidate generation (i.e.,
whether the desired item appears in the 200 candidates).

Not surprisingly, there is a clear gap between hashing-based
methods and real-valued methods in terms of HR@10, which con-
firms that using binary embeddings alone makes it difficult to iden-
tify the fine-grained Top-10 ranking due to the compactness of
the binary representations. However, we find that the HR@200 of
HashRec (and DCF) is significantly higher than the HR@10 of (b-1)
to (b-3), which suggests the potential of using hashing-based meth-
ods to generate coarse-grained candidates, as the HR@200 during
the candidate generation stage is an upper bound for the Top-10
performance (e.g. if we have a perfect re-ranking model, the HR@10
would be equal to the HR@200) using the CIGAR framework.

Table 3 shows that HashRec significantly outperforms hashing-
based baselines, presumably due to the tanh(-) approximation and
the use of the advanced Adam optimizer. Hence, we choose HashRec
as the candidate generation method in CIGAR by default. Finally, we
see that CIGAR (with HashRec and BPR-MF™) outperforms state-of-
the-art recommendation approaches. Note that CIGAR only ranks
200 candidates (generated by HashRec), while BPR-MF, CML and
NeuMF rank all items to obtain the Top-10 results. This suggests
that only considering a small number of high-quality candidates is
sufficient to achieve satisfactory performance.

Comparison against DPR We perform a comparison with
DPR [46] on the smaller dataset MovieLens-1M as the DPR is hard
to scale to other datasets we considered. Following the same data fil-
tering, partitioning, and evaluation scheme, DPR achives an HR@10
of 8.9%, HR@200 of 55.7%. In comparison, HashRec’s HR@10 is
13.5%, and HR@200 is 64.6%. This shows that HashRec outperforms
DPR which is also designed for implicit recommendation.

4.5 Effect of the Number of Candidates

Figure 3 shows the HR@10 of various approaches with differ-
ent numbers of candidates. We can observe the effect of differ-
ent candidate generation methods by comparing HashRec, DCF,
POP, and RAND with a fixed ranking approach (BPR-MF). CIGARO
(HashRec+BPR-MF) clearly outperforms alternate approaches, and
achieves satisfactory performance (similar to All Items+BPR-MF)
on the first three datasets. For larger datasets, more bits and more
candidates might be helpful to boost the performance (see sec. 4.8).

However, CIGARO merely approximates the performance of All
Items+BPR-MF. As we pointed out in section 3.3, this approach
is suboptimal as the vanilla BPR-MF is trained to rank all items,
whereas we need to rank a small number of ‘hard’ candidates in the
CIGAR framework. By adopting the candidate-oriented sampling
strategy to train a BPR-MF model focusing on ranking candidates,
we see that CIGAR achieves significant improvements over All
Items+BPR-MF. This confirms that the proposed candidate-oriented
re-ranking strategy is crucial in helping CIGAR to achieve better
performance than the original ranking model.

Note that CIGAR is trained to re-rank the ¢=200 candidates. This
may cause the performance drop when ranking more candidates
on small datasets like ML-20M and Yelp.

4.6 Effects of Candidate-oriented Re-ranking

In previous sections, we have shown the performance of CIGAR
with different candidate generation methods (e.g. HashRec, DCF,
POP). Since CIGAR is a general framework, in this section we
examine the performance of CIGAR using CML and NeuMF as the
re-ranking model (BPR-MF is omitted here, as results are included
in Figure 3), so as to investigate whether the candidate-oriented
sampling strategy is helpful in general.

Table 4 lists the performance (HR@10) of CIGAR using CML
and NeuMF as its ranking model. Due to the high quality of the
200 candidates, HashRec+CML and HashRec+NeuMF can achieve
comparable performance compared to rank all items with the same
model. Moreover, we can consistently boost the perfomance via re-
training the model with the candidate-oriented sampling strategy
(i.e., CML* and NeuMF"), which shows the mixed sampling is the

key factor for outperforming the vanilla models with exhaustive
searches (refer to section 4.8 for more analysis).

Table 4: Effects of the candidate-oriented re-ranking sam-
pling with different ranking models. T indicates better per-
formance than ranking all items with the same model.

Approach ML-20M Yelp Amazon Goodreads
All items + CML 21.41 2.12 3.47 3.20
HashRec + CML 21.27 2337 334 2.90
HashRec + CML* 23627 3197 4.227 3317

All items + NeuMF 18.43 1.70 1.59 2.20
HashRec + NeuMF 18.29 2177 2707 1.96
HashRec + NeuMF* 20837 2371 2787 2747

4.7 Recommendation Efficiency

Efficiently retrieving the Top-N recommended items for users is im-
portant in real-world, interactive recommender systems. In Table 5,
we compare CIGAR with alternative retrieval approaches for dif-
ferent ranking models. For all ranking models, a linear scan can be
adopted to retrieve the top-10 items. BPR-MF is based on inner prod-
ucts, hence we adopt the MIP (Maximum Innder Product) Tree [31]
to accelerate search speed. As CML requires a nearest neighbor
search in a Euclidean space, we employ the classic KD-Tree and
Ball Tree for retrieval. Since NeuMF utilizes neural networks to
estimate preference scores, we use a GPU to accelerate the scan.

Table 5: Running times for recommending the Top-10 items
to 1,000 users.

Model Retrieval Wall Clock Time(s)
Approach Yelp Amazon Goodreads Flipkart
#Items 0.1M 0.4M 1.6M 2.9M
Linear Scan 109.0 375.7 1623.6 3076.4
BPR-MF MIP Tree [31] 52.8 559.5 26.5 300.8
CIGAR 1.2 1.5 1.6 1.9
© " LinearScan 3758 14399 59725 12367.1
CML KD Tree 18.2 40.4 162.2 169.1
Ball Tree 154 46.3 210.7 227.8
CIGAR 1.7 2.0 2.1 2.3
Parallel Scan (GPU) 21.4 76.1 3324 -
NeuMF ™ 16aR 18 2.1 23 -

On the largest dataset (Flipkart), CIGAR is at least 1,000 times
faster than linear scan for all models, and around 100 times faster
than tree-based methods. Furthermore, compared to other methods
the retrieval time of CIGAR increases very slowly with the number
of items. Taking CML as an example, from Yelp to Flipkart, the query
time for linear scan, KD Tree, and CIGAR increases by around 30x,
9%, and 1.4x (respectively). The fast retrieval speed of CIGAR is
mainly due to the efficiency of hashtable lookup, and the small
number of high-quality candidates for re-ranking.

Unlike KD-Trees, which are specifically designed for accelerating
search in models based in Euclidean spaces, CIGAR is a model-
agnostic approach that can efficiently accelerate the retrieval time
of almost any ranking model, including neural models. Meanwhile,
as shown previously, CIGAR can achieve better accuracy compared

with models that rank all items. We note that MIP Tree performs
extremely well on Goodreads. One possible reason is that a few
learned vectors have large length®, and hence the MIP Tree can
quickly rule out most items.

Our approach is also efficient for training, for example, the
whole training process of HashRec + BPR-MF* on the largest public
dataset Goodreads can be finished in 3 hours (CPU only).

4.8 Hyper-parameter Study

In Figure 4, we show the effects of two important hyper-parameters:
the number of bits r used in HashRec and the sample ratio h for
learning the re-ranking model. For the number of bits, we can
clearly observe that more bits leads to better performance. The
improvement is generally more significant on larger datasets. For
the sample ratio h, the best value is around 0.5 for most datasets,
thus we choose h=0.5 by default. When h=1.0, the model seems
to overfit due to limited data (i.e., a small number of candidates),
and performance degrades. When h=0, the model is reduced to the
original version which uniformly samples across all items. This
again verifies the effect of the proposed candidate-oriented sam-
pling strategy, as it significantly boosts performance compared to
uniform sampling.

|+ MI-20M @ Yelp & Amazon e Goodread5|
250 g 60
o o
50
%20 ®
T 150 £
%5 ; 30
H 100 E 20
£ 9
g 50 310
2 a
g E
£ 32 64 128 = 0.00 0.25 0.50 0.75 1.00
#bits r sampling ratio
(a) #bits r (b) Sampling ratio h

Figure 4: Effects of the Hyper-parameters. (a) improvement
of HashRec with more than 16 bits; (b) performance with
different sampling ratios.

5 RELATED WORK

Efficient Collaborative Filtering Hashing-based methods have
previously been adopted to accelerate retrieval for recommenda-
tion. Early methods adopt ‘two-step’ approaches, which first solve
a relaxed optimization problem (i.e., binary codes are relaxed to
real values), and obtain binary codes by quantization [28]. Such
approaches often lead to a large quantization error, as learned em-
beddings in the first stage may be not ideal for quantization. To this
end, recent methods jointly optimize the recommendation problem
(e.g. rating prediction) and the quantization loss [44, 46], leading
to better performance compared to two-step methods. For com-
parison, we highlight the main differences between our method
and existing methods (e.g. DCF[44] and DPR [46]) as follows: (1)
existing models are often optimized by closed-form solutions in-
volving various matrix operations, whereas HashRec uses a more
scalable SGD-based approach; (2) we do not impose bit balance or
decorrelation constraints as in DCF and DPR, however in practice

8 As shown in the appendix, the regularization coefficient is set to 0 for Goodreads,
which may cause such a phenomenon.

we did not observe any performance degradation in terms of accu-
racy and efficiency; (3) we use tanh(fx) to gradually close the gap
between binary codes and continuous embeddings during training,
which shows effective empirical approximation. To the best of our
knowledge, HashRec is the first scalable hashing-based method for
implicit recommendation.

Another line of work seeks to accelerate the retrieval process
of existing models. For example, approximate nearest neighbor
(ANN) search has been heavily studied [6, 43], which can be used
to accelerate metric-based models like CML [15]. Recently, a few
approaches have sought to accelerate the maximum inner product
search (MIPS) operation for inner product based models [21, 31, 35].
However, these approaches are generally model-dependant, and
can not easily be adapted to other models. For example, it is difficult
to accelerate search for models that use complex scoring functions
(e.g. MLP-based models such as NeuMF [13]). In comparison, CIGAR
is a model-agnostic approach that can generally expedite search
within any ranking model, as we only require the ranking model
to scan a short list of candidates.

Inspired by knowledge distillation [14], a recent approach seeks
to learn compact models (i.e., with smaller embedding sizes) while
maintaining recommendation accuracy [37]. However, the retrieval
complexity is still linear in the number of items.

Candidate Generation and Re-ranking To build real-time
recommender systems, candidate generation has been adopted in
industrial settings like Youtube’s video recomendation [5, 7], Pin-
terest’s related pin recommendation [10, 26], Linkedin’s job recom-
mendation [2], and Taobao’s product recommendation [49]. Such
industrial approaches often adopt heuristic rules, similarity mea-
surements, and feature engineering specially designed for their own
platforms. A closer work to our approach is Youtube’s method [5]
which learns two models for candidate generation and re-ranking.
The scoring function in the candidate generation model is the inner
product of user and item embeddings, and thus can be accelerated
by maximum inner product search via hashing- or tree-based meth-
ods. In comparison, our candidate generation method (HashRec)
directly learns binary codes for representing preferences as well as
building hash tables. To our knowledge, this is the first attempt to
adopt hash code learning techniques for candidate generation.

Other than recommender systems, candidate generation has also
been adopted in document retrieval [1], and NLP tasks[45].

Learning to Hash Unlike conventional data structures where
hash functions might be designed (or learned) so as to reduce con-
flicts [9, 20], we consider similarity-preserving hashing that seeks
to map high-dimensional dense vectors to a low-dimensional Ham-
ming space while preserving similarity. Such approaches are often
used to accelerate approximate nearest neighbor (ANN) search and
reduce storage cost. A representative example is Locality Sensitive
Hashing (LSH) [6] which uses random projections as the hash func-
tions. A few seminal works [33, 42] propose to learn hash functions
from data, which is generally more effective than LSH. Recent work
focuses on improving the performance, (e.g.) by using better quan-
tization strategies, and adopting DNNs as hash functions [40, 41].
Such approaches have been adopted for fast retrieval of various
content including images [23, 34], documents [22], videos [25], and
products (e.g. DCF [44] and HashRec). HashRec directly learns bi-
nary codes for users and items, which is essentially a hash function

projecting one-hot vectors into the Hamming Space. We plan to
learn hash functions (e.g. based on DNNs) to map user and item
features to binary codes as future work, such that we can adapt to
new users and items, which may alleviate cold-start problems.

6 CONCLUSION

We presented new techniques for candidate generation, a criti-
cal (but somewhat overlooked) subroutine in recommender sys-
tems that seek to efficiently generate Top-N recommendations.
We sought to bridge the gap between two existing modalities of
research: methods that advance the state-of-the-art for Top-N rec-
ommendation, but are generally inefficient when trying to produce
a final ranking; and methods based on binary codes, which are
efficient in both time and space but fall short of the state-of-the-art
in terms of ranking performance. In this paper, we developed a new
method based on binary codes to handle the candidate generation
step, allowing existing state-of-the-art recommendation modules to
be adopted to refine the results. A second contribution was to show
that performance can further be improved by adapting these mod-
ules to be aware of the generated candidates at training time, using a
simple weighted sampling scheme. We showed experiments on sev-
eral large-scale datasets, where we observed orders-of-magnitude
improvements in ranking efficiency, while maintaining or improv-
ing upon state-of-the-art accuracy. Ultimately, this means that we
have a general-purpose framework that can improve the scalability
of existing recommender systems at test time, and surprisingly does
not require that we trade off accuracy for speed.
Acknowledgements. This work is partly supported by NSF
#1750063. We thank Surender Kumar and Lucky Dhakad for their
help preparing the Flipkart dataset.

REFERENCES

[1] Nima Asadi and Jimmy J. Lin. 2012. Fast candidate generation for two-phase
document ranking: postings list intersection with bloom filters. In CIKM.

[2] Fedor Borisyuk, Krishnaram Kenthapadi, David Stein, and Bo Zhao. 2016. CaS-
MoS: A Framework for Learning Candidate Selection Models over Structured
Queries and Documents. In SIGKDD.

[3] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S. Yu. 2017. HashNet:
Deep Learning to Hash by Continuation. In ICCV.

[4] Evangelia Christakopoulou and George Karypis. 2018. Local Latent Space Models
for Top-N Recommendation. In SIGKDD.

[5] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for
YouTube Recommendations. In RecSys.

[6] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In Symposium on Com-
putational Geometry.

[7] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet,
Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, and Dasarathi
Sampath. 2010. The YouTube video recommendation system. In RecSys.

[8] Mukund Deshpande and George Karypis. 2004. Item-based top-N recommenda-
tion algorithms. ACM TOIS (2004).

[9] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der
Heide, Hans Rohnert, and Robert Endre Tarjan. 1988. Dynamic Perfect Hashing:
Upper and Lower Bounds. In FOCS.

[10] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma,
Charles Sugnet, Mark Ulrich, and Jure Leskovec. 2018. Pixie: A System for
Recommending 3+ Billion Items to 200+ Million Users in Real-Time. In WWW.

[11] F.Maxwell Harper and Joseph A. Konstan. 2016. The MovieLens Datasets: History
and Context. TiiS (2016).

[12] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-based
Recommendation. In RecSys.

[13] Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In WWW.

[14] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-
edge in a Neural Network. CoRR abs/1503.02531 (2015). arXiv:1503.02531

=
=

~
=

™~
&

w w
N2

&
&

@
i

I~
20,

~
=

N
=}

http://arxiv.org/abs/1503.02531

Cheng-Kang Hsieh, Longgi Yang, Yin Cui, Tsung-Yi Lin, Serge J. Belongie, and
Deborah Estrin. 2017. Collaborative Metric Learning. In WWW.

Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. 2018. Leveraging
meta-path based context for top-n recommendation with a neural co-attention
model. In SIGKDD.

Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In ICDM.

Qing-Yuan Jiang and Wu-Jun Li. 2018. Asymmetric Deep Supervised Hashing.
In AAAL

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In SIGMOD.

Hui Li, Tsz Nam Chan, Man Lung Yiu, and Nikos Mamoulis. 2017. FEXIPRO: Fast
and Exact Inner Product Retrieval in Recommender Systems. In SIGMOD.

Hao Li, Wei Liu, and Heng Ji. 2014. Two-Stage Hashing for Fast Document
Retrieval. In ACL.

Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. 2016. Feature Learning Based
Deep Supervised Hashing with Pairwise Labels. In [JCAL

Defu Lian, Rui Liu, Yong Ge, Kai Zheng, Xing Xie, and Longbing Cao. 2017.
Discrete Content-aware Matrix Factorization. In SIGKDD.

Venice Erin Liong, Jiwen Lu, Yap-Peng Tan, and Jie Zhou. 2017. Deep Video
Hashing. IEEE TMM (2017).

David C. Liu, Stephanie Rogers, Raymond Shiau, Dmitry Kislyuk, Kevin C. Ma,
Zhigang Zhong, Jenny Liu, and Yushi Jing. 2017. Related Pins at Pinterest: The
Evolution of a Real-World Recommender System. In WWW.

Han Liu, Xiangnan He, Fuli Feng, Liqiang Nie, Rui Liu, and Hanwang Zhang.
2018. Discrete Factorization Machines for Fast Feature-based Recommendation.
In IJCAL

Xianglong Liu, Junfeng He, Cheng Deng, and Bo Lang. 2014. Collaborative
Hashing. In CVPR.

J. J. McAuley, C. Targett, Q. Shi, and A. van den Hengel. 2015. Image-based
recommendations on styles and substitutes. In SIGIR.

Mohammad Norouzi, Ali Punjani, and David J. Fleet. 2014. Fast Exact Search in
Hamming Space With Multi-Index Hashing. IEEE TPAMI (2014).

Parikshit Ram and Alexander G. Gray. 2012. Maximum Inner-Product Search
using Tree Data-structures. In SIGKDD.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAL
Ruslan Salakhutdinov and Geoffrey E. Hinton. 2009. Semantic hashing. Int. J.
Approx. Reasoning (2009).

Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen. 2015. Supervised
Discrete Hashing. In CVPR.

Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH (ALSH) for Sublinear
Time Maximum Inner Product Search (MIPS). In NIPS.

Jiaxi Tang and Ke Wang. 2018. Personalized Top-N Sequential Recommendation
via Convolutional Sequence Embedding. In WSDM.

Jiaxi Tang and Ke Wang. 2018. Ranking Distillation: Learning Compact Ranking
Models With High Performance for Recommender System. In SIGKDD.

Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Latent Relational Metric
Learning via Memory-based Attention for Collaborative Ranking. In WWW.
Mengting Wan and Julian McAuley. 2018. Item recommendation on monotonic
behavior chains. In RecSys.

Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. 2016. Learning to Hash
for Indexing Big Data - A Survey. Proc. IEEE (2016).

Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu Sebe, and Heng Tao Shen.
2018. A Survey on Learning to Hash. IEEE TPAMI (2018).

Yair Weiss, Antonio Torralba, and Robert Fergus. 2008. Spectral Hashing. In
NIPS.

Peter N. Yianilos. 1993. Data Structures and Algorithms for Nearest Neighbor
Search in General Metric Spaces. In SODA.

Hanwang Zhang, Fumin Shen, Wei Liu, Xiangnan He, Huanbo Luan, and Tat-Seng
Chua. 2016. Discrete Collaborative Filtering. In SIGIR.

Longkai Zhang, Houfeng Wang, and Xu Sun. 2014. Coarse-grained Candidate
Generation and Fine-grained Re-ranking for Chinese Abbreviation Prediction. In
EMNLP.

Yan Zhang, Defu Lian, and Guowu Yang. 2017. Discrete Personalized Ranking
for Fast Collaborative Filtering from Implicit Feedback. In AAAL

Yan Zhang, Haoyu Wang, Defu Lian, Ivor W. Tsang, Hongzhi Yin, and Guowu
Yang. 2018. Discrete Ranking-based Matrix Factorization with Self-Paced Learn-
ing. In SIGKDD.

Yan Zhang, Hongzhi Yin, Zi Huang, Xingzhong Du, Guowu Yang, and Defu
Lian. 2018. Discrete Deep Learning for Fast Content-Aware Recommendation. In
WSDM.

Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai.
2018. Learning Tree-based Deep Model for Recommender Systems. In SIGKDD.

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531

Table 6: Hyper-parameters

DCF HashRec BPR-MF BPR-MF* CML NeuMF
r a p r A m | k A k A k margin MLP Arch. k
Ml-20M 0.001 0.001 0.001 16 0.0001 0.01 0.5
Yelp 0.0001 0.0001 0.1 8 0.0001 0.1 1.0
Amazon 64 0.001 0.001 64 1.0 4 | 50 0.01 50 0.1 50 2.0 [200,100,50,25] 25
Goodreads 0.001 0.001 0.01 4 0.0 0.0001 1.0
Flipkart - - 1.0 4 0.001 0.01 2.0

Appendix

A IMPLEMENTATION DETAILS

We implemented HashRec, BPR-MF, CML, and NeuMF in Tensor-
flow (version 1.12). For DCF and DPR, we use the MATLAB imple-
mentation from the corresponding authors.’

For HashRec, BPR-MF, CML, and NeuMF, we use the Adam
optimizer with learning rate 0.001 and a batch size of 10000. A
multi-processing sampler is used for accelerating data sampling.
All models are trained for a maximum of 100 epochs. We evaluate
the validation performance!? every 10 epochs, and terminate the
training if it doesn’t improve after 20 epochs. The bit length r for
all hashing-based methods is set to 64, and the embedding size k
for ranking models is set to 50.11

We use a validation set to search for the best hyper-parameters.
The ¢ regularizer A in HashRec, BPR-MF, and BPR-MF" is selected
from {1, 0.1, 0.01, 0.001, 0.0001, 0}. For DCF, the user and item
regularizers o and f are selected from {0.01,0.001,0.0001}, and we set
a = f for fair comparison as other methods use only one regularizer
for both users and items. For CML, the norm of metric embeddings
is set to 1 following the paper [15], and the margin in the hinge
loss is selected from {0.1, 0.5, 1.0, 2.0}. For NeuMF, we follow the
default configurations [13] and a 3-layer pyramid MLP architecture
is adopted. As NeuMF has two embeddings for GMF and MLP, we
set the embedding size to 25 for each. For DPR, we use the default
setting on MovieLens-1M. DPR training on MovieLens-20M did
not terminate in 24 hours, hence we only compare against it on
MovieLens-1M.

For CIGAR, on all datasets, the number of candidates ¢=200, the
scaling factor a=10/r, sampling ratio h=0.5, and f is increased as
shown in Algorithm 1. For multi-index hashing, the number of
sub-tables m is set to {16,8,4} depending on dataset sizes.

Table 6 shows the hyper-parameters we used for each model on
all datasets.

B EFFICIENCY TEST

We performed the efficiency test (i.e., Section 4.7) on a workstation
with a quad-core Intel i7-6700 CPU and a GTX-1080Ti GPU. The
GPU is not used except for NeuMF. For MIP Tree [31], we use the
implementation from the authors,'? and the leaf node size is set
to 20 following the default setting. For KD-Trees and Ball Trees,
%Code for DCF is available
Discrete-Collaborative-Filtering
YHR@200 for hashing-based methods, and HR@10 for ranking models.

e searched among {10,30,50} and found that 50 works best for all models on all
datasets.

2https://github.com/gamboviol/miptree

online: https://github.com/hanwangzhang/

we adopt the implementation from the scikit-learn library.!3 A
priority queue is employed for choosing the top-k items in linear
scan, which costs O(| | log k). The query time of CIGAR consists of
obtaining 200 candidates from MIH, performing linear scan on the
candidates, and choosing the top-10 items. We assume the queries
are independent, and process them sequentially.

C MULTI-INDEX HASHING

We show the procedure of building multi-index hash tables in Al-
gorithm 2. For search, we gradually increase the search radius [
until we obtain enough candidates or reach the maximum radius
Imax. Larger radii may retrieve more accurate neighbors but would
cost more time, and we set [jax=1 in our experiments. The search
procedure is shown in Algorithm 3.

Algorithm 2 Building MTH

Input: item binary codes d; € {0, 1}” i € 7, the number of substrings
m
Initialize m hash tables Hy, Hs,...,Hp,, each containing 27/™M buckets
fori=1— |I]|do
Split d; into m substrings (s1, S2,.-.,Sm)
forj=1— mdo
Insert item i into the bucket s; in H;

Output: Hash Tables H=(H;, Hy,....Hp,)

Algorithm 3 Querying in MIH

Input: Hash Tables H=(H;, Hy,...,H,,), query codes b, € {0, 1}”, max-
imum radius I;4, number of candidates ¢
S—20
Split by, into substrings (s1, s2,...,5m)
for [=0 — lpy, do
forj=1— mdo
for bucket b with dg (b, sj) = [do
S « S {items in bucket b of table H; }
if |S| = ¢ then
break
if |S| < ¢ then
return S
else
sort items in S according to their Hamming distances to by, and form
a set §’ with the ¢ nearest items
return S’

Bhttps://scikit-learn.org/stable/modules/neighbors.html

https://github.com/hanwangzhang/Discrete-Collaborative-Filtering
https://github.com/hanwangzhang/Discrete-Collaborative-Filtering
https://github.com/gamboviol/miptree
https://scikit-learn.org/stable/modules/neighbors.html

	Abstract
	1 Introduction
	2 Background
	2.1 Preference Ranking Models
	2.2 Hashing-based Recommendation

	3 CIGAR: Learning to Generate Candidates and Re-Rank
	3.1 Learning Preference-preserving Binary Codes
	3.2 Building Multi-Index Hash Tables
	3.3 Candidate-oriented Re-ranking
	3.4 Summary

	4 Experiments
	4.1 Datasets
	4.2 Evaluation Protocol
	4.3 Baselines
	4.4 Recommendation Performance
	4.5 Effect of the Number of Candidates
	4.6 Effects of Candidate-oriented Re-ranking
	4.7 Recommendation Efficiency
	4.8 Hyper-parameter Study

	5 Related Work
	6 Conclusion
	References
	 Implementation Details
	 Efficiency Test
	 Multi-Index Hashing

