Improving Latent Factor Models via Personalized Feature
Projection for One Class Recommendation

Tong Zhao'2, Julian McAuley?, Irwin King*?
!Shenzhen Key Laboratory of Rich Media Big Data Analytics and Applications, Shenzhen Research Institute,
The Chinese University of Hong Kong, Shenzhen, China
2Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
3Department of Computer Science and Engineering, UC San Diego, La Jolla, CA, USA
{tzhao, king}@cse.cuhk.edu.hk, julian.mcauley@gmail.com

ABSTRACT

Latent Factor models, which transform both users and items into
the same latent feature space, are one of the most successful and
ubiquitous models in recommender systems. Most existing models
in this paradigm define both users’ and items’ latent factors to be of
the same size and use an inner product to represent a user’s ‘com-
patibility’ with an item. Intuitively, users’ factors encode ‘pref-
erences’ while item factors encode ‘properties’, so that the inner
product encodes how well an item matches a user’s preferences.
However, a user’s opinion of an item may be more complex, for
example each dimension of each user’s opinion may depend on a
combination of multiple item factors simultaneously. Thus it may
be better to view each dimension of a user’s preference as a per-
sonalized projection of an item’s properties so that the preference
model can capture complex relationships between items’ properties
and users’ preferences.

Therefore, in this paper we propose a novel personalized feature
projection method to model users’ preferences over items. Specif-
ically, for each user, we define a personalized projection matrix,
which takes the place of user-specific factors from existing mod-
els. This matrix describes a mapping between items’ factors and
users’ preferences in order to build personalized preference models
for each user and item. The proposed personalized feature projec-
tion method is quite general and existing latent factor models, for
example, can be cast as a special case. We present three objec-
tive functions to optimize predictions in the form of ranked lists of
users’ preferences over items, and demonstrate how each can be
used to improve one-class recommendation performance. Exper-
iments are conducted on four real-world datasets and our results
show that our personalized feature projection method outperforms
several state-of-the-art methods on various evaluation metrics.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

CIKM’15, October 19-23, 2015, Melbourne, Australia.

@ 2015 ACM. ISBN 978-1-4503-3794-6/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2806416.2806511.

General Terms

Algorithms, Experimentation, Performance

Keywords

Collaborative filtering; Personalized feature projection; One-class
recommendation

1. INTRODUCTION

Modeling people’s opinions and identifying which items are rel-
evant to each person plays a critical role in the online market-
place, and is the basic task of a recommender system. A major
and ongoing thrust of research on recommender systems is con-
cerned with improving the performance of personalized recommen-
dation. For example, a significant amount of research has been
proposed that aims to improve the performance of Latent Factor
(LF) models [10, 27, 28, 29], one of the most successful and ubiq-
uitous approaches in recommender systems. Latent factor models
assume that each user and each item is associated with some K-
dimensional latent factor vector, such that the inner product of a
user’s and an item’s latent factors represents the preference score
or compatability between the user and the item.

Given a user-item matrix consisting of the rating scores that users
give to items, latent factor models essentially consist of identifying
the low-dimensional structure in this matrix. The goal is to identify
K-dimensional embeddings of users and items such that their prod-
uct best recovers this rating matrix in terms of the mean-squared er-
ror (MSE). Besides fitting rating values, some works [8, 32, 37, 39]
also adapt latent factor models to optimize a ranking loss with the
intuition that higher scoring user-item pairs should have larger in-
ner products than lower-scoring items for the given user, e.g., for a
user u, their inner product with a 5-star item should be higher than
that of a 2-star item, though only the relative rather than the exact
ratings are modeled.

Another popular research direction using latent factor models is
so-called one-class recommendation, which is the focus of this pa-
per. In many real applications, explicit numerical ratings might not
be available and one must instead try to model some form of im-
plicit feedback from users, such as the media they consume, the
pages they browse, the music they listen to, or whom they befriend
[6, 42]. This setting is called “one-class” recommendation and a
variety of solutions have been proposed to solve it by directly mod-
eling relative preferences, or rankings, of items for personalized
recommendation [13, 19, 26, 43]. However, most existing works
are still using an inner product of the latent factor vectors to predict
users’ preferences on items, which essentially assumes that each

dimension of a user’s preferences is associated with one and only
one of an item’s factors.

In this paper, we generalize this linear structure and assign a pro-
jection matrix to each user instead of a latent factor vector. Intu-
itively, traditional latent factor models can be interpreted as assum-
ing that a user’s latent factors represent how the user thinks about
the latent features of an item and more restrictively, that each di-
mension of their opinion is related to a single latent factor of a
product. However, a more expressive model would allow each
dimension of a user’s opinion to be a function of a combination
of an item’s latent factors. Therefore, it is better to learn a pro-
jection between user preferences and item properties so that the
model is capable of expressing complex relationships between the
two. Moreover since in latent factor models, the inner product of
a user’s and an item’s latent feature vectors is always used to rep-
resent the user’s preference toward the item, a user’s preference
on an item is modeled only by a real number, a one-dimensional
value, and thus only numerical preference modeling can be used to
design objective functions. As we argued above, each dimension
of a user’s preference is related to a combination of their tastes to-
ward an item’s properties, so a simple inner product may not be
enough. To address the drawbacks mentioned above, we propose a
personalized feature projection (PFP) method that learns users’ la-
tent features as a personalized projection matrix instead of a vector.
Figure 1 depicts the idea of our PFP method. Based on items’ la-
tent feature vectors and users’ projection matrices, our PFP method
models users’ preferences over items in terms of projected latent
feature vectors instead of a real number. Thus, we can leverage
metric learning methods to design the objective function for one-
class recommendation. In addition, vector-based (rather than nu-
merical) objectives, can be formulated, which provides more flexi-
ble structures to describe users’ preferences.

The most similar work to our PFP method is the method called
max interest latent factors [39], which also proposes to model mul-
tiple user latent vectors to enrich users’ preference representations.
In [39], the predicted preference between a user and an item is
given by the maximum match between the user vectors and the
item vector, and omits other tastes of the user. Different from their
work, when modeling user’s preference on items, the proposed PFP
method tries to consider all tastes of the user simultaneously by em-
ploying a matrix projection approach.

We summarize our contributions as follows:

1. We develop Personalized Feature Projection methods, that
employ users’ projection matrices and items’ factors to solve
one-class recommendation problems using three different op-
timization criteria.

2. We evaluate the proposed method on four real-world datasets.
Empirical results show that the proposed model can signifi-
cantly improve one-class recommendation performance com-
pared to state-of-the-art alternatives.

3. We conduct a detailed analysis of the effect that various model
parameters have on the performance of our method.

The remainder of this paper is organized as follows. Section 2 de-
scribes preliminary and related work; Section 3 details the proposed
PFP methods and introduces three criteria used to optimize them;
Section 4 shows experimental results and verifies the improvements
of PFP methods for one-class recommendation problems; Finally,
Section 5 concludes the paper.

Where She Went

by Gayle rorman

Series: F1Stay (7)

ropularity
6,397

AW W your ey A s wishilist

User uy Item latent feature vector v; User u,
) T .
z £ i =
= N\
u,’s projection matrix uy’s projection matrix
P puz
--I_l o I. il
i L .

Projected item latent feature vector, 17}“ Projected item latent feature vector, ﬁj."z

Figure 1: Illustration of the key idea behind the PFP method.
Unlike traditional latent factor models, we use a more flexible
transform that associates each item’s latent factor with a com-
bination of users’ latent factors. The above figure is based on
a model trained on our LibraryThing dataset. Here we set the
number of item latent factors to 5 and fit user projection matri-
ces of size 5 x 10. In this case, the preferences of different users
toward the item can be represented by a set of 10-dimensional
personalized projection vectors.

2. PRELIMINARY AND RELATED WORK

We consider the one-class recommendation problem, where the
model is trained on implicit feedback (e.g., a set of items a user pur-
chased), rather than explicit rating scores. Before presenting our
Personalized Feature Projection method, we first give an overview
of existing latent factor models and describe how they can be ap-
plied to solve one-class recommendation problems.

2.1 Latent Factor Models for One-class Rec-
ommendation

Latent Factor models can be described in terms of matrix factor-
ization. Matrix factorization aims to decompose a matrix into two
(or more) low-rank terms whose product reconstructs or approxi-
mates the original matrix as closely as possible. Typically, we are
given a matrix R € RM*Y representing the observed feedback
(say, in the form of numeric ratings) from M users and N items.

This feedback matrix can then be factorized into one user-specific
matrix U € RM*¥ and one item-specific matrix V € RV *X:

R~UVT,)

where K is the dimensionality of the latent factor vector which
characterizes the features of a user or an item. Accordingly, U, V;
captures user u’s preference toward item .

For ‘one-class’ recommendation problems, there is no numeric
feedback matrix R, but rather for each user we observe two signals
in the form of positive feedback and negative feedback:

Positive feedback: positive feedback D, = {i} is defined as
the set of items ¢ toward which user u explicitly shows positive
feedback (e.g., products they purchased, pages they viewed, etc.).
Negative feedback: negative feedback is denoted by a set of user-
item pairs N, = {j}, which includes those items j toward which
user u has not shown positive feedback.

Then, in lieu of an explicit rating score, we follow the assump-
tion of [24] that users’ preferences toward positive feedback items
should be higher than those of negative feedback items, which is

captured by the following objective function:

max Z Ino(uy - vi — Uy - V;), ?2)

u,t,J

where o (-) is the logistic (sigmoid) function, i € D, and j € N,,.
Here u,, -v; and u,, -v; represent user u’s preferences towards items
¢ and 7 modeled by a latent factor model. Eq. (2) can be optimized
by using stochastic gradient ascent, which iteratively updates the
sampled user-specific latent factors U, and the sampled positive
(and negative) feedback-specific latent factors V; and V;.

2.2 Existing Methods for One-Class Recom-
mendation

Several works have studied one-class collaborative filtering and
can be mainly divided into two branches: pointwise methods [7,
19, 21] and pairwise methods [22, 24, 25, 26, 36, 40, 43].

Pointwise methods aim to fit a numeric value associated with
each evaluated item. These methods model positive feedback as
high preference scores and use several strategies to sample nega-
tive feedback as low preference scores. Then existing matrix fac-
torization methods can be used to fit the preference scores. Pan et
al. [19] solve the one-class recommendation problem in two ways:
negative example weighting and negative example sampling. Hu et
al. [7] introduced a novel concept called a “confidence level,” asso-
ciated with positive and negative feedback, and propose an efficient
optimization method for confidence-based matrix factorization.

Different from pointwise methods, pairwise methods focus on
modeling the order, or ranking of the feedback. Pairwise methods
always consider implicit feedback as relative relationships indicat-
ing that users show higher preference on positive feedback than on
negative feedback items. In [24], Rendle et al. propose a Bayesian
personalized ranking (BPR) framework. Following this, various
ideas have been proposed that incorporate different types of con-
textual information into the BPR framework. [13] extends the BPR
framework to model both users’ feedback on items and on their
social relations. In [26], Rendle et al. extend the BPR framework
from matrix factorization to tensor factorization for tag recommen-
dation. Pan et al. [20] aggregate the features of a group of related
users to reduce the uncertainty of the selected training instances.
Du et al. [3] improve one-class recommendation performance by
incorporating a social regularization term into the BPR framework.
Zhao et al. [45] leverage social connections to improve the per-
formance of one-class recommendation. In [8], Kabbur et al. use
an item-based method for generating top-N recommendations that
learns the item-item similarity matrix as the product of two low
dimensional latent factor matrices. All of these existing pairwise
methods for one-class recommendation use a numerical value to
model user preferences, while our model generalizes this setting
and describes each user’s preferences toward items as a personal-
ized projection vector.

2.3 Metric Learning

Since the method proposed in the following section also relates
to metric learning problems with pairwise constraints [2, 11, 12,
23, 31, 35, 41], here we briefly review existing works in this field.
Metric learning, whose goal is to model the similarity/dissimilarity
between instances, is one of the most fundamental problems of ma-
chine learning and has been widely used for clustering and classifi-
cation. [33] learns a Mahalanobis metric to study the semantic sim-
ilarity between music songs. In [23], the authors propose a met-
ric learning algorithm to improve the prediction performance for
multi-task learning by learning one metric that is shared amongst
all the tasks and one specific metric unique to each task. Kusner

Table 1: Notation.

Symbol Discription

M number of users

N number of items

K number of latent factors

K* number of projected user latent factors
Cu,C; €R projection constraint in PFP model
{a} parameters used in WARP-loss function
Ue RMxK user latent factor matrix in LF models
Ve RNXK item latent factor matrix

Pu g REXK” projection matrix of user u in PFP model
Uy € RE Utp, TOW vector in U

v € RE Jtn TOW vector in V'

p”; € RKE f¢n column vector in P%

et al. [15] uses distance metric learning to improve the efficiency
and accuracy of k-nearest neighbor (kKNN) classification. Yue et
al. [44] proposes a personalized collaborative clustering algorithm
that leverages the idea of metric learning to investigate how existing
users cluster or group items in order to predict similarity models for
other users’ clustering tasks. Lee et al. [17] assumes the observed
user-item feedback matrix is locally low-rank within certain neigh-
borhoods of the metric space defined by some anchor (user, item)
pairs and employs the Epanechnikov kernel function to measure the
local metric. However, most of the existing work on metric learn-
ing problems focus on solving clustering-related problems and few
works consider the issue of personalized one-class recommenda-
tion.

2.4 Non-linear Latent Factorization

Another line of latent factor models are called non-linear latent
factor models [16, 30, 39], which break the mold of scoring each
item by a linear embedding of users’ and items’ latent factor vec-
tors. The authors of [16] proposed a nonlinear LF approach with
Gaussian processes. The authors of [30] proposed a Restricted
Boltzmann machine-based method for collaborative filtering. Bal-
trunas et al. [1] splits user profiles into several sub-profiles and
models each sub-profile in a particular context. In [39], the authors
propose a MaxMF method that models a user with multiple latent
factor vectors representing their different latent tastes and associate
each item with a single latent feature vector. The preference score
between a user and a given item is then defined as the maximum
match between the user tastes and the given item. This work is
the most similar one compared to our method. However, there are
explicit differences between their method and ours: our proposed
PFP method utilizes all latent factor vectors of the user and models
the user’s preference on the item as a projected vector rather than
the maximum inner product in [39].

3. PERSONALIZED
FEATURE PROJECTION

We first introduce our Personalized Feature Projection (PFP)
method. The proposed method inherits the benefits of both met-
ric learning and latent factor models. Then, in Section 3.2 we show
how this method can be trained to optimize three different evalua-
tion criteria. Our notation is shown in Table 1.

3.1 Personalized Feature Projection and
Preference Modeling

In the PFP method, for each item j, we use a vector v; to repre-
sent its latent features, much as is done using existing latent factor
models. However, for each user u, we employ a matrix P to rep-
resent their latent features. Specifically, let K be the number of
latent factors (for each item) and let K be the number of projected
user factors. Then we have the following definition:

Personalized Projection Matrix : for each user u, we define a
personalized projection matrix P* = RE*K " The column vector
Py = RX represents column f in matrix P*.

Based on the Personalized Projection Matrix, we can use the fol-
lowing formula to personalize items’ latent feature vectors and ob-
tain the projected item-feature vector.

Personalized Feature Projection : for a specific user u, item j’s
feature vector v; can be projected by multiplying «’s personalized
projection matrix. In this way, the projected feature vector of item
J» vj (v; for simplicity), can be represented as

’17]' = ’U]'Pu. (3)

One can easily check that, when K™ = 1, the personalized projec-
tion matrix for each user reduces to a latent feature vector of size
K, which is equivalent to the user latent feature vector in a latent
factor model so that the projected item-feature vector reduces to
the dot product of users’ and items’ latent factors. In this way, we
can say that the latent factor model is a special case of the person-
alized feature projection method. When K™ > 1, the projected
item-feature vector provides a more flexible way to model users’
complex preferences.

Preference Modeling : Based on the personalized projection ma-
trix, we propose a factorized model to describe users’ preferences
by summarizing all the projected feature vectors from their positive
feedback. In particular, for an item j, we consider the preference
model as

. 1 ~ 1
fu(,]) = m Z ’Ui’U;r = m Z ’UiPu(Pu)T’U;r’ (4)
i€ Dy i€ Dy

where D,, represents user u’s positive feedback. Actually, if we
normalize both v; and v; to be unit vectors, the above equation rep-
resents the average cosine similarity of the projected feature vectors
between item j and the user’s positive feedback items. Compared
with [8] and [10], instead of using only item latent vectors, this for-
mula incorporates user’s personalized projection matrix into prefer-
ence modeling, thus, for different users, Eq. (4) can model his/her
personalized preference on items. Based on Eq. (4), we propose
an assumption to derive the optimization criterion for personalized
ranking that is based on pairs of items: for an item ¢ that has been
viewed by user u, the preference score of it calculated by Eq. (4)
should be larger than other unviewed items j, fu (i) > fu(j). Ac-
tually, the proposed assumption indicates that the projected fea-
ture vectors of users’ positive feedback items should be closer to
users’ average taste than are the negative feedback items. Similar
assumptions are commonly used in various pairwise-based recom-
mendation methods ([24], [26], [20], [13]). However, unlike ex-
isting works, the personalized feature projection method models
users’ preferences toward items as a projected vector rather than
as an inner product, which provides flexible structure for prefer-
ence representation. Another advantage of our approach is that
it summarizes all the projected vectors from users’ positive feed-
back items to reduce the uncertainty caused by training instance
selection. More specifically, when we uniformly sample a positive

feedback item from a user, the average similarity of Eq. (4) makes
the approach insensitive to the choice of which positive feedback
items should be selected. P*(P*)T here can be viewed as the per-
sonalized metric used to measure the preference difference between
items.

3.2 PFP for One-class Recommendation

According to the pairwise assumption proposed above, we will
introduce how the PFP model can be trained to optimize three dif-
ferent evaluation criteria to solve the one-class recommendation
problem.

3.2.1 AUC-loss

In this section, we choose the area under the ROC curve (AUC)
as the ranking statistic and explain how to extend the Bayesian Per-
sonalized Ranking [24] framework to incorporate our personalized
feature projection matrix for recommendation.

The AUC per user is usually defined as

AVCw = e 3 3 1) > £u) ©

1€Dy JENy

where I(-) is an indicator function. Following [24], maximizing
the AUC value can be approximated by maximizing the following
likelihood function:

In[[AUC(u) =In 11

(u,i,j)€UXIXI

P(fu(d) > fu(j))i€PuNIENu
(1= P(fuli) > fu(j)))jGDu/\iENu.
(6)

Due to the totality and antisymmetry of a pair-wise ordering
scheme as in [24], the objective function for a particular user u
can be simplified to

AUC(u) = WllNu\ >0 P(fui) > fu(d)- (D)

€Dy JENy

By incorporating Eq. (4), the above objective can be rewritten as:

AUC(u) = W >SS mo(fuli) — fuld)

i€Dy JEN,
1 1 - o~ T
= Ino(—— Vi (Vi — ;)7),
| Dul [N z; ng: |Dul i’eZJ;u s
®)
where o is the logistic (sigmoid) function: o(z) = H% We use

the gradient-based algorithm to optimize the objective function as
Eq. (8). The main process is to randomly pick a (positive, nega-
tive) feedback pair and iteratively update parameters based on the
sampled feedback pairs.

3.2.2 WARP-Loss

In this subsection, we describe how to adapt our projected feature
representation to design a WARP-Loss (Weighted Approximated
Ranking Pairwise Loss) function.

Based on Eq. (4), we can calculate users’ preferences for each
item j € N and the Weighted Approximate-Rank Pairwise (WARP)
Loss function [38, 39, 40] can be defined as

LWARp(fu,Du) = Z @(mnkl(fu)), (9)

1€ Dy,

where rank;(f.) is the margin-based rank of item 1, i.e.,

ranki(fu) = Y I(fu(4) = fu(i)), (10)
J¢Du
where I(.) is the indicator function. ©(.) is a loss function, which
transforms the predicted rank of an item into a loss value,

k
Ok) = anar>ay > >0. (11)
t=1
Different settings of «; allow the loss function to optimize differ-
ent objectives. Minimizing © with a; = % would optimize the
mean rank and minimizing © with oy > ay41 would assign higher
importance to the top-ranked items.

In this paper, we use a hinge loss to replace the indicator func-
tion so that a margin can be added and stochastic gradient descent
(SGD) can be adopted to learn the parameters. Thus, the loss func-
tion for a specific item ¢ € D,, in Eq. (9) can be approximated by
Eq. (12) as
O(rank;(fu)) = Z O(rank;(fu))

J¢Du

> O(ranki(f.))

J¢Du

I(fu(4) > fuld))
rank;(fu)

11— fu(i) + fu(d)]
rank;(fu) ’
(12)

Q

where |q|+ represents the positive part of g.

To minimize Eq. (12), we first uniformly sample a positive train-
ing instance ¢ € D,. Then we need to calculate the margin rank
of the item ¢ among all items. However, exactly computing the
rank of the item ¢ is highly time-consuming when the number of
items is very large. Therefore, following [38], at each iteration, we
uniformly sample a negative feedback instance j ¢ D,, until a pair-
wise violation is found, that is, until 1 — f,,(¢) + fu(j) > 0. If Q
steps are required to find such a pairwise violation, then the rank of
item ¢ can be approximated as

N -1
rank;(fu) = | ——|. (13)
Q
Now the loss from the chosen item pair { fu(.), 7, j } becomes

Luane(furis) = Ol =) + LG (14

To optimize Eq. (14), we can simply use gradient descent to per-
form updates, i.e.,

OLwarp(fu,i,7)

90, ; 15)

9t+1 =0, — n
where 7 is the learning rate.

3.2.3 Vector-based Objective Function

Since most existing latent factor models use the inner product
of users’ and items’ latent factors to represent a user’s preference
or compatibility toward an item, only numerical loss functions can
be used to optimize the ranking objective. However, only a one-
dimensional number cannot precisely describe user’s complex pref-
erence on the item, and moreover, numerical loss functions seem to
be too arbitrary when comparing users’ preferences on different
items. Therefore, we propose to model users’ preferences on items
via a projected vector and propose a method that measures users’
preference differences on items in vector space. Here, we describe
how to model users’ preferences by directly using the projected
vectors. Recalling our AUC and WARP-Loss objective functions,

we find that the basic idea behind them is to let the projected fea-
ture vectors of positive instances be ‘more similar’ to users’ average
preferences than are negative instances. Therefore, we can follow
this intuition and directly model it via vector similarity. Actually,
there are various proposed similarity measures that are applicable
to compare two vectors to solve classification, clustering and re-
trieval problems. For example, Sgrensen distance [34] uses the L1
norm to measure similarity, Wave Hedges [5] uses an intersection-
based measure to model similarity, and the KL-divergence [14]
measures the similarity based on Shannon’s concept of probabilis-
tic uncertainty. In this work, we build our objective function based
on the KL-divergence, which is a popular similarity measure in ma-
chine learning and data mining. The KL-divergence between two
vectors can be represented as

e Y@
dgr(T,W) = ;W(q)l) (16)

where T" and W are vectors with size K™ and W (q) represents the
q" entry in vector .

Based on Eq. (16), for a particular user u, our goal is to maxi-
mize the KL-divergence between the projected vectors from users’
positive and negative instances. More specifically, when given a
positive instance ¢ € D, and a negative instance j € N,, the ob-
jective function can be defined in terms of maximizing

N VRN 10))
(o Py I PO
=3 ((wp})In Zfﬁf).

f f

To maximize Eq. (17), we uniformly sample a positive instance
1 € D, and a negative instance j € N,. Then we can simply per-
form updates via gradient ascent. This process is repeated until the
model converges. Specifically, the detailed gradients of the corre-
sponding latent variables in the matrix factorization are as follows:

00, (i,5) v;py v;py
—— =(l4+In—) — v ,
8P£f ik vip¥) ik vip}
aOu(ij) _ & 'Ujp? U
vk Zf:[v P (18)

00,(i5) <=, viD} u u

Do zf:[(ln rT + vip¥)Pksl,
where Py; and pY¥ are as defined above. To avoid overfitting, we
also constrain the parameters using the following inequalities and
project the parameters back on the constraints when they violate
the constraints at each step:

P2 € Cuyu €1,2,..., M,

19
[vill2 < Ci,j €1,2,..., N, (19)

where C, and C; are called projection constraint terms.

We note that although KL-divergence is asymmetric, due to the
experimental results, this asymmetry has little impact on model per-
formance. Thus, we just define the objective function as Eq. 17.
Our proposed personalized feature projection method is quite gen-
eral and can be easily extended to other vector similarity measures

Table 2: Statistics of the Datasets.
Ciao BeerAdvocate Ratebeer Lthing

#Users 1,705 33,387 29,264 73,882
#ltem 12,252 63,324 107,381 337,561
#Feedback 22,839 1,424,957 2,578,594 979,053
#Avg. feedback 13 42.67 88.11 13.25
Sparsity 0.11% 0.06% 0.082% 0.004%

to define new objective functions. We do not discuss other simi-
larity measures further, since the focus of this paper is to illustrate
how to we can model users’ preferences as a personalized projected
vector rather than as an inner product.

3.3 Complexity Analysis

The computational complexity for PFP (KL) method is O(M -
N - K - K™). Since we apply stochastic gradient descent methods
for optimization, the complexity for each iteration is O(K - K™).
One solution to scale this algorithm is to alternatively optimize the
parameters based on multi-threading and parallelization: fist op-
timize item-latent factor vectors, then train users’ projection ma-
trices. In fact, our proposed method has the same complexity as
MaxMF [39], therefore, we could use similar MapReduce algo-
rithms to train all user parameters in parallel: when a training triple
is sampled, the mapper collects and emits each column vector of
the user’s projection matrix and the item’s latent vector, and the
reducer calculates the dot product of each column vector and the
item’s vector independently. The reducer would then emit the re-
sults to build up a final projection vector for training.

4. EXPERIMENTAL RESULTS

In this section, we conduct experiments on the real-world datasets
to evaluate the effectiveness of the proposed methods.

4.1 Experimental Setup

4.1.1 Datasets and Evaluation Metrics

The data sets [45] used in this paper are collected from four pop-
ular web sites: Ciao, BeerAdvocate, Ratebeer and LibraryThing
(Lthing). Statistics of the four datasets are summarized in Table 2.
Since this paper focuses on solving the one-class recommendation
problem, we filter out explicit negative feedback (rating scores be-
low 4 out of 5 stars) and use the remaining instances as positive
feedback for model learning. All are available online.! 2

For each dataset, we randomly split it into a training part, used
for model training, and a test part, used for model evaluation. For
each user u, we randomly select 90% of their observed feedback
items as D,, and leave the remainder as 7, for testing. Grid search
is applied to find projection constraint terms and learning rate is set
as 0.01.

Our experiments are intended to address the following questions:

1. How does our approach compare with related personalized
ranking methods for item recommendation?

2. Can vector-based recommendation models outperform tradi-
tional numerical models?

3. How does the number of projected factors affect the results?

"http://www.public.asu.edu/jtang20/
datasetcode/truststudy.htm

http://cseweb.ucsd.edu/~jmcauley/

We use two popular metrics, NDCG (Normalized Discounted Cu-
mulative Gain) and Area Under the Curve (AUC), to measure the
recommendation quality of our proposed approach in comparison
to baseline methods. The average AUC statistic is defined as

1 1
AVC =31 2 [y 2

ueM (i,j)EE(u)

5(13111' > l’uj)7 (20)

where E(u) = {(i, j)|(u, 1) € Tu A (u,j) ¢ (Du UTu)}.
DCG@X considers the ranking of the recommended items by
discounting the importance and is defined as

X

rel; _
DCGQX =" 12 . @1
i=1

ogy(i+1)’

where rel; represents the relevance score of the item ¢ (we use a
binary value for this quantity). NDCG is the ratio of the DCG
value to the ideal DCG value for that user. The ideal value of
DCG comes from the best ranking function for the user. Here we
set X = N — D, where N is the total number of items.

4.1.2 Comparison Methods

In order to demonstrate the benefits of our approach, we compare
our model with the following methods for item recommendation.
Since the problem we solve in this paper is one-class recommenda-
tion (without rating scores), it is unsuitable to compare our methods
with rating estimation methods. Instead, we consider some state-
of-the-art one-class recommendation methods as baselines.

e CofiRank: This method [37] is an extension of Maximum
Margin Matrix Factorization for item recommendation opti-
mized by a soft hinge ranking loss.

o WRMF: The weighted matrix factorization method is pro-
posed by [19], which uses a point-wise strategy for solving
one-class recommendation problems.

e BPR-MF: This method [24] proposes a pairwise assumption
for item ranking and it is a well-known method for one-class
recommendation.

e GBPR: This work [20] relaxes BPR’s assumption to a group
pairwise preference assumption in order to smooth the indi-
vidual positive feedback model and increase the confidence
for pairwise classification. Here we fix the number of grouped
users to 5 by cross-validation.

e FISM-AUC: This work [8] uses an item-based method for
generating top-N recommendations. Since our work solves
the one-class recommendation problem, here we choose their
AUC-based loss function for comparison.

e MaxMF: This method is proposed in [39]. It is a non-linear
matrix factorization method we introduced in Section 2.4.
Note that MaxMF has the same number of parameters as PFP
methods in all experiments.

o PFP (WARP): This method is proposed in Section 3.2.2 and
uses the WARP-loss as an objective function.

e PFP (KL): This method is proposed in Section 3.2.3 and the
KL-diversity is used for optimization.

Most of the above baseline methods can be found in [4].

Table 3: Recommendation performance of different methods on four real-world datasets. The last column shows the improvement

of the proposed method compared with the best baseline method.

Dataset Metrics CofiRank WRMF BPR GBPR FISM-AUC MaxMF PFP-WARP PFP-KL Improv.
ci NDCG 0.1692 01881 0.1672 0.1683 0.1570 0.1589 0.1865 0.1831 -0.85%

a0 AUC 0.6079 0.6948 0.5894 0.5909 0.5446 0.5669 0.6587 07212 +3.77%

Lihin NDCG 0.1255 0.1665 0.1220 0.1322 0.1107 0.1132 0.1689 01774 +6.54%

& AUC 0.6035 07255 05816 0.6904 0.5926 0.6244 0.6587 07880 +8.61%
BeerAdvocate NDCG 02180 02207 0.2390 0.2449 0.1888 0.1874 0.2354 0.2501 +2.12%
AUC 0.8544 08523 0.8389 0.8649 0.7523 0.7812 0.8589 0.8893 +2.82%

RateBeer NDCG 02600 02708 02715 0.2801 0.1728 0.2123 0.2614 0.2877 +2.71%
atebee AUC 0.8879 0.8758 0.8785 0.8881 0.7734 0.8120 0.8364 0.9048 +1.88%

EEE PFP-WARP 10
3 PFP-KL

BN PFP-WARP
[PFP-KL

0.001 0.005 001 005 0.1 0.001 0.005 0.01 0.05 0.1
n n

(a) Ciao (b) BeerAdvocate

EEE PFP-WARP 10
[PFP-KL

PFP WARP

I

0.001 0.005 001 005 0.1

0.001 0.005 0.01 005 0.1
n

(c) Lthing (d) Ratebeer

Figure 2: Impact of learning rate 7.

4.2 Performance Comparison

Results in terms of the AUC and NDCG are shown in Table 3.
Although we can assign different values to the number of latent
factors and the number of projected factors, here we just report the
results by setting the same value for both parameters and leave the
discussion of different parameter settings to Section 4.3.

On most datasets, we find that PFP methods outperform base-
lines. In particular, three observations can be drawn from the re-
sults: First, the proposed PFP methods achieve the best perfor-
mance in most cases; from Table 2, we observe that users in these
two datasets have more positive feedback items compared to other
datasets (the average RateBeer user reviews close to ninety beers in
their lifetime as a reviewer). These results corroborate that PFP can
better describe users’ preferences when we have sufficiently many
positive feedback items.

Second, compared to BPR and GBPR, where the AUC is opti-
mized via maximizing the difference of two inner products, PFP
(KL) succeeds in enhancing the ranking performance by directly
optimizing the difference between two projected vectors. As also
can be seen from the results, FISM-AUC performs worse than other
AUC-based methods (BPR, GBPR, PFP (WARP) and PFP (KL)) in
most datasets. The reason might be that the objective function used
in FISM-AUC ignores the influence of user bias for personalized
ranking though it should be noted that FISM-AUC is designed for
datasets with rating information such that it may be not be suitable
for scenarios in which we have only binary feedback. The MaxMF
method also uses multiple user latent factors to model users’ pref-
erences and this method has the same amounts of parameters as our
proposed methods. The better performance of our method validates
that modeling users’ preferences by a combination of multiple item
factors is more accurate than just using a maximal value as MaxMF
does.

Third, from Table 3, we find that PFP (KL) always performs
better than PFP (WARP). The improvements suggest that vector-

based optimization criteria (such as the one used by PFP (KL))
are more plausible to model users’ preferences and that modeling
users’ preferences in terms of a single value may be insufficient.
Note that when setting o, as a constant in the WARP-Loss func-
tion, PFP (WARP) is equivalent to optimizing the AUC loss; more-
over, from the results, we find that the proposed method based on
the WARP-Loss always achieves similar results with that on the
AUC loss, therefore, we omit AUC-based results from Table 3.

4.3 Parameter Analysis

Projection Factor Analysis. Different from existing latent factor
models, PFP models require us to set not only the number of latent
factors per item, but also the number of users’ projection factors
as hyperparameters. Therefore in this section, we experimentally
investigate how different settings of the two parameter values in-
fluence the performance of PFP models. To make the results clear,
we also show the performance of the most similar baseline method,
MaxMF for comparison. The results are shown in Figure 3 and 4.

We find that in most cases, our proposed methods show bet-
ter performance than MaxMFE. Since MaxMF has the same num-
ber of parameters as our proposed methods, these results clearly
verify that employing user’s all tastes for preference modeling is
better than only considering his/her maximum preference score.
Moreover, we can also observe that even when PFP methods has
a smaller value of K than MaxMF, the former’s performance is
still better than latter. This fact verifies our assumption that a user’s
opinion of an item may be complex and taking more parameters for
modeling users’ latent factors is more effective to improve the rec-
ommendation accuracy. As introduced before, K and K™ are two
important parameters in PFP methods, we also give some detailed
analysis about them below.

First, we examine the case where the number of item latent fac-
tors matches the number of users’ projection factors. Results are

0.19

0
—— PFP-WARP| , ., , sl[— PFP-WARP
070F +— MaxMF +—+ MaxMF
4 PFP-KL 0180 44 PFP-KL
g 0.65 Qo
=3
<060 Z 0110
0.165
055 —— |
W 0.160
N S——
050 0155
I N I T) S
number of latent factors number of latent factors
(a) Ciao(AUC) (b) Ciao(NDCG)
08 0
+—+ PFP-WARP o[PFP-WARP
086H . MaxMF y “H o MaxMF N
osi|| 4+ PFPKL 0231 a—a PFP-KL
W o
So g
= Z 021
080
020
0.78 " 0.19
076 N

3 9 10

r 5 6 7 g
number of latent factors

(c) BeerAdvocate(AUC)

2 3 910

r 5 6 71 s
number of latent factors

(d) BeerAdvocate(NDCG)

070

0.180

T
0osf| *—* PFP-WARP [*— |
ogef| ¥ MaxMF
061L| 4= PFP-KL

© 062

20w
0
0.56

I
- T~
0

+—+ PFP-WARP
0175t +—+ MaxMF
[|~ PFP-KL]

0170

NDCG

0.165

0.160

—_—
0.155

12 3 1 5 6 7 8 9 10
number of projected factors
(the number of item latent factors is fixed as 10

(a) Ciao(AUC)

2 3 1 5 6 7 8 9 10
number of projected factors
(the number of item latent factors is fixed as 10

(b) Ciao(NDCG)

086+ *+—* PFP-WARP ./r/‘*“*“

+—+ MaxMF
0sif| 4—4 PFPKL

o ——

+—+ PFP-WARP
fl +—+ MaxMF
023} 4—4 PFP-KL

i

020

019

I S S]
number of projected factors
(the number of item latent factors is fixed as 6)

(c) BeerAdvocate(AUC)

e
0]’2 3 1 5 6 7 8 9 10
number of projected factors
(the number of item latent factors is fixed as 6)

(d) BeerAdvocate(NDCG)

080 0.110

+— PFP-WARP +— PFP-WARP
OB MaxMF [A GUSH oy MaxMF
ol 4 PFP-KL ol 24 PFPKL
I
154 o)
S o S o0
< z

- ‘/"\” s
035 0.100

050 0.098
2 3 [10 2 3

r 5 6 7 s 0 1
number of latent factors

(f) Lthing(NDCG)

r 5 6 7 8
number of latent factors

(e) Lthing(AUC)

+—+ PFP-WARP 025 *—+ PFP-WARP
090+ +—+ MaxMF | +—+ MaxMF N
[| & PFP-KL 0ol | 44 PFP-KL
085 &
8 o
IS 2., //\/\
< 080 z
o 02,
|
0.70 0.20

10 2 3 910

T 5 6 7 8
number of latent factors

(h) Ratebeer(NDCG)

r 5 6 7 8
number of latent factors

(g) Ratebeer(AUC)

Figure 3: Impact of #latent factors, k£ (here we set the number
of projected factors value, £* as same as k).

shown in Figure 3. We vary K from 2 to 10 and compare the per-
formance of PFP (KL) with PFP (WARP). AUC and NDCG are
used as evaluation metrics. We find that in all datasets, PFP (KL)
always performs better than PFP (WARP). In particular, compared
with NDCG results, PFP (KL)’s AUC performance shows stable
improvement as the number of latent factors increases. On the Ciao
dataset, the NDCG performance of both methods show poor per-
formance when K = K™ = 10. The reason we for this might be
that when the number of positive feedback items per user is limited
for training, a model with many parameters may suffer from over-
fitting. This conclusion is verified by our results on the Ratebeer
dataset. Since Ratebeer contains sufficient positive feedback items
for each user in the training set, the models’ performance improves
as we increase the number of latent factors in most cases.

We also conduct experiments to show how PFP methods perform
when setting different values of K and K*. Figure 4 illustrates the
behavior of PFP models on different datasets. We find that dif-
ferent settings of the two parameters lead to varying results. On

0.66 0.107

e5L[+— PFP-WARP «—+ PFP-WARP

5 0106
— MaxMF P Maxr
06t PEDKL 0105f| a—a PFP-KL
063 @ o104
Q

S o
g o

0.61

0.102
0.60)-10:
039 0101
058 0.100

> 8 & 5 6 7 8 9 1 2

number of projected factors
(the number of item latent factors is fixed as 6)

(e) Lthing(AUC)

a
Z 0103

T 5 6 7 8 0 10
number of projected factors
(the number of item latent factors is fixed as 6)

(f) Lthing®NDCG)

= — —— 7
ossf[+— PFP-WARP L[+ PFP-WARP
sl MaxMF “H+— MaxMF
oss |44 PFP-KL 025H 4—4 PFP-KL
Q024
© 05 g
=]
2 om 2o
083
02
082
) /\’/_//
HMW 021

0.80 0.2
2 3 4 5 67 9 10 2 3 4 5 6 7 9 10

number of projected factors number of projected factors
(the number of item latent factors is fixed as 6) (the number of item latent factors is fixed as 6)

(g) Ratebeer(AUC) (h) Ratebeer(NDCG)

Figure 4: Impact of #projected factors.

the Ciao dataset, fixing K to 10 and varying K™ from 2 to 10,
PFP (KL) always achieves better performance than PFP (WARP).
While on the BeerAdvocate dataset, we find that when we fix K
to 6 and gradually increase K™ from 2 to 10, the performance of
PFP (KL) improves significantly. This result indicates that when
K™ is small, PFP (KL) cannot make use of such a low-dimensional
projection space to describe users’ preferences, and this also vali-
dates our motivation to model a user’s preference toward an item
as a combination of multiple item factors simultaneously. Similar
results can be found on most other datasets. We also find an in-
teresting result on Lthing: although PFP (KL)’s AUC outperforms
PFP (WARP) when K™ is larger than 3, its NDCG performance is
always unsatisfactory. One reason may be that when K = 6, PFP
(KL) cannot project items’ latent factors properly and moreover,
the optimization criterion used in PFP (KL) does not focus on top-
N ranking compared with the WARP-loss used in PFP (WARP).
Based on the experimental results, we conclude that when we have
sufficiently enough observed feedback for training, we can assign a
large projection number for better user taste modeling, while when

c il o1 1 10 50 100 200
u
0.1 0.537 | 0.537 | 0.536 | 0.536 | 0.546 | 0.537
1 0.537 | 0.566 | 0.573 | 0.572 | 0.584 | 0.580
10 0.537 | 0.672 | 0.724 | 0.725 | 0.724 | 0.722
50 0.537 | 0.647 | 0.681 | 0.681 | 0.680 | 0.683
100 0.537 | 0.633 | 0.674 | 0.677 | 0.677 | 0.675
200 0.537 | 0.634 | 0.670 | 0.675 | 0.675 | 0.682

Table 4: Impact of projection constraints terms on Ciao dataset
(AUC metric).

c il o1 1 10 50 100 200
u
0.1 0.503 | 0.503 | 0.503 | 0.503 | 0.503 | 0.503
1 0.503 | 0.878 | 0.868 | 0.870 | 0.867 | 0.871
10 0.503 | 0.531 | 0.916 | 0.909 | 0.907 | 0.906
50 0.503 | 0.871 | 0.888 | 0.882 | 0.881 | 0.881
100 0.503 | 0.871 | 0.887 | 0.884 | 0.831 | 0.880
200 0.503 | 0.869 | 0.886 | 0.883 | 0.882 | 0.881

Table 5: Impact of projection constraints terms on BeerAdvo-
cate dataset. (AUC metric).

we have limited training data, we may decrease the projection num-
ber and use a simple model to avoid overfitting. When K™ is set to
1, the projected preference vector will degenerate to a dot product,
as used in existing methods [8, 32, 37, 39].

Projection Constraint Analysis. In order to avoid overfitting,
we constrain the parameters C,, and C; using Eq. (19). Here we
analyze the impact of constraint terms on model performance. The
experimental results are shown in Tables 4 to 7. These results pro-
vide many hints about how to find the proper projection constraint
terms for better modeling. On all datasets, we fix K = K* = 10.
In particular, we find that when C,, = 10 and C; = 50, PFP (KL)
exhibits the best performance on the Ciao dataset. Such results in-
dicate that in order to avoid overfitting, we have to constrict the
constraint of user’s projection matrix, especially when the number
of items is not particularly large (less than 20K). On the Lthing
dataset, we obtain the best performance when C,, is above 50 and
Cj is 10. Such results suggest that when the number of candidate
items is large, it is better to reduce the constraint on users’ projec-
tion matrices so that the model can describe the subtleties of users’
preferences. On the BeerAdvocate and Ratebeer datasets, since the
average number of positive feedback instances per user is large, the
observed information is enough to model users’ preferences toward
items, so that the projection constraint terms do not affect the model
performance on these two datasets as significantly as on the others.
The best performance on both BeerAdvocate and Ratebeer datasets
occur when setting C,, = 10 and C; = 10.

Impact of n. We also perform experiments to investigate the
impact of the learning rate 1. The results are shown in Figure 2.
We consider n € {0.001, 0.005,0.01,0.05, 0.1} and find that PFP
models are insensitive to the value of n. Therefore, we conclude
that selecting proper values for K and K™ are much more important
to obtain good performance than adjusting the learning rate when
training. These results also indicate that we could use relatively
large learning rates to improve the convergence time of the model.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a Personalized Feature Projection
method in order to improve recommendation accuracy on one-class

c il on 1 10 50 100 200
u
0.1 0.486 | 0.486 | 0.486 | 0.486 | 0.486 | 0.486
1 0.436 | 0.884 | 0.877 | 0.874 | 0.871 | 0.876
10 0.486 | 0.351 | 0.905 | 0.897 | 0.892 | 0.891
50 0.436 | 0.858 | 0.891 | 0.885 | 0.884 | 0.885
100 0.486 | 0.856 | 0.891 | 0.888 | 0.886 | 0.883
200 0.436 | 0.856 | 0.892 | 0.886 | 0.886 | 0.885

Table 6: Impact of projection constraints terms on Ratebeer
dataset (AUC metric).

C C 0.1 1 10 50 100 200
u
0.1 0.763 | 0.763 | 0.763 | 0.763 | 0.763 | 0.763
1 0.763 | 0.769 | 0.741 | 0.742 | 0.739 | 0.738
10 0.763 | 0.456 | 0.740 | 0.744 | 0.738 | 0.739
50 0.763 | 0.611 | 0.788 | 0.784 | 0.781 | 0.780
100 0.763 | 0.608 | 0.787 | 0.782 | 0.780 | 0.779
200 0.763 | 0.608 | 0.788 | 0.780 | 0.780 | 0.778

Table 7: Impact of projection constraints terms on Lthing
dataset (AUC metric).

recommendation problems. Our model learns a projection matrix
for each user that is able to capture the complexities of their pref-
erences towards certain items over others. In contrast to existing
methods that assume a one-to-one relationship between users’ pref-
erences and item properties, we assume that each dimension of a
user’s preference is related to a combination of item factors simul-
taneously. We formulated three optimization criteria for one-class
recommendation, and performed experiments on four real-world
datasets, finding that our method effectively improves the recom-
mendation accuracy for one-class recommendation problems.

For future work, we are interested in extending PFP method in
three ways: (1) Investigating how to incorporate social network
information into the PFP model, in order to model the similarity
between users’ and their friends’ preferences via the PFP method.
Possible alternatives include modeling the similarity between pro-
jection matrices, or modeling the similarity between projected vec-
tors. (2) Employing contextual information (such as text) in order
to understand the meaning behind each projected latent factor; sim-
ilar to [9, 18], we might allow text or time to explain the particular
meanings of projected factors. (3) Exploring how to set the number
of projected latent factors automatically.

6. ACKNOWLEDGEMENTS

This research was in part supported by grants from the National

Grand Fundamental Research 973 Program of China (No. 2014CB340405),

the Research Grants Council of the Hong Kong Special Adminis-
trative Region, China (Project No. CUHK 413213), and Microsoft
Research Asia Regional Seed Fund in Big Data Research (Grant
No. FY13-RES-SPONSOR-036).

References

[1] L. Baltrunas and X. Amatriain. Towards time-dependant recommen-
dation based on implicit feedback. In Workshop on context-aware
recommender systems, 2009.

[2

—

J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon. Information-theoretic
metric learning. In Proceedings of ICML, 2007.

[3] L. Du, X. Li, and Y.-D. Shen. User graph regularized pairwise matrix
factorization for item recommendation. In Proceedings of ADMA,
pages 372-385, 2011.

(4]

[5

—_

(6]

(71

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. My-
medialite: a free recommender system library. In Proceedings of Rec-
Sys, pages 305-308, 2011.

Hedges. An empirical modication to linear wave theory. In Proceed-
ings of ICE, pages 575 -579, 1976.

L. Hong, R. Bekkerman, J. Adler, and B. D. Davison. Learning to
rank social update streams. In Proceedings of SIGIR, 2012.

Y. Hu, Y. Koren, and C. Volin-sky. Collaborative filtering for implicit
feedback datasets. In Proceedings of ICDM, pages 263-272, 2008.

S. Kabbur, X. Ning, and G. Karypis. Fism: factored item similar-
ity models for top-n recommender systems. In Proceedings of KDD,
pages 659-667, 2013.

A. Karatzoglou, X. Amatriain, N. Oliver, and L. Baltrunas. Multiverse
recommendation: n-dimensional tensor factorization for context-
aware collaborative filtering. In Proceedings of RecSys, 2010.

Y. Koren and R. Bell. Advances in collaborative filtering. In Recom-
mender Systems Handbook, pages 145-186, 2011.

W. K.Q. Metric Learning with Convex Optimization. PhD thesis,
University of Pennsylvania, July 2007.

W.K.Q. and L. Saul. Distance metric learning for large margin nearest
neighbor classification. The Journal of Machine Learning Research,
10:207-244, 20009.

A. Krohn-Grimberghe, L. Drumond, C. Freudenthaler, and
L. Schmidt-Thieme. Multi-relational matrix factorization us-ing
bayesian personalized ranking for social network data. In Proceed-
ings of WSDM, pages 173-182, 2012.

S. Kullback and R. Leibler. On info rmation and sufficiency. Ann.
Math.Statist, pages 79 —86, 1951.

M. Kusner, S. Tyree, K. Q. Weinberger, and K. Agrawal. Stochastic
neighbor compression. In Proceedings of ICML, 2014.

N. D. Lawrence and R. Urtasun. Non-linear matrix factorization with
gaussian processes. In Proceedings of ICML, 2009.

J. Lee, S. Bengio, S. Kim, G. Lebanon, and Y. Singer. Local collabo-
rative ranking. In Proceedings of WWW, 2014.

J. McAuley and J. Leskovec. Hidden factors and hidden topics: un-
derstanding rating dimensions with review text. In Proceedings of
RecSys, 2013.

R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and
Q. Yang. One-class collaborative filtering. In Proceedings of ICDM,
pages 502-511, 2008.

W. Pan and L. Chen. Gbpr: Group preference based bayesian person-
alized ranking for one-class collaborative filtering. In Proceedings of
1JCAL 2013.

N. Pappas and A. Popescu-Belis. Sentiment analysis of user com-
ments for one-class collaborative filtering over ted talks. In Proceed-
ings of SIGIR, 2013.

U. Paquet and N. Koenigstein. One-class collaborative filtering with
random graphs. In Proceedings of WWW, pages 999-1008, 2013.

S. Parameswaran and K. Weinberger. Large margin multi-task metric
learning. In Proceedings of NIPS, 2010.

S. Rendle, C. Freuden-thaler, Z. Gantner, and L. Schmidt-Thieme.
Bpr:bayesian personalized ranking from implicit feedback. In Pro-
ceedings of UAI, pages 452-461, 2009.

S. Rendle, C. Freuden-thaler, and L. S. Thieme. Factorizing personal-
ized markov chains for next-basket recommendation. In Proceedings
of WWW, pages 811-820, 2010.

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor fac-
torization for personalized tag recommendation. In Proceedings of
WSDM, pages 81-90, 2010.

J. D. M. Rennie and N.Srebro. Fast maximum margin matrix factor-
ization for collaborative prediction. In Proceedings of ICML, 2005.

R.Salakhutdinov and A.Mnih. Bayesian probabilistic matrix factor-
ization using markov chain monte carlo. In Proceedings of ICML,
2008.

R.Salakhutdinov and A.Mnih. Probabilistic matrix factorization. In
Proceedings of NIPS, 2008.

R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann ma-
chines for collaborative filtering. In Proceedings of ICML, 2007.

M. Schultz and T. Joachims. Learning a distance metric from relative
comparisons. In Proceedings of NIPS, 2003.

Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, and A. Hanjalic.
Climf: Learning to maximize reciprocal rank with collaborative less-
is-more filtering. In Proceedings of RecSys, 2012.

M. Slaney, K. Weinberger, and W. White. Learning a metric for music
similarity. In Proceedings of ISMIR, 2008.

Srensen. A method of establishing groups of equal amplitude in plant
sociology based on similarity of species and its application to analy-
ses of the vegetation on danish commons. Kongelige Danske Vidensk-
abernes Selskab, pages 1-34, 1948.

K. Wagstaff and C. Cardie. Clustering with instance-level constraints.
In Proceedings of AAAI, 2000.

H. Wang, X. He, M.-W. Chang, Y. Song, R. W. White, and W. Chu.
Personalized ranking model adaptation for web search. In Proceed-
ings of SIGIR, 2013.

M. Weimer, A. Karatzoglou, and A. Smola. Improving maximum
margin matrix factorization. Machine Learning Journal, 2008.

J. Weston, S. Bengio, and N. Usunier. Large scale image annotation:
learning to rank with joint word-image embeddings. In Proceedings
of Machine Learning, 2010.

J. Weston, R. J. Weiss, and H. Yee. Nonlinear latent factorization by
embedding multiple user interests. In Proceedings of RecSys, 2013.

J. Weston, H. Yee, and R. J. Weiss. Learning to rank recommendations
with the k-order statistic loss. In Proceedings of RecSys, pages 245—
248, 2013.

E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning,
with application to clustering with side-information. In Proceedings
of NIPS, 2002.

S.-H. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, and H. Zha.
Like like alike: joint friendship and interest propagation in social net-
works. In Proceedings of WWW, 2011.

S.-H. Yang, B. Long, A. J. Smola, H. Zha, and Z. Zheng. Collabora-
tive competitive filtering: learning recommender using context of user
choice. In Proceedings of SIGIR, pages 295-304, 2011.

Y. Yue, C. Wang, K. El-Arini, and C. Guestrin. Personalized collabo-
rative clustering. In Proceedings of WWW, 2014.

T. Zhao, J. McAuley, and I. King. Leveraging social connections to
improve personalized ranking for collaborative filtering. In Proceed-
ings of CIKM, 2014.

