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ABSTRACT 
Decision-making involves biases from past experiences, which are 
difcult to perceive and eliminate. We investigate a specifc type 
of anchoring bias, in which decision-makers are anchored by their 
own recent decisions, e.g. a college admission ofcer sequentially 
reviewing students. We propose an algorithm that identifes exist-
ing anchored decisions, reduces sequential dependencies to previ-
ous decisions, and mitigates decision inaccuracies post-hoc with 
2% increased agreement to ground-truth on a large-scale college 
admission decision data set. A crowd-sourced study validates this al-
gorithm on product preferences (5% increased agreement). To avoid 
biased decisions ex-ante, we propose a procedure that presents in-
stances in an order that reduces anchoring bias in real-time. Tested 
in another crowd-sourced study, it reduces bias and increases agree-
ment to ground-truth by 7%. Our work reinforces individuals with 
similar characteristics to be treated similarly, independent of when 
they were reviewed in the decision-making process. 
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1 INTRODUCTION 
Consider the following scenario: A reviewer evaluates many unqual-
ifed applicants for a university program successively, and the next 
applicant to be reviewed is an average (borderline admit-reject) 
applicant. Because the evaluator is infuenced, or anchored, by 
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recently made decisions, this borderline applicant might be ad-
mitted to the program. On the other hand, when an evaluator is 
anchored by having reviewed many qualifed applicants, the same 
or a similarly borderline applicant might be rejected (Figure 1). In 
this scenario, individual fairness, stating that individuals with simi-
lar characteristics should be treated similarly [8], is impaired, and 
wrong or inconsistent decisions can have a consequential impact. 

Many decision-making tasks are subject to this form of anchoring 
bias. Human evaluators are often required to sequentially review 
instances as subject-matter experts, for example, to select submitted 
papers for publication to a conference, select job applicants [19, 35, 
38], or to make bail or sentencing decisions [21]. Those anchoring 
efects are observed in both high-stakes decision tasks such as in the 
evaluation of graduate student applications for a graduate program 
of a large US university, as well as in low-stakes decision tasks, 
such as the sequential evaluation of products by crowd workers. 

1.1 Motivation 
Our work was motivated by the observation that there is a cor-
relation between 1) the number of decisions made by a human 
evaluator since the last positive evaluation, and 2) the confdence 
of a process that makes decisions independently of the position 
in a review sequence. This could be e.g. a Machine Learning (ML) 
algorithm like a Support Vector Machine (SVM). When the SVM 
learns from the data, decision boundaries are formed to identify 
which class a sample belongs to. The SVM confdence describes the 
distance to this decision boundary. 

Reviewer

Anchor File X

Anchor File X

Figure 1: In sequential decision making tasks, previously 
made decisions can infuence, or anchor, the next decision 
of a human reviewer. Those anchors can lead to incorrect or 
inconsistent decisions of the same reviewed instance X. 
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Figure 2: In sequential decision-making tasks, human 
decision-makers appear to be infuenced by their previously 
made decisions. This is indicated by decreasing confdence 
of an SVM, which is not subject to anchoring bias, the more 
negative decisions a human decision-maker makes in a row. 
Anchored human decisions lead to potentially wrong accep-
tance of low-quality instances. 

The larger the distance, the more clear it is that this sample 
belongs to a specifc class. Figure 2 shows a loss in SVM confdence 
that decreases the longer the last positive review is in the past. 
This behavior implies tendency of anchoring. The longer the last 
positive review of a human evaluator lies in the past, the more 
ambiguous the human decision is to the SVM, ultimately leading to 
the SVM disagreeing with the human decision. When the confdence 
is negative, the SVM predicts a diferent class than the human did. 

This observation led to the hypothesis that past decisions infu-
ence the current judgment in such sequential decision-making tasks. 
If the last positive decision is too far in the past, it indicates that 
humans are naturally subject to be anchored by their previously 
made decisions and might tend to accept low-quality instances. Our 
work proposes and evaluates procedures to mitigate this specifc 
form of anchoring bias to increase fairness in decision-making. 

1.2 Contributions 
Our work learns and mitigates anchoring bias, such that enhanced 
knowledge about systematic biases in decision-making can be lever-
aged to support people in making more optimal decisions. 

1.2.1 Observing anchoring efects in sequential decision-making. 
We study data from decisions made within a college admissions 
process to a graduate program of a large US university, approved 
to be studied by our university. We show fndings of anchoring 
bias in sequentially made admission decisions. In a crowdsourced 
experiment on the sequential evaluation of product reviews, we 
fnd similar anchoring tendencies. Unlike prior papers that focus 
on anchoring bias induced by task features [10, 15, 28, 34–36], this 
work provides results on anchoring bias induced by previously 
made decisions. 

1.2.2 Moderating sequences to mitigate anchoring efects. We pro-
pose two bias mitigation strategies for sequential decision-making 
tasks when human evaluators appear to be infuenced by their pre-
vious decisions. 1) To retrospectively mitigate anchoring bias when 
the decision-making process is completed, and all instances were 
sequentially reviewed, we capture a user’s anchoring state within 
a probabilistic model. When an evaluator appears to be anchored, 
we adapt the decision that was made and observe the change in 
accuracy with respect to the underlying ground-truth decisions. 
Our procedure helps to detect biased decisions when there is no 
infuence over the decision-making process, or infuencing the de-
cision process directly could otherwise raise ethical concerns. Our 
proposed algorithm increases accuracy to ground-truth decisions 
by 2-5% and reduces bias by 0.01-0.08, measured with the Pear-
son correlation coefcient. 2) To prospectively mitigate anchoring 
bias, when a reviewer is in the process of sequentially evaluating 
instances, we propose an algorithm to learn how to choose the 
next instance to be shown to an evaluator. The algorithm learns 
the current anchoring state with a parametric model and uses this 
state to learn which instance to show next in order to minimize 
anchoring efects. This procedure is evaluated in a crowdsourced 
experiment on product reviews. The procedure reduces sequential 
dependencies on previous decisions by 0.07 (Pearson correlation 
coefcient) and increases agreement to ground-truth by 7%. This 
algorithm helps to prevent anchored decisions before the decisions 
are made, and can be used to mitigate bias within a live, interactive 
process to increase fairness in decision-making. 

2 RELATED WORK 

2.1 Anchoring Bias is Present in Human 
Decision Tasks 

If you frst see a T-shirt that costs $1,000, and then see a second one 
that costs $100, you’re prone to see the second shirt as cheap. This 
behavior is called anchoring bias [36] and studied for a variety of 
application areas like recommender systems or Human-Artifcial 
Intelligence (AI) decision-making. For a decision to be made, both 
the setup of the task and information shown within the task can be 
an anchor for the decision-maker. For example, in recommender 
system research, showing ratings of an object to a user signifcantly 
infuences user preferences for products [1]. In marketing, display-
ing an old, higher price as the anchor gives the impression of a 
better deal to an evaluator [3]. In Human-AI decision-making, the 
decision of the algorithm shown to a user as additional informa-
tion [2] can anchor the evaluator. Anchoring bias can infuence 
the consistency of evaluations, meaning a user’s answer difers 
depending on if they were anchored or not, e.g. when evaluating 
conversational agents with the crowd [32]. To mitigate this kind 
of bias, researchers tried to make users aware of their own bias 
e.g. with a note or warning screen within the decision-making 
process [4, 11]. This procedure requires an adaptation of the task 
and can itself impose a risk of anchoring the evaluator. Our study 
is distinct in its approach to mitigating anchoring bias without 
showing any additional information to a user. 

https://0.01-0.08
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2.2 Anchors can be Induced by Previous 
Decisions 

In comparison to anchors induced by the task setup, evaluators 
making repeated sequential decisions can be anchored by their own 
recent decisions [23, 39]. Evidence of bias in sequential decision-
making has been found for subjective judgments like rating face 
attractiveness [12] loudness [14] or within the review process for 
undergraduate admission decisions [35]. Mitigating those biases 
can be seen as nudging, where subtle changes in the ‘choice architec-
ture’ can alter people’s behaviors in predictable ways [6, 18]. Those 
nudges are frequently used in decision-making [7, 16, 20, 33, 41, 43]. 
For example, Talkad et al. [35] presented a mitigation strategy that 
re-arranges the order of attributes of a single student instance that 
is presented to an evaluator. This enables the non-sequential con-
sideration of conjunctive attributes that are afected by the anchor. 
This procedure requires knowledge on which instance attributes are 
afected by the anchor, which is often non-trivial to obtain. Huang 
et al. [12] mitigate bias in sequential decision tasks by alternating 
stimuli, like speech and images, when diferent modalities are avail-
able for decision-making of attractiveness. This process requires 
understanding the relationship of anchoring to diferent modalities 
which might be highly specifc to the decision task and impossible 
to use in a single-modality task setup. In comparison, our method 
requires a setup where we can train a classifer, which can often be 
learned for a variety of tasks. Our procedure does not require other 
domain- or modality-specifc knowledge. Compared to previous 
work, our methods nudge a reviewer towards less biased decisions, 
without interfering in the decision process or adapting the decision 
setup [4, 11, 12, 35]. 

2.3 Individuals might be Anchored Diferently 
Studies on anchoring typically observe bias within a given task 
and then adapt the procedure without accommodating diferences 
between the individual subjects [35, 36]. To work towards more 
personalized mitigation of anchoring bias, George et al. [11] heuris-
tically estimated the anchoring state of an evaluator. They then 
guide the solution to the task by providing domain knowledge to the 
user depending on whether anchoring was detected. We take this 
approach further by specifcally learning the anchoring state of an 
evaluator with probabilistic and ML models instead of heuristically 
estimating it. 

3 MITIGATING ANCHORING BIAS IN 
SEQUENTIAL DECISION TASKS 

To mitigate anchoring bias from highly accurate but potentially 
biased human decisions, we require a method not subject to anchoring 
bias. Diferent ML algorithms can be used to serve as such a method. 
These do not have access to the specifc ordering of the fles and 
hence are not subject to sequential dependencies that could cause 
anchoring. We decide to train a Support Vector Machine (SVM) 
predictor for this purpose. For college admissions, the data set is 
large enough to learn admission predictions from the 305 student 
features (e.g. GPA scores) (accuracy 98%). For product reviews, 
the SVM predicts if a product is reviewed positively or negatively 
with an accuracy of 77% on the book review test set [24]. TF-IDF 
word encodings [27] were used to featurize the review sentences, 

which use a Bag-of-Words approach to get a sparse, fxed-length 
vector representation of the sentences for further SVM training. 
The product review SVM is trained using additional review data 
from music, Amazon Kindle, and book reviews [24], which leads to 
a performance gain compared to training only on book reviews. In 
total, over 69,000 review sentences were used to train the product 
review SVM. The SVM decision and its confdence, measured in 
the distance to the decision boundary, are further used to aid the 
mitigation process. 

3.1 Retrospectively Mitigating Anchoring Bias 
with Probabilistic Adaptation (PA) 

We assume an ML algorithm, like an SVM, to not be infuenced 
by anchoring bias, because it cannot use the ordering of decisions 
made. Figure 1 shows a tendency that the decision outcome of an 
evaluator is infuenced by the previously made decisions, where 
we see an exponential decay of SVM confdence with respect to the 
number of decisions that were made since the last acceptance. This 
indicates a correlation between the anchoring state of a reviewer 
and the number of decisions made since the last positive evaluation. 
Based on this observation, we ft a probabilistic exponential decay 
function to the number of decisions that were made since the last 
acceptance. This function f is ft to our data using non-linear least 
squares, where x indicates the number of decisions made since the 
last acceptance and λ is the parameter that is ftted to our actual 
data (Equation 1). 

−λxf (x ; λ) = λe (1) 
Based on the qualitative review on the shape of the SVM conf-

dence, we decided on the general shape of the model to be approx-
imated by the probabilistic exponential decay function. The fnal 
function refects a probability that the reviewer is biased, given 
the number of decisions that were made since the last acceptance, 
and serves as an indication of the anchoring state of the evaluator. 
We draw a sample from a binomial distribution with probability 

= 1 − f (x ; λ), as the probability of a human being an-
chored. The decision is adjusted using a logical strategy depend-
ing on the human decision dhuman, the outcome of the drawing 
dbias ∼ Bin(panchored ), and the decision of the SVM estimator dSVM . 
The decision is then adjusted with the help of the SVM when an 
evaluator appears to be biased: 

panchored 

dadjusted = (dbias ∧ dSVM ) ∨ dhuman. (2) 
Equation 2 is used to explain how the decision of a reviewer 

can be adjusted retrospectively depending on the decision of the 
SVM, the decision of the human reviewer, and the probability of 
the human reviewer being anchored by their previous decisions. 

3.2 Learning a Review Sequence Order that 
Mitigates Anchored Decisions 

We aim to learn in which order instances should be reviewed to 
minimize anchoring bias for evaluators. To do this, we explore dif-
ferent strategies. First, we aim to understand whether anchoring 
bias in sequential decision tasks can be mitigated using heuristic 
strategies. If heuristics are sufcient to mitigate anchoring bias, no 
complicated ML methods would be required. We experiment with a 
heuristic strategy that alternately shows strong and weak instances 
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to evaluators, depending on their previously made decision. Second, 
we use ML to learn which instances to show next to an evaluator. 
For this procedure, we need a component to simulate an evalua-
tor’s decisions and indicate the anchoring state of a reviewer. We 
subsequently need a procedure to learn how to decide on the next 
instance to be shown. Those components are shown in Figure 3 
and explained in the next sections. 

3.3 Capturing Anchoring Bias with 
Long-Short-Term-Memory (LSTM) Neural 
Networks 

To mitigate human anchoring bias before decisions are made, a 
procedure is required to surface instances to an evaluator in an order 
that minimizes potential anchoring. This requires an algorithm to 
choose instances in an order that will cause users to make decisions 
independent of their previously made decisions. To decide on the 
next instance to be shown, we need to quantify if an evaluator is 
anchored or not, and the degree of the anchoring state. We use 
an LSTM neural network to get a measure of the anchoring 
state of an evaluator in a particular review sequence. This network 
simulates human decisions for the review sequence and captures 
an evaluator’s anchoring state within its hidden state. Since there 
might be diferences in the amount of anchoring experienced by 
a human evaluator, we fnd it to be of importance to model the 
actual decisions made, rather than only modeling the number of 
decisions made since the last positive evaluation. That way, we get 
the extent of anchoring of an evaluator within the LSTM’s hidden 
state. The previously made decisions by the evaluator dt0, ...,ti−1 for 
time steps t0, . . . , ti−1 as well as the predictions from the SVM are 
fed into the LSTM for all previously made decisions of the sequence. 
The network then produces the anchoring states ht0, ...,ti−1 and 
simulated decisions d̂t0, ...,ti using the LSTM output. The simulated 
decision output is a probability, obtained a using a linear layer 
and softmax in the network. Cross-entropy loss is used to update 
our model weights for the LSTM. The raw hidden states of the 
LSTM are used as an indicator of the state of anchoring for a review 
sequence. This component is important for simulating decisions 
and quantifying the anchoring state as shown in Figure 3, to be 
able to decide subsequently which instance to show next. 

3.4 Mitigating Anchoring Bias with Parametric 
Reinforcement Learning (RL) Models 

After quantifying the anchoring state of the evaluator, instances 
have to be shown to a user in an order which promotes un-anchored 
decisions. The order which minimizes anchoring efects is not easily 
quantifable, and hence cannot be learned by supervised learning 
procedures. We use the anchoring state produced by the LSTM 
network as the input for the bias mitigation procedure with RL 
algorithms. RL methods allow us to defne the goal of minimizing 
the overall anchoring state. With this goal, we can learn how to 
decide on the order of the instances to be shown to a reviewer given 
a particular anchoring state within a review session. Given the 
hidden anchoring states ht0, ...,ti −1 for a review sequence predicted 
by the LSTM network, we use two RL algorithms for anchor mitiga-
tion (Figure 3). These Actor-Critic (AC) [30] and Deep-Q-Network 
(DQN) [22] RL algorithms decide on the next instance to be surfaced 
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Figure 3: Architecture overview of the system mitigating an-
choring bias. We learn if an evaluator is biased by making 
decision predictions with an SVM, passing them to an LSTM 
neural network, and generating an anchoring state of the 
evaluator. We decide on the best instance to show next to 
an evaluator, by passing the anchoring state to an anchor 
mitigation (RL) algorithm which decides on an instance to 
show next, that minimizes the overall anchoring in a review 
sequence. 

to minimize anchoring, based on the anchoring states ht0, ...,ti −1 

obtained from the LSTM neural network. The RL procedure learns 
how to mitigate anchoring by sampling specifc kinds of instances 
to re-balance the anchoring state of the evaluator. Further technical 
implementation details can be found in the appendix (Section 8). 

4 STUDY DESIGN 
To evaluate the methods in our study, we use data from two distinct 
decision-making tasks. In both tasks, evaluators were asked to 
sequentially make decisions by rating instances. We analyze and 
mitigate anchoring efects on both data sets. 

4.1 Data Set 1: College Admissions 
Our frst data set contains decisions on college admissions from 
a graduate program at a large US university. The collection and 
usage of this data were approved to be studied by the university. 
This data represents a common sequential decision task for which 
biases can be observed. In this decision task, anonymous academic 
reviewers (N = 117) rate college students based on their application 
materials submitted. No process determines the ordering of student 
instances for reviewers. A reviewer could review fles in any order 
they like, similarly to paper reviews for a conference. Evaluators 
can choose how many students they review in succession and rate 
students on a scale of 0-3 (0 worst–3 best). Over 5,000 students 
apply annually to the graduate program, and each evaluator reviews 
around 50 students on average. The decisions are binarized to binary 
0 (rejection to the program) when rated < 2 and 1 (admission to 
the program) otherwise. After all individual decisions are made, 
a committee decides whether or not to admit the student to the 
graduate program. This decision serves as the ground-truth decision 
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Figure 4: Interface of the user study presented to crowd 
workers in all of our experiments. Crowd workers were 
shown diferent product reviews sequentially. They had to 
decide if they were interested in the product or not. The or-
der of the instances shown to participants varies depending 
on the experiment. 

for our approaches. We assume this decision to be ‘correct’ for 
most of the evaluated students since the decision is analogous to 
a meta-review by a committee chair, who is not subject to the 
same anchor state. From this procedure, we extract the data set 
containing features of college applicants, like GPA or quality of the 
statement of purpose, the individual evaluator decision, timestamp 
of the decision, and the fnal committee decision. 

4.2 Data Set 2: Product Reviews 
It is ethically questionable to run live experiments on a high-stakes 
decision task such as college admission decisions. To evaluate our 
live mitigation strategy, we designed an experiment with similar 
characteristics to the college admission decisions. In a typical admis-
sions process, there are more students rejected than are admitted 
to a program, hence we chose our data set to have more negatively 
than positively attributed instances. We also specifcally chose a 
review process that depends on the subjective preferences of an eval-
uator. For example, one college-admissions evaluator might prefer a 
strong GPA over a strong motivation letter; similarly, one evaluator 
in our product review setting might prefer one book genre over 
another. We collected human decisions on product preferences in a 
sequential decision-making task performed on Amazon Mechanical 
Turk. Crowd workers were asked to decide if they are interested in 
a product after showing an existing written review of this product 
from another user, drawn from a publicly available Amazon review 
data set [24]. This review data consists of a summary of the review, 
the review text, and a rating of the product on a scale from 1–5 
(1 is the worst - 5 is the best rating) from the person who wrote 
the review. The evaluator was shown the summary and review text 
but was not exposed to the original scalar product rating, which 

serves as the ground-truth of if the review was positive or negative. 
We asked participants to decide on a binary scale whether or not 
they are interested in the product. We use the user interface shown 
in Figure 4 to get decisions from crowd workers (N=90). The fles 
are shown to the user with this user interface for all experiments 
with the crowd. We deliberately choose a simplistic user interface 
to avoid priming the user as much as possible. To ensure the quality 
of the reviews and avoid confusion due to language barriers, only 
crowd workers with an approval rate of > 95% based in the United 
States or the United Kingdom were approved to participate in the 
study. On this data, we can run live experiments to test our bias 
mitigation strategies. In total, 436 unique product reviews were 
displayed to the study participants in diferent orders, depending on 
the mitigation strategy used. For the baseline review setup, the next 
instances to be shown in random order were pre-rendered before 
the study setup. Specifcally, we used a random perturbation of the 
instances and a random length of the review sequence. The review 
sequences that were re-ordered by our mitigation strategies were 
shown to the crowd workers in the same setup shown in Figure 4, 
as they were for the baseline random order. Some, but not all of the 
crowd workers completed sequences from diferent algorithms. 

4.3 Analysing Bias and Accuracy 
To evaluate our methods it is necessary to measure the extent 
of anchoring bias that is present and accuracy of the decisions 
made. This requires quantifying anchoring bias with respect to the 
sequential decisions made by an evaluator. Since evaluators appear 
to be more biased the more decisions they have made since the last 
positive decision (Figure 2), we calculate the Pearson correlation 
coefcient between the number of decisions since the last positive 
decision was made and the current decision of the evaluator. This 
aims to be a quantifable measure of bias in sequential decisions and 
is a common interpretable statistical metric that can be derived from 
the initial motivation of decreasing confdence of an ML method 
not subject to anchoring. To measure if our methods promoted less 
anchored decisions, we calculate the agreement and accuracy of 
human evaluators to ground-truth decisions. For the product review 
data, we use the scalar rating of the product from the person who 
wrote the product review as ground-truth. For the admissions data 
set, we use the fnal admission decision made by the committee 
as ground-truth. The agreement of the decision of an individual 
evaluator to this ground-truth is then computed. 

5 RESULTS 
Our collected college admission data set contains 26,174 decisions 
made within 5,814 review sequences by 117 unique evaluators. In 
our crowdsourced study on product reviews, we collected data from 
145 review sequences, each consisting of 10–50 product reviews. In 
total, 3,570 decisions were made by 90 unique evaluators. As shown 
in the motivation for this work in Figure 2, human evaluators show 
a similar magnitude of anchoring bias with respect to their past 
decisions in both data sets. The data indicates that the number 
of decisions since the last positive decision has an impact on the 
outcome of the next decision. For both decision tasks, after more 
than 15 negative decisions, evaluators start to be more susceptible 
to misclassifcation. 
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Figure 5: Agreement to ground-truth and bias (Pearson correlation to previous decisions) for methods presented in this study, 
compared to evaluation of instances in random order. All our methods (PA, LSTM+AC, LSTM+DQN) mitigate bias and increase 
accuracy with respect to the ground-truth and outperform a heuristic mitigation procedure. 

5.1 Retrospectively Mitigating Anchoring Bias 
with Probabilistic Adaptation (PA) 

For college admission decisions, the PA strategy improves the ac-
curacy to the ground-truth by around 2% in comparison to the 
decisions for a randomly ordered sequence. For the product review 
decisions, the accuracy to the ground-truth is improved by around 
5% compared to the decisions for a randomly ordered sequence (Fig-
ure 5). The Pearson correlation coefcient, from here on referred 
to as a notion of “bias”, decreases when using the PA strategy on 
both data sets. Using this strategy on college admissions, the bias 
decreases from -0.25 (p < 0.01) to -0.24 (p < 0.01). On the product 
review data set, the PA strategy decreases the correlation from 
-0.22 (p < 0.01) to -0.14 (p < 0.05). For negative ground-truth deci-
sions, the accuracy stayed equal to the original data and improved 
by 7% for positive ground-truth for college admissions (Table 1a). 
For product reviews, the accuracy improved by 6% for negative 
ground-truth decisions and 9% for positive ground-truth decisions 
(Table 1b). 

5.2 Prospectively Mitigating Anchoring Bias 
Re-ordering the review sequences with the LSTM+RL procedures 
decreases bias and increases accuracy to the ground-truth. Both 
DQN and AC trained methods increase accuracy by over 7% com-
pared to showing data instances randomly to evaluators. The bias 
decreases from -0.22 (p < 0.01) to -0.19 (p < 0.01) using DQN and 
to -0.15 (p < 0.01) using AC. A simple heuristic strategy improves 
the accuracy by 3%, and reduces the bias from -0.22 (p < 0.01) to 
-0.20 (p < 0.01). A comparison of all methods with respect to bias 
and accuracy is shown in Figure 5. The performance of our methods 
is analyzed in more detail for ground-truth positive and negative 
decisions in Table 1b. The true rejection accuracy is improved by 8% 
when showing fles in a specifc order learned by LSTM+DQN or 

LSTM+AC. This means that when presented with a negative review, 
an evaluator correctly classifes this review as negative in 8% more 
cases than when presented with the same instance in random order. 
When presented with a positive review, an evaluator also correctly 
marks the review as positive and indicates that they like the product 
in 18% more cases than when presented with the same instance in 
random order (Table 1b). The LSTM+DQN and LSTM+AC strategies 
were only evaluated on the low-stakes task of evaluating product 

Algorithm Ground- Accuracy Ground- Accuracy 
truth truth 

Random    
PA - 0.84 + 0.97 
SVM - 0.99 + 0.98 

- 0.84 + 0.90

(a) College Admissions 

Algorithm Ground- Accuracy Ground- Accuracy 
truth truth 

Random    
PA - 0.87 + 0.67 
Heuristic - 0.84 + 0.74 
SVM - 0.76 + 0.99 
LSTM+DQN - 0.89 + 0.76 
LSTM+AC - 0.89 + 0.71 

- 0.81 + 0.58

(b) Product Reviews 
Table 1: Analysis of evaluator decisions made with our 
methods. We consider positive (+) and negative (-) ground-
truth decisions separately. Our methods PA, LSTM+DQN 
and LSTM+AC improve the agreement to the ground-truth, 
which indicates that anchoring bias is mitigated. 
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reviews because experimentation in a high-stakes decision task like 
college admissions would raise ethical concerns. 

6 DISCUSSION AND FUTURE WORK 
Mitigating human biases is an important task in decision-making 
processes because biased human decisions can signifcantly impact 
people’s lives. All proposed methods in our work mitigate incorrect 
decisions due to human anchoring bias and contribute to more 
fairness in decision-making. 

6.1 The PA Mitigation Strategy has a larger 
impact on Product Preferences 

For college admission decisions, there is a decrease of bias from 
-0.25 (p < 0.01) to -0.24 (p < 0.01), whereas for product reviews 
it decreases more signifcantly from -0.22 (p < 0.01) to -0.14 (p < 
0.05). We believe this diference results from the training data that 
the SVM estimator is trained on. In college admissions, the SVM 
is trained with the fnal admission outcomes by the admissions 
committee. The fnal admission decision for a student depends on 
the admission recommendations of the individual evaluators. It is 
difcult to say how much this dependency infuences the results, 
but we see a diferent outcome for product reviews. The SVM for 
the product reviews is trained on the rating of the review, which is 
independent of the decision of the evaluator. 

We also observe that the PA strategy detects anchored decisions 
similarly well for both positive and negative ground-truth instances 
for product review decisions. For college admissions, the magnitude 
of detected negatively biased decisions is smaller. It would be inter-
esting to evaluate whether negatively biased decisions are harder to 
detect in high-stakes decisions (e.g. college admissions) compared 
to low-stakes decisions like indicating interest in a product. We 
would like to see how to adapt the algorithm to bridge the gap 
between false positives and false negatives in future work. 

6.2 The Importance of Model Prediction 
Performance 

We observe that the SVM models used in our study outperform 
human prediction performance. We assume that the enhanced pre-
diction capacities of the SVM’s are important when aiming to adapt 
a human decision or re-sample the review sequence in case of a 
detected bias. This is because 1) the SVM prediction is used as a 
feature for the LSTM+RL procedure to learn the anchoring state of 
a reviewer and 2) the SVM prediction is directly used in the logical 
post-hoc adjustment in Equation 2. We can evaluate the perfor-
mance of the model before including it in any decision-making 
process and subsequently decide if our models are suitable for the 
use case. In case we have a scenario where we can not train an ML 
model with sufcient accuracy, we can still use the probability of 
bias obtained from the exponential decay probability function from 
Equation 1 to fnd potentially biased decisions. 

6.3 Complementary Team Performance for 
Mitigation of Human Anchoring Bias 

It would be interesting to see if reviewers are less prone to being 
anchored when exposed to their anchoring state indicated by the 

exponential decay anchoring probability proposed in Section 3.1. 
This could be shown to evaluators as complementary information 
in an AI-Human team setup. Potentially, when made aware of their 
behavior, anchoring bias could be mitigated [4, 11]. Additionally, in 
case of an indication of anchoring, SVM predictions could be shown 
to an evaluator to show them a diferent perspective. Due to the 
strong infuence of AI predictions on human decision-making [5, 37, 
42], it might be possible to mitigate anchoring that way. However, 
this could also introduce other cognitive biases (e.g. confrmation 
or automation bias) [1, 3, 36] that might be hard to distinguish or 
dilute the attribution of bias and we leave this exploration to future 
work. 

6.4 Enhancing Explainability of Anchoring 
Bias and Mitigation Strategies 

Our results point to a signifcant impact of instance ordering on 
human cognitive bias, and we show that they can be mitigated with 
the help of ML. However, capturing anchoring bias with an LSTM 
model is based on black-box ML, and hence there is limited inter-
pretability of the anchoring state produced by the LSTM network. 
Understanding the embedding space of the LSTM better could lead 
to more interpretability of the anchoring state [25]. A more inter-
pretable model for capturing anchoring is our PA method, which 
quantifes the anchoring state of an evaluator with a probability. 
This probability is a metric on a human interpretable scale that can 
be shown to an evaluator to increase awareness of bias [11]. Future 
work could also analyze the relationship between the anchoring 
state and the next instance to be shown, because it is difcult to 
tell which strategy is used by DQN and AC to determine the order 
of instances shown to a reviewer. For this, frameworks like LIME 
[29] could be explored to form an understanding of algorithmic 
decisions and then used with concepts such as human-centered 
explainable AI [9, 31], visualization tools [17] or explainable AI 
with natural language [26]. The rules of which instance to show for 
which anchoring state could then be used by future researchers in 
their study design or be displayed to the user to increase awareness 
as a mitigation procedure. 

6.5 Risk of Using Our Bias Mitigation 
Strategies 

To evaluate the performance of our PA strategy, we adapt the de-
cisions when an evaluator appears to be biased and measure the 
change of agreement to the ground-truth and the change in se-
quential dependencies with the correlation coefcient. Instead of 
adapting the human decisions, the probabilistic strategy could be 
used to indicate when an evaluator was potentially biased during 
the sequential decision process, and fag the respective instances 
to be reviewed again. Those fagged instances could either be re-
viewed again by diferent evaluators to establish consensus on the 
decision, be presented to the same evaluator, or be consolidated by 
a meta-reviewer. Future work could analyze if any unintentional 
biases are introduced when instances are fagged to be reviewed 
again. 

We show that prospectively mitigating anchoring bias with para-
metric models helps evaluators make more unbiased decisions. 
Since this procedure does not show any additional information 
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or alters the information that decision-makers use to form their 
decision, this method does not impose additional risk compared 
to the established practice of showing instances in an arbitrary 
order, and the fnal decision still relies only on the human. With 
our procedure, the evaluator is not subject to a change in the task 
setup that could potentially introduce additional bias [4, 11]. We 
argue that our method is hence usable in a variety of sequential 
decision-making tasks. 

7 CONCLUSION 
Our study fnds that it is possible to combine the strengths of 
AI systems and humans to enable fairer decisions in sequential 
decision-making tasks. Based on data of sequential college admis-
sion and rejection decisions at a large US university, and decisions 
on product preferences obtained in a controlled study on Amazon 
Mechanical Turk, we found evaluators to be biased by their previous 
decisions. Our study proposes mitigation strategies to detect and 
balance anchoring bias in those sequential decision tasks. We fnd 
that we can mitigate bias retrospectively for already-made decisions 
by capturing the anchoring state of a reviewer with a probabilistic 
model and adapting decisions with a logical strategy. This algorithm 
increases agreement to ground-truth by 2-5% and reduces sequen-
tial dependencies, or “bias”, to previously made decisions (measured 
with the Pearson correlation coefcient) by 0.01-0.08. This model 
can additionally be used to fag instances to be re-reviewed, in case 
an evaluator was anchored by previously made decisions. We also 
show that we can learn in which order to present instances to an 
evaluator such that an evaluator is less biased by their own previ-
ous decisions. This prospectively mitigates bias before decisions 
are made. Simple heuristic re-sampling, like alternating strong and 
weak instances, does help to increase agreement by 3% and miti-
gate bias by 0.02, but learning the specifc anchoring state of an 
evaluator leads to signifcantly fewer biased decisions. We reach 
an increased agreement to ground-truth by 7% and reduced bias of 
0.07 using machine learning to learn an evaluator’s anchoring state 
and learn the most favorable order in which to surface instances 
that minimizes anchored decisions. Our work has implications on 
individual fairness because it reinforces individuals with similar 
characteristics to be treated similarly, independent of when they 
were reviewed in a sequential decision-making process. 
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8 APPENDIX 

8.1 Technical Details on How to Use RL for 
Bias Mitgation 

Resampling the Review Sequence with Actor-Critic (AC) Reinforce-
ment Learning. To learn the order of instances to be shown to an 
evaluator that minimizes anchoring bias by previous decisions, we 
use an AC approach [22]. This algorithm consists of two neural 
networks – the actor and the critic. The actor decides on the next in-
stance to be sampled from un-reviewed instances. The next possible 
instances are all instances of the review sequence which have not 
previously been surfaced to an evaluator. The critic then decides 
on the utility of the surfaced instance. In our LSTM+RL procedures, 
the probability of impossible actions, such as already surfaced in-
stances, is set to a small constant probability to calculate the loss 
and update the network weights. It is set to zero at inference time, 
so that every instance can be shown only once. In our setup, the 
actor and the critic are both 3-layer multi-layer perceptrons. The 
hidden layers use a ReLU activation function [40]. The last layer 
for the actor produces probabilities for each action using a softmax 
activation. The critic produces a scalar output from its last linear 
layer to evaluate the utility of the instance. The two networks are 
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updated with advantage actor-critic losses [22]. The action space 
was transformed from a continuous to a discrete representation due 
to the nature of being able to select a discrete number of instances 
to be shown next. 

Resampling the Review Sequence with Deep-Q Learning. We use a 
second strategy to determine the optimal order of a review sequence 
using a Deep-Q Network (DQN) approach [30]. This algorithm
uses a policy and a target network consisting of 3-layer multi-layer 
perceptrons with ReLU activation for the hidden layers and softmax 
for the fnal layer. The policy network decides on the next instance 
to surface, similar to the actor in the previous section. The anchoring 
state, surfaced instance, subsequent anchoring state, and reward 
associated with this transition are saved to replay memory. The 
network is updated by sampling transitions from replay memory 
and calculating the smooth L1 loss [13] between the state-action 
(sampled instance) values and expected state-action values. This is 
the discounted expected value of the next sampled instance plus 
the current reward. 

The goal is to minimize the anchoring state of an evaluator. This 
goal is measured in the reward for updating the RL models rt =Ínmin =1 1 − hj , where h is the anchoring state obtained from the j
LSTM (Section 3.3). We can consider at0 , at1 , . . . , ati ∈ A, where 
A is a set of possible “actions”, or data instances to be shown to 
the evaluator for a review sequence with length i (e.g. sequentially 
evaluating i students in a row). Algorithm 1 shows the pseudocode 
for our LSTM+RL learning procedures. It learns a policy mapping 
π : S → A from anchoring states ht0 , ht1 , . . . , hti ∈ S (where S 
are all possible anchoring states) to instance fles, which should 
be shown to a human evaluator. These procedures learn how to 
mitigate anchoring states by sampling specifc kinds of instances to 
re-balance the anchoring state of the evaluator. 

Algorithm 1: Pseudocode to mitigate anchoring. 
Result: π : S → A 
foreach review sequence do 

for data instance index i do 
d̂t0, ...,ti , ht0, ...,ti = LST M(dt0, ...,ti −1 ) # simulated 
decisions and anchor state for t0 − ti ; 

pst = π (ht0, ...,ti )# probabilities to decide on next 
instance, at ∈ A;Ínrt = =0 1 − hj # reward;j 
LDQN =[13]# DQN loss ; 
LAC =[22]# AC loss; 
# backpropagate and update weights for policy π ; 

end 
end 
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