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KEY POINTS
•	 Question: Can artificial neural networks accurately predict the early induction kinetics of 

propofol?
•	 Findings: A recirculatory model and artificial neural network had similar performance in 

describing the early- and late-phase kinetics of propofol.
•	 Meaning: The performance of artificial neural networks may be limited by the amount of training 

data available.

BACKGROUND: Induction of anesthesia is a phase characterized by rapid changes in both drug 
concentration and drug effect. Conventional mammillary compartmental models are limited in 
their ability to accurately describe the early drug distribution kinetics. Recirculatory models have 
been used to account for intravascular mixing after drug administration. However, these models 
themselves may be prone to misspecification. Artificial neural networks offer an advantage in 
that they are flexible and not limited to a specific structure and, therefore, may be superior in 
modeling complex nonlinear systems. They have been used successfully in the past to model 
steady-state or near steady-state kinetics, but never have they been used to model induction-
phase kinetics using a high-resolution pharmacokinetic dataset. This study is the first to use an 
artificial neural network to model early- and late-phase kinetics of a drug.
METHODS: Twenty morbidly obese and 10 lean subjects were each administered propofol for 
induction of anesthesia at a rate of 100 mg/kg/h based on lean body weight and total body 
weight for obese and lean subjects, respectively. High-resolution plasma samples were col-
lected during the induction phase of anesthesia, with the last sample taken at 16 hours after 
propofol administration for a total of 47 samples per subject. Traditional mammillary compart-
ment models, recirculatory models, and a gated recurrent unit neural network were constructed 
to model the propofol pharmacokinetics. Model performance was compared.
RESULTS: A 4-compartment model, a recirculatory model, and a gated recurrent unit neural 
network were assessed. The final recirculatory model (mean prediction error: 0.348; mean 
square error: 23.92) and gated recurrent unit neural network that incorporated ensemble learn-
ing (mean prediction error: 0.161; mean square error: 20.83) had similar performance. Each 
of these models overpredicted propofol concentrations during the induction and elimination 
phases. Both models had superior performance compared to the 4-compartment model (mean 
prediction error: 0.108; mean square error: 31.61), which suffered from overprediction bias 
during the first 5 minutes followed by under-prediction bias after 5 minutes.
CONCLUSIONS: A recirculatory model and gated recurrent unit artificial neural network that 
incorporated ensemble learning both had similar performance and were both superior to a 
compartmental model in describing our high-resolution pharmacokinetic data of propofol. The 
potential of neural networks in pharmacokinetic modeling is encouraging but may be limited by 
the amount of training data available for these models.   (Anesth Analg XXX;XXX:00–00)
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GLOSSARY
ANN = artificial neural network; ASA = American Society of Anesthesiologists; BMI = body mass 
index; ENT = ear, nose, and throat; GC-MS = gas chromatography-mass spectroscopy; GRU = gated 
recurrent unit; ID = internal diameter; IRB = institutional review board; IV = intravenous; LBW 
= lean body weight; LL = log-likelihood; LSTM = long short-term memory; MEM = mixed-effects 
model; MPE = mean prediction error; MSE = mean square prediction error; OBJ = objective func-
tion; PD = pharmacodynamic; PK = pharmacokinetic; SRM = selected reaction monitoring mode; 
TBW = total body weight

The limitations of traditional compartmental 
models to accurately describe early distribu-
tion kinetics have been well described.1 These 

models assume complete, instantaneous intravascu-
lar mixing and a steady decline in drug concentration 
thereafter.2 Physiologically, we understand that drug 
is distributed to a system of organs and tissues, and 
that this distribution is governed by blood flow to 
these tissues and the relative affinity of these tissues 
to drug. Compartmental models ignore this fact.

In addition to the structural constraints of a com-
partmental model, further model misspecification 
may be introduced when models are built on sparsely 
sampled datasets.3 Infrequent blood sampling after 
drug administration—together with the failed 
assumption of instantaneous mixing—leads to over-
estimations of central volume, ultimately leading to 
drug overdose and supratherapeutic effect.4

It stands to reason that physiologically based mod-
els, or recirculatory models, would perform better 
than compartmental models. However, Masui et al5 
found that, for both bolus and short infusions of pro-
pofol, performance of compartmental models and a 
physiologically based recirculatory model all overes-
timated propofol plasma concentrations.

Even the most robust physiologically based phar-
macokinetic (PK) models and recirculatory models 
capable of modeling early distribution kinetics run 
the risk of structural misidentification. The avail-
able data and the information embedded in it can 
be insufficient to estimate the parameters in such 
a model.6,7 Artificial neural networks (ANNs) offer 
the advantage that they are devoid of such con-
straints.8 They are not confined to a specific struc-
tural model and, therefore, are not as prone to model 
misspecification.9

These systems have been used in the past for PK 
modeling.9–11 However, these studies used neural net-
works to model steady-state or near steady-state con-
ditions using sparsely sampled datasets. The objective 
of this study is to compare the performance of a com-
partmental model, recirculatory model, and an ANN 
to describe propofol PK from a frequently sampled 
dataset. We hypothesize that the ANN will have bet-
ter performance because of its ability to model com-
plex nonlinear systems without assuming a particular 
structure.

METHODS
Subject Selection and Informed Consent
This study was approved and regulated by the 
Institutional Review Board (IRB) at Stanford 
University (IRB no. 16509) and was registered in 
ClinicalTrials.gov (NCT01591148, principal investi-
gator: Jerry Ingrande, MD, MS; date of registration: 
May 1, 2012). Written, informed consent was obtained 
from all subjects before enrollment. Thirty subjects 
were enrolled (20 morbidly obese, body mass index 
≥40; 10 lean, body mass index <25). Inclusion crite-
ria included subjects of adult age (≥18 years) with an 
American Society of Anesthesiologists (ASA) physical 
status I, II, or III undergoing elective surgery requiring 
general anesthesia. Obese patients underwent elective 
laparoscopic sleeve gastrectomies, gastric bandings, 
and gastric bypasses. Lean patients underwent a vari-
ety of elective general, plastic, gynecologic, and ear, 
nose, and throat (ENT) cases. Patients with evidence 
of hepatic, renal, cardiovascular, pulmonary, or major 
psychiatric illness were excluded from the study. 
Patients with a history of difficult intubation or who 
were taking concomitant medications that may alter 
the pharmacodynamics of propofol (eg, sedatives, 
opioids, or other medications) were also excluded.

Preinduction
Immediately before surgery, total body weight (TBW), 
lean body weight (LBW), and percent body fat of the 
subject were determined using a Tanita body imped-
ance scale (Tanita Corp, Tokyo, Japan). An 18 or 20 
G peripheral intravenous (IV) catheter was placed in 
the left or right upper extremity antecubital vein. Per 
study protocol, a 20 G arterial catheter was inserted 
into the subject’s left or right radial artery after infil-
tration with 2% lidocaine. Subjects were then trans-
ported to the operating room. Standard ASA monitors 
were applied to the subject. Noninvasive bioimped-
ance cardiac output measurements were obtained 
using a NICCOMO cardiac output analyzer (medis-
de, Ilmenau, Germany). Hundred percentage oxygen 
was applied to the subject via facemask. No subject 
received premedication before induction. Before 
induction, each subject was asked to hold a weighted 
20 mL saline-filled syringe between thumb and index 
finger in the hand opposite the IV and was instructed 
not to drop it.
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Induction of Anesthesia and Maintenance
The 20 morbidly obese subjects received a propofol 
infusion of 100 mg·kg−1·hour−1 based on LBW. The 10 
lean subjects received a propofol infusion of 100 mg·
kg−1·hour−1 based on TBW. The dose regimen of 100 
mg·kg−1·hour−1 was chosen because this will result 
in relatively fast induction times (1–2 minutes) and 
not expose the morbidly obese subjects to risk associ-
ated with prolonged induction. LBW was chosen in 
the morbidly obese group because, in our prelimi-
nary study, LBW was found to be a more appropriate 
dosing scalar than TBW.12 Following loss of con-
sciousness—defined as drop of the weighted syringe, 
the propofol infusion was stopped, and no further  
propofol was administered. Each subject then  
received a bolus of fentanyl (200 µg) and succinyl-
choline (1 mg·kg−1 TBW) before tracheal intubation. 
Anesthesia was maintained with sevoflurane, oxy-
gen, and air. All physiologic data from the anesthe-
sia monitors and infusion parameters were recorded 
via a computer running the RUGLOOP II application 
(Demed, Temse, Belgium).

Plasma Collection
Arterial samples were collected from an arterial line 
catheter placed in the subjects’ left or right radial 
artery. Each catheter was connected to a closed sam-
pling port. Arterial blood samples (3–4 mL) for pro-
pofol plasma concentration determination were 
drawn at time 0, every 5 seconds to 2 minutes, every 
0.5 minutes to 4 minutes, at minute 5, every 2 min-
utes to minute 15, every 15 minutes to 1 hour, every 
60 minutes to 6 hours, and every 120 minutes to 16 
hours. Continuous blood flow from the arterial cath-
eter was achieved by connecting the catheter to a 
negative pressure syringe-pump, which generated a 
flow of 50 mL·minute−1 as described.2 Samples were 
obtained at a sampling port proximal to the arterial 
catheter (dead space 1 mL) by 2 anesthesiologists 
dedicated only to sampling. Following collection, 
samples were immediately placed on ice and centri-
fuged. Separated plasma was removed and stored at 
−80°C until analysis.

Propofol Plasma Concentration Analysis
Gas chromatography-mass spectroscopy (GC-MS)/
MS analysis was performed on a Bruker Scion TQ 
gas chromatographer coupled with the triple mass 
spectrometer (Bruker Corporation, Fremont, CA). 
The instrument was fitted with a Bruker BR-5 column 
(30 m × 250 µm internal diameter [ID] × 25 µm film 
thickness). The GC was equipped with split/splitless 
injector and was operated at the split ratio 10:1 for 1 
µL sample injection volume and He carrier gas at 1.1 
mL·minute−1. The method used an isocratic oven pro-
gram (195°C) to achieve a cycle time of 2.3 minutes 

injection-to-injection, with inlet temperature of 300°C 
and MS source temperature of 230°C.

Mass spectra were obtained using electron impact 
ionization mode with electron impact energy of  
70 eV. The mass spectrometer was operated in 
selected reaction monitoring mode (SRM). Two SRM 
transitions were used for each propofol and the inter-
nal standard: 163.2 > 117.0, 178.0 > 163.0 and 195.3 > 
177.0, 177.0 > 125.0, respectively. The linear calibra-
tion curve range extended from 1 to 4000 ng·mL−1, 
and lower limits of quantitation were 1 pg·mL−1 in 
extracted plasma.

Statistical Analysis and Compartmental/
Recirculatory PK Model Construction
All statistical computations were performed using 
the R software package.13 A population pharmacoki-
netic/pharmacodynamic (PK/PD) model was devel-
oped using mixed-effects modeling using NONMEM 
7.2 and 7.3 software (ICON Development Solutions, 
Hanover, MD) and PLTTools (PLTsoft, San Francisco, 
CA).

PK models were constructed using the ADVAN 
13 subroutine in NONMEM. Basic structural models 
were first evaluated (compartmental and recircula-
tory) by performing naïve-pooled analyses, combining 
all PK observations from all subjects. Next, mixed-
effects models (MEM) were constructed. Population 
variability was modeled as a random effect for each 
PK variable using the model:

P = P x en
i TV ,

where Pi was defined as the individual parameter 
value, PTV is the typical value of the parameter in the 
population, and n defined as the random variable.

A constant coefficient of variation model was used 
to describe intraindividual error according to the 
equation:

C  C  (1+ ),ij ,ij ij= × εpredicted

where Cij was defined as the jth plasma concentration 
in the ith subject, Cpredicted,ij is the jth predicted plasma 
concentration in the ith subject, and εij is the coeffi-
cient of proportional residual error.

Linear and logistic regression was used to analyze 
the relationship between PK parameters and continu-
ous and categorical covariates, respectively. Covariates 
that appeared to have a significant relationship with 
any PK parameter were introduced into the model in 
a forward, stepwise manner. Forward covariate selec-
tion was used until there was no further improvement 
in the model. Backward covariate selection was used 
to obtain the best-fit and most parsimonious model. 
Observation of the objective function (OBJ; minus 
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twice the log-likelihood [−2 LL]) was used to facili-
tate model selection, with a significant minimization  
(P < .01) used to facilitate model selection. Predictive 
performance and model validation was then per-
formed by visual predictive checks of observed ver-
sus predicted concentrations for both population and 
individual fits and via analysis of weighted residuals 
versus predicted concentration and time.

Model bias was estimated by calculating the mean 
prediction error (MPE) according to the equation9,10

MPE predicted measured=








 −( )

=
∑

1

1n
Cpij Cpij

i

n

A value of 0 indicates zero bias. Model precision was 
assessed by calculating the mean square prediction 
error (MSE)9,10:

MSE predicted measured=








 −( )∑

1 2

n
Cpij Cpij

A value of 0 indicates perfect precision.
Goodness of fit plots—including the ratio of 

observed to predicted concentrations versus time, 
population predicted versus observed concentra-
tions, and overall model fit were performed for model 
evaluation. If these plots indicated an unacceptable 
amount of bias, the model was excluded regardless of 
the OBJ value.

After identification of the final model, LL plots 
were performed for each model parameter estimate 
(THETA). If a parameter that was included in the model 
could not be reliably estimated from the data, the model 
was assumed to be overfit and the model was rejected.

Bootstrap analysis of the final model was per-
formed for internal validation. The bootstrap was per-
formed by first creating 1000 new datasets of the same 
length as the original dataset by resampling subjects 
at random from the original dataset. The final model 
was fit to each dataset, and the distribution of the 
parameter estimates (THETAs) examined, ultimately 
providing mean, median, and percentiles of each of 
the parameter estimates in the model.

Prediction-corrected visual predictive checks were 
performed to graphically assess whether simulations 
of each model can reliably predict the central trend 
(50th percentile) and variability (5th and 95th percen-
tiles) in the observed data. Each model was used to 
create 1000 new datasets each containing simulated 
propofol concentrations. The 5th, 50th, and 95th per-
centiles of the simulated data were compared to the 
same percentiles of the actual observed data.

ANN Model Construction
The model architectures for ANNs included long 
short-term memory (LSTM) and gated recurrent unit 

(GRU)—both of which are forms of recurrent neural 
networks, which are beneficial in predicting sequen-
tial data. LSTM is a special ANN that memorizes long-
term dependencies by maintaining an internal state 
variable which is passed from one node to another.14,15 
GRU is similar to LSTM but has fewer parameters 
required.16,17 For GRUs, the model’s hidden state (rep-
resenting the model’s current latent context) at each 
step is fed back into the model at the next step. Each 
step corresponded to a single observation. In addition 
to the hidden state, features corresponding to the cur-
rent state, as well as static features including patient 
covariates, were passed in the model. This specific 
architectural choice has been shown to be useful 
when generating language (eg, words or characters) 
over several steps.18

With both LSTM and GRU models, we experi-
mented with the number of layers and number of 
hidden units, with a combination of values chosen 
between 1–4 and 5–20, respectively. For the final ANN 
architecture, the input layer consisted of 9 nodes for 
each time step (gender, LBW, TBW, age, total propofol 
dose administered [mg], rate of propofol administra-
tion [mg/min]), 2 hidden layers (10 nodes per layer), 
and 47 outputs, each node representing propofol 
concentration at a distinct time point. Model weights 
were calculated with a gradient descent optimization 
algorithm using the Adam optimizer in Tensorflow.19 
Gradient descent was terminated once performance 
no longer improved on the validation set. Selection of 
an optimal model without overfitting was performed 
using the training and validation sets. The model is 
trained to find optimal weights on the training set 
during one training epoch; then this model is applied 
to the validation set, in which the validation error 
was then calculated—defined as the mean square 
error (Equation 4). Validation error tends to decrease 
as the train epochs repeat; however, the error begins 
to increase when overfitting occurs. At the train-
ing epoch, just before this occurred, was when the 
final model was chosen. The final model chosen was 
then applied on the test set in which the test error is 
reported.

We performed cross-validation to calculate a mean 
test error for the ANN model. The cross-validation 
setup consisted of 22 data points (each data point 
referring to the set of PK data from 1 subject) and 11 
folds. Thus, each fold consisted of 2 subjects. Nine 
folds were used as a training set and 1 fold for vali-
dation of the model. The validation set was used to 
select the best model, and training was terminated 
once the validation error did not improve further. The 
final fold was used as a testing set, where the final 
model was applied to obtain a test error. Folds were 
reassigned as training, validation, and test iteratively 
until all folds served as a test set. In this way, each 
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data point appears in a test fold exactly once, such 
that we can accumulate a test error that accounts for 
all of the data points.

To make our model even more competitive with the 
MEM, we treated the MEM model’s output as addi-
tional input features into the GRU. This helps with 
model convergence, allowing our model to improve 
on the already good performance of the existing MEM 
model. We also used a form of ensembling to combine 
our ANN with simple feature transforms as well as the 
output of the MEM model. In a single training step, the 
ANN learned to weigh the results of the existing MEM 
model and incorporate these into the final ANN. These 
modifications were to ensure that our model was able 
to quickly converge to a strong solution, which pre-
vented our model from overfitting. Ensembling is a 
commonly used technique in machine learning where 
multiple classifiers are used to obtain performance 
superior to a single classifier method.20

RESULTS
PK analysis was performed with data pooled from 30 
subjects each contributing 47 PK observations for a 
total of 1410 observations. Six subjects were excluded 
from the final analysis because of propofol infusion 
problems. The final analysis included 24 subjects con-
tributing 47 observations each. The demographics of 
these subjects are shown in Table 1.

PK models were refined using NONMEM 7.2 and 
7.3 according to −2 LL and the standard errors of the 
parameter estimates. One-, 2-, 3-, and 4-compart-
ment MEM were constructed. OBJ, MPE, and MSE 
are reported (Supplemental Digital Content, Table 
1, http://links.lww.com/AA/D89). Of the compart-
mental models, a 4-compartment model best fit the 
data (OBJ: 497.92; MPE: 0.108; MSE: 31.61). Analysis 
of covariates versus model parameters did not dem-
onstrate any significant relationships. Covariates ana-
lyzed included TBW, LBW, age, cardiac output, and 
gender. The base 4-compartment model was accepted 
as the final compartment model.

A recirculatory model using a proportional error 
model was constructed (OBJ: 160.09; MPE: −0.537; 
MSE: 22.41; Supplemental Digital Content, Figure 1, 
http://links.lww.com/AA/D89). Subsequently, the 
same structural model was evaluated however, using 
a combined additive and proportional error model.21 
The combined error model had better performance 

compared to the proportional error model (OBJ: 71.39; 
MPE: 0.348; MSE: 23.92). Analysis of the relationships 
between model parameters versus measured covari-
ates (TBW, LBW, age, cardiac output, and gender) 
revealed a positive linear relationship between V4 
and V5 with age >65 years. A separate estimate for 
V4 and V5 for ages >65 years were included and 
subsequently removed from the basic model in a 
forward and backward manner. The addition of age 
as a covariate for both V4 and V5 did not improve 
model fit (OBJ: 95.74; MPE: −0.308; MSE: 23.53). The 
combined error recirculatory model, without covari-
ates, was therefore accepted as the final model. LL 
plots confirmed that all parameters could be reliably 
estimated in the final model (Supplemental Digital 
Content, Figure 2, http://links.lww.com/AA/D89). 
PK parameters are outlined in Table 2.

ANNs were constructed and compared to the mixed 
models. An LSTM and a GRU model were constructed 
(Figure  1). Both models had similar performance, 
but the GRU was accepted as the best model due to 
its more parsimonious structure. Tensorflow code for 
the GRU model can be found at http://jmcauley.ucsd.
edu/propofol_dec19.html. The GRU model had lower 
bias and similar precision as the optimized recircula-
tory model (MPE: 0.161; MSE: 20.83).

Plots of observed versus predicted concentrations 
over time showed that during the first 20 minutes, 
the combined error recirculatory model and GRU 
models both showed a constant overprediction bias 
(Figure  2A, b and d). The 4-compartment model 
showed an initial overprediction bias followed by an 
under-prediction bias (Figure 2A, c). All models with 
the exception of the 4-compartment model overpre-
dicted the observed concentration (Figure  2A). The 
overprediction bias of the recirculatory models and 
GRU model remained after 20 minutes (Figure  2B). 
There was a high under-prediction bias in the 4-com-
partment model (Figure 2B, c).

Direct comparison of observed versus predicted 
concentrations demonstrated a minimal overpredic-
tion bias at higher concentrations in the combined 
error recirculatory, 4-compartment, and GRU models 
(Figure 3B–D, respectively).

Each model was plotted against the raw data as 
shown in Figure 4. The 4-compartment model suffers 
from under-prediction bias after 5 minutes (Figure 4, 
inset).

Table 1.    Demographics
Group N Gender (M/F) Age (y) TBW (kg) LBW (kg) BMI (kg/m2) Cardiac Output (L/min)
Obese 17 3/14 42.9 (13.4) 129.9 (20.4) 61.8 (12.9) 46.2 (5.9) 9.6 (3.0)
Lean 7 3/4 53.6 (10.3) 72.7 (4.8) 51.2 (5.6) 23.5 (1.1) 8.0 (0.96)
Population 24 6/18 46.1 (14.0) 113.3 (31.3) 58.7 (12.2) 39.5 (11.6) 9.2 (2.7)

Data presented as mean (standard deviation).
Abbreviations: BMI, body mass index; LBW, lean body weight; TBW, total body weight.

http://links.lww.com/AA/D89
http://links.lww.com/AA/D89
http://links.lww.com/AA/D89
http://jmcauley.ucsd.edu/propofol_dec19.html
http://jmcauley.ucsd.edu/propofol_dec19.html
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Prediction-corrected visual predictive checks dem-
onstrated that 6.8% of the data fell outside of the 5% 
and 95% percentile of observations in the 4-compart-
ment model (Supplemental Digital Content, Figure 3, 
http://links.lww.com/AA/D89). Seven percent of the 
data fell outside of these percentiles in our final, com-
bined error recirculatory model (Supplemental Digital 
Content, Figure 4, http://links.lww.com/AA/D89).

DISCUSSION
ANNs have been praised for their ability to model 
complex nonlinear data and have been proposed as a 

possible replacement for MEM.8 This study aimed to 
evaluate the performance of a conventional mammil-
lary compartmental model, a recirculatory model, and 
an ANN in characterizing the PK of propofol using a 
frequently sampled prospectively collected dataset. A 
GRU model had comparable performance to the recir-
culatory model, with both having better performance 
compared to the 4-compartment model.

Knowledge of an anesthetic induction agent kinet-
ics during induction is necessary to achieve a safe 
and therapeutic peak concentration. Unfortunately, 
compartmental PK models are limited in their ability 

Figure 1.  Schematic of the 
GRU neural network model. The 
input layer consisted of 9 nodes 
for each time step and 2 hid-
den layers with 10 nodes per 
layer. There were a total of 47 
outputs, with each represent-
ing propofol concentration at 
the measured time-points. GRU 
indicates gated recurrent unit; 
MEM, mixed-effects model.

Table 2.    Pharmacokinetic Parameters for the 4-Compartment and Final Recirculatory Models of Propofol
4-Compartment Model

Parameter Parameter Name Parameter Estimate 5th and 95th Percentiles of Parameter Estimates
V1 Central volume 0.63 0.14, 0.70
V2 Peripheral volume 1 0.53 0.17, 0.91
V3 Peripheral volume 2 3.61 0.60, 9.23
V4 Peripheral volume 3 122 17.9, 426
CL1 Elimination clearance 0.53 0.51, 0.58
CL2 Distribution clearance 2 335 0.19, 579
CL3 Distribution clearance 3 0.24 0.11, 0.42
CL4 Distribution clearance 4 0.20 0.12, 0.35

Final Recirculatory Model

Parameter Parameter Name Parameter Estimate 5th and 95th Percentiles of Parameter Estimates

Q Plasma flow 2.10 1.32; 2.95
CL1 Elimination clearance 2.51 2.34, 2.75
Q4 Intertissue clearance (fast) 0.53 0.32, 0.76
Q5 Intertissue clearance (slow) 0.50 0.32, 0.71
V1 Central volume 0.94 0.43, 1.82
V2 Lung volume 0.38 0.27, 0.53
V3 Arterial volume 0.49 0.24, 0.85
V4 Peripheral volume (fast) 2.36 1.06, 4.07
V5 Peripheral volume (slow) 120 93.3, 150

Flow in liters per minute; volumes in liters; clearances presented as liters per minute.
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to estimate induction kinetics.1 These models ignore 
intravascular mixing and assume complete mixing of 
drug the moment it is administered. The consequences 
of this assumption, particularly on overestimating 
central volume of distribution, are well described.1,4,22

Furthermore, unless frequent, high-frequency sam-
pling is performed, the problem of overestimation is 
intensified.23 Estimations of the central volume of dis-
tribution are directly related to the blood-sampling 
schedule.24 Models that rely on sparse sampling after 
drug administration will fail to capture peak plasma 
concentrations. This may result in overestimation of 
central volume. Such inaccuracies of a PK model may 
be masked during the maintenance phase of anesthe-
sia.25 Miscalculations in drug administration due to 
errors in PK models are enhanced during the induc-
tion phase, a time at which plasma and effect-site 
concentrations are changing rapidly. Models derived 
from infrequent blood sampling not only overesti-
mated the central volume, but also the volume and 
clearance from the rapidly equilibrating tissue.26

The fact that the recirculatory model had better 
performance than the compartmental model is not 
surprising considering the limitations of a compart-
ment model.1 A recirculatory model characterizes 

the delay between drug administration and the site 
of sampling. We understand this delay to be second-
ary to transit of drug through the peripheral venous 
system and heart/lungs/great vessels.27 Failure to 
account for this delay resulted in an underestimation 
of plasma concentration during the first minutes of 
administration (Figures 2 and 4).

When we analyzed model performance after 
induction, we found that compartmental model per-
formance was poor (Figures 2 and 4). We were unable 
to describe a compartmental model that performed 
well in predicting early and late kinetics. This could 
only occur if model parameter estimates were con-
strained to specific values. However, this introduced 
model overfitting.

Although our recirculatory model demonstrated 
better performance compared to the compartmental 
model, we hypothesized that the ANN would have 
even better performance because of the theoretical 
advantage of being able to model complex nonlinear 
systems without assuming a structural model. ANNs 
are deep feed-forward networks where all layers 
share the same weights.

The main goal of ANNs is to establish and learn 
long-term input dependencies. However, they are 

Figure 2.  A, Propofol observed/population predicted concentration ratio versus time (0–20 min). There was a consistent overprediction bias 
in the final, combined error recirculatory model (b) and GRU model (d). The base recirculatory model demonstrated an initial under-prediction, 
followed by an overprediction bias (a), as opposed to the 4-compartment model, which initially overpredicted propofol concentrations before 
under-predicting concentrations after 5 min (c). Blue circles: ratio of observed versus predicted propofol concentrations at each time point. 
Red line: smoothed fit of the regression. B, Propofol observed/population predicted concentration ratio versus time (0–600 min). There is a 
persistence in model overprediction seen in the both recirculatory and GRU models (a, b, d). There was an unacceptably high under-prediction 
bias in the 4-compartment model in propofol concentrations measured after 100 min (c). Blue circles: ratio of observed versus predicted 
propofol concentrations at each time point. Red line: smoothed fit of the regression. GRU indicates gated recurrent unit.
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limited by their inability to store this long-term infor-
mation.28 LSTM networks correct for this. They are 
therefore more effective than conventional ANNs 
when there are multiple layers for each time step.14 
GRUs are a variation of the LSTM but with fewer 
parameters. They combine the cell state and hidden 
units resulting in a model that is simpler than the 
standard LSTM model.

In this study, a GRU model modestly overestimated 
plasma concentrations during the first 20 minutes 
(Figure 2A, d). However, the overestimation bias in the 
GRU model was consistent, in contrast to the recircu-
latory model where there was oscillation between over 
and under-prediction bias (Figure 2A and B).

We expected the GRU to have the best perfor-
mance of all the models compared in this study, as the 
strength of these models is their lack of confinement 

to a specific structure. However, we did not see this. 
We presume that this is secondary to the small num-
ber of samples available to train the GRU. Although 
we did not perform an a priori sample size calcula-
tion, the small uncertainty in the parameter estimates 
demonstrates that the sample size was justified. Our 
data is large for a prospective PK study; however, it 
is small for training ANNs. A study comparing the 
performance of LTSM neural network to a response 
surface model in predicting bispectral index values 
during infusions of remifentanil and propofol dem-
onstrated improved accuracy with the LSTM model.29 
This study was comprised of over 2 million data 
points, while ours included 1128.

While a structure-less model may reduce bias, 
unacceptably high variance may result, especially 
when training datasets are small.30 For this reason, we 

Figure 3.  Propofol population predicted versus observed concentrations. The under-prediction bias at higher concentrations seen in the 
base recirculatory model (A) was corrected in the final, combined error model (B). There was, in general, good agreement between observed 
and population predicted concentrations in the final recirculatory model (B), 4-compartment model (C), and GRU model (D). There is a slight 
overprediction bias in the 4-compartment and GRU models at higher concentrations of propofol. Blue circles: observed concentrations. Black 
line: line of identity. Red line: smoothed fit of the regression. GRU indicates gated recurrent unit.
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performed ensemble learning. In this way, the model 
learns to “weight” certain time-points during which the 
MEM is a more reliable predictor and put weight on the 
GRU component only when its predictions are better. 
This method provided 2 major benefits to the model: (1) 
benefit from the MEMs predictions in cases where that 
model is accurate (but learn to ignore it otherwise); and 
(2) arrival at an accurate solution quickly since the mod-
el’s inputs already include a strong classifier, which can 
prevent overfitting. Given enough data, it is likely that 
we could discard this ensembling component, though 
we found it useful when trying to learn a complex 
model with a relatively small number of samples.

None of our models have been prospectively vali-
dated to assess their clinical performance. However, 
we performed simulations of a standard induction 
dose of propofol (2 mg/kg given over 10 seconds) 
and compared these to a clinically validated model 
(Supplemental Digital Content, Figure 5, http://
links.lww.com/AA/D89).31 Concentration-time pro-
files between the 4-compartment and GRU models as 
well as the model published by Schnider et al31 were 
similar. All 3 models demonstrated peak concentra-
tions that were higher than the recirculatory model.

ANNs have yet to be used to model early induction 
kinetics, a time when drug concentration is changing 
rapidly. Though these models show promise in model-
ing complex nonlinear systems, their utility in modeling 

complex PK data may be limited by the size of the data 
available to train the model. This study demonstrated 
similar performance between a recirculatory model and 
GRU neural network. However, superior performance of 
the neural network may be seen with a larger dataset. E
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