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Abstract

We show that the expected computational
complexity of the Junction-Tree Algorithm
for maximum a posteriori inference in graph-
ical models can be improved. Our results
apply whenever the potentials over maximal
cliques of the triangulated graph are factored
over subcliques. This is common in many real
applications, as we illustrate with several ex-
amples. The new algorithms are easily im-
plemented, and experiments show substantial
speed-ups over the classical Junction-Tree Al-
gorithm. This enlarges the class of models for
which exact inference is efficient.

1 INTRODUCTION

It is well-known that exact inference in tree-structured
graphical models can be accomplished efficiently by
message-passing operations following a simple protocol
making use of the distributive law (Aji and McEliece,
2000). It is also well-known that exact inference
in arbitrary graphical models can be solved by the
Junction-Tree Algorithm; its efficiency is determined
by the size of the maximal cliques after triangulation,
a quantity related to the treewidth of the graph.

Figure 1 illustrates an attempt to apply the Junction-
Tree Algorithm to some graphical models containing
cycles. If the graphs are not chordal ((a) and (b)), they
need to be triangulated, or made chordal (red edges
in (c) and (d)). Their clique-graphs are then guar-
anteed to be Junction-Trees, and the distributive law
can be applied with the same protocol used for trees
(see Aji and McEliece (2000) for an excellent tutorial
on exact inference in arbitrary graphs). Although the
models in this example contain only pairwise factors,
triangulation has increased the size of their maximal
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Figure 1: The models at left ((a) and (b)) can be tri-
angulated ((c) and (d)) so that the Junction-Tree Al-
gorithm can be applied. Despite the fact that the new
models have larger maximal cliques, the corresponding
potentials are still factored over pairs of nodes.

cliques, making exact inference substantially more ex-
pensive. Hence approximate solutions in the original
graph (such as Loopy Belief-Propagation, or inference
in a Loopy Factor-Graph) are often preferred over an
exact solution via the Junction-Tree Algorithm.

In this paper, we exploit the fact that the maximal
cliques (after triangulation) often have potentials that
factor over subcliques, as illustrated in Figure 1. We
will show that whenever this is the case, the expected
computational complexity of exact inference can be im-
proved (both the asymptotic upper bound and the ac-
tual runtime). This will increase the class of problems
for which exact inference is tractable.

This is not to be confused with optimizations pro-
duced by Factor Graphs (Kschischang et al., 2001).
If applied to the above examples, the resulting Factor
Graphs would contain cycles and would therefore pro-
duce inexact solutions in general. Instead, we work at
the level of Junction-Trees arising from triangulated
graphs, enabling us to leverage within-clique factor-
izations while performing exact inference.

A core operation encountered in the Junction-Tree Al-
gorithm is that of finding the index that chooses the
largest product amongst two lists of length N :

î = argmax
i∈{1...N}

{va[i]× vb[i]} . (1)

Our results stem from the realisation that while (eq. 1)
appears to be a linear time operation, it can be de-
creased to O(

√
N) (in the expected case) if we know

the permutations that sort va and vb.
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1.1 SUMMARY OF RESULTS

A selection of the results to be presented in the re-
mainder of this paper can be summarized as follows.

We are able to lower the asymptotic expected running
time of the Junction-Tree Algorithm for any graphi-
cal model whose clique-potentials factorise into lower-
order terms; we always obtain the same solution as the
traditional Junction-Tree Algorithm, i.e., no approxi-
mations are used. For cliques composed of pairwise
factors, we achieve an expected speed-up over the ex-
isting approach of at least Ω(

√
N) (assuming N states

per node); for cliques composed of K-ary factors, the
expected speed-up becomes Ω( 1

K N
1
K ) (Ω denotes an

asymptotic lower-bound).

As an example, we can exactly compute the maximum
a posteriori (MAP) states of a ring-structured model
(see Fig. 1(b)) with M nodes in O(MN2

√
N); in con-

trast, Loopy Belief-Propagation takes Θ(MN2) per it-
eration, and the exact Junction-Tree Algorithm takes
Θ(MN3) by triangulating the graph (Θ denotes an
asymptotically tight bound).

The expected-case improvement is achieved when the
conditional densities of different factors (with respect
to their shared variables) have independent order-
statistics; if their order-statistics are positively cor-
related, we typically obtain better performance than
the expected case; if they are negatively correlated, we
may obtain worse performance, though our algorithm
is never asymptotically more expensive than the tra-
ditional Junction-Tree Algorithm.

Our results do not apply for every semiring S(+, ·),
but only to those whose ‘addition’ operation defines
an order; we also assume that under this ordering, our
‘multiplication’ operator satisfies

a < b ∧ c < d⇒ a · c < b · d. (2)

Thus our results certainly apply for the max-product
and min-product semirings (as well as max-sum and
min-sum), but not for sum-product. Consequently, our
approach is useful for computing MAP-states, but can-
not be used to compute marginal distributions. We
also assume that the domain of each node is discrete.

2 BACKGROUND

In belief-propagation algorithms, the message from a
clique X to an intersecting clique Y is defined by

mX→Y (xX∩Y ) = max
xX\Y

{ΦX(xX)
∏

Z∈Γ(X)\Y
mZ→X(xX∩Z)}

(3)
(where Γ(X) returns the neighbours of the clique
X). If such messages are computed after Y has re-

(a) (b) (c)

Figure 2: (a) A model for pose reconstruction from
Sigal and Black (2006); (b) A ‘skip-chain CRF’ from
Galley (2006); (c) A model for deformable matching
from Coughlan and Ferreira (2002). Although the (tri-
angulated) models have cliques of size three, their po-
tentials factorize into pairwise terms.

ceived messages from all of its neighbours except X
(i.e., Γ(X) \ Y ), then this defines precisely the up-
date scheme used by the Junction-Tree Algorithm.
The same update scheme is used for Loopy Belief-
Propagation, though it is done iteratively in a random-
ized fashion. MAP-states are computed in a similar
fashion, except that the messages from all neighbours
are included in (eq. 3).

Often, the clique-potential ΦX(xX) will be decompos-
able into several smaller factors, i.e.,

ΦX(xX) =
∏

F⊂X

ΦF (xF ). (4)

Some simple motivating examples are shown in Figure
2: a model for pose estimation from Sigal and Black
(2006), a ‘skip-chain CRF’ from Galley (2006), and
a model for shape matching from Coughlan and Fer-
reira (2002). In each case, the triangulated model has
third-order cliques, but the potentials are only pair-
wise. Other examples have already been shown in
Figure 1; analogous cases are ubiquitous in many real
applications (to be shown in Section 4, Table 1).

The optimizations we suggest shall apply to general
problems of the form

mM (xM ) = max
xX\M

∏
F⊂X

ΦF (xF ), (5)

of which (eq. 3) is a special case (where the messages
are considered to be factors). Computing the solu-
tion in the näıve way (i.e., evaluating

∏
F⊂X ΦF (xF )

for every value of xX) takes Θ(N |X|), where N is the
number of states per node, and |X| is the size of the
clique X (we assume that for a given xX , computing∏

F⊂X ΦF (xF ) takes constant time, as our optimisa-
tions shall not modify this cost). There is some loosely
related work that applies to the sum-product version of
this problem, based on arithmetic circuits (Park and
Darwiche, 2003), an idea closely related to Strassen’s
sub-cubic method for matrix-multiplication.
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Figure 3: (a) The lists va and vb before sorting. (b) Black squares show corresponding elements in the sorted lists
(va[pa[i]] and vb[pb[i]]); red squares indicate the elements currently being read (va[pa[start ]] and vb[pb[start ]]).
We can imagine expanding a gray box of size start × start until it contains an entry; note that the maximum is
found during the first step. (c) In the version for three lists, we expand a gray box within a cube.

3 OUR APPROACH

To specify an efficient solution to (eq. 3), we first con-
sider the simplest factorization: a clique of size three
containing pairwise factors. Here we must compute

mi,j(xi, xj) = max
xk

Φi,j(xi, xj)Φi,k(xi, xk)Φj,k(xj , xk).

(6)
For a particular value of (xi, xj) = (a, b), we must solve

mi,j(a, b) = Φi,j(a, b)×max
xk

Φi,k(a, xk)︸ ︷︷ ︸
va

×Φj,k(b, xk)︸ ︷︷ ︸
vb

,

(7)
which we note is in precisely the form shown in (eq. 1).

This is sometimes referred to as ‘funny’ matrix mul-
tiplication, as (eq. 7) is equivalent to regular matrix
multiplication with summation replaced by maximiza-
tion. It is known to have a sub-cubic worst-case so-
lution (Alon et al., 1997); our approach does not im-
prove the worst-case complexity, but gives far better
expected-case performance than existing solutions.

As we have previously suggested, it will be possible
to solve (eq. 7) efficiently if va and vb are already
sorted. We note that va will be reused for every value
of xj , and likewise vb will be reused for every value of
xi. Sorting every row of Φi,k and Φj,k can be done in
Θ(N2 log N) (for 2N rows of length N).

The following elementary lemma is the key observation
required in order to solve (eq. 7) efficiently:
Lemma 1. If the pth largest element of va has the
same index as the qth largest element of vb, then we
only need to search through the p largest values of va,
and the q largest values of vb; any values smaller than
these cannot possibly contain the largest solution.

This observation is used to construct Algorithm 1.
Here we iterate through the indices starting from the
largest values of va and vb, and stopping once both
indices are ‘behind’ the maximum value found so far
(which we then know is the maximum). This algo-
rithm is demonstrated pictorially in Figure 3.

Algorithm 1 Find i that maximizes va[i]× vb[i]
Input: two vectors va and vb, and permutation func-

tions pa and pb that sort them in decreasing order
(so that va[pa[1]] is the largest element in va)

1: Initialize: start = 1, enda = p−1
a [pb[1]], endb =

p−1
b [pa[1]] {if endb = k, the largest entry in va has

the same index as the kth largest entry in vb}
2: best = pa[1], max = va[best ]× vb[best ]
3: if va[pb[1]]× vb[pb[1]] > max then
4: best = pb[1], max = va[best ]× vb[best ]
5: end if
6: while start < enda {we do not check the stopping

criterion for endb; this creates some redundancy,
which a more complex implementation avoids} do

7: start = start + 1
8: if va[pa[start ]]× vb[pa[start ]] > max then
9: best = pa[start ]

10: max = va[best ]× vb[best ]
11: end if
12: if p−1

b [pa[start ]] < endb then
13: endb = p−1

b [pa[start ]]
14: end if
15: {repeat Lines 8–14, interchanging a and b}
16: end while {this takes expected time O(

√
N)}

17: Return: best

A prescription of how Algorithm 1 can be used to solve
(eq. 7) is given in Algorithm 2. Determining precisely
the running time of Algorithm 1 (and therefore Algo-
rithm 2) is not trivial, and will be explored in Section
3.2. We note that if the expected-case running time of
Algorithm 1 is O(f(N)), then the time taken to solve
Algorithm 2 shall be O(N2(log N + f(N))). We will
discuss the running time in Section 3.2, though for the
moment we simply state the following theorem:

Theorem 2. The expected running time of Algo-
rithm 1 is O(

√
N), yielding a speed-up of at least

Ω(
√

N) in cliques containing pairwise factors.

We can extend Algorithms 1 and 2 to cases where there
are several overlapping terms in the factors. For in-
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stance, Algorithm 2 can be adapted to solve

mi,j(xi, xj) = max
xk,xm

Φi,j(xi, xj)×
Φi,k,m(xi, xk, xm)× Φj,k,m(xj , xk, xm), (8)

and similar variants containing three factors. Here
both xk and xm are shared by Φi,k,m and Φj,k,m. As
the number of shared terms increases, so does the im-
provement to the running time. While (eq. 8) would
take Θ(N4) to solve using the näıve algorithm, it takes
only O(N3) to solve using Algorithm 2. In general,
if we have S shared terms, we create a new variable
whose domain is their product space; the running time
is then O(N2

√
NS), yielding a speed-up of Ω(

√
NS).

over the näıve solution.

Algorithm 2 Compute the max-marginal of a 3-clique
containing pairwise factors, using Algorithm 1
Input: a potential function Φi,j,k(xi, xj , xk) with fac-

tors Φi,j,k(a, b, c) = Φi,j(a, b)×Φi,k(a, c)×Φj,k(b, c)
whose max-marginal mi,j we wish to compute

1: for n ∈ {1 . . . N} do
2: compute Pi[n] by sorting Φi,k(n, xk)

{takes Θ(N log N)}
3: compute Pj [n] by sorting Φj,k(n, xk)

{Pi and Pj are N×N arrays, each row of which
is a permutation; Φi,k(n, xk) and Φj,k(n, xk) are
functions over xk, since n is constant in this ex-
pression}

4: end for {this loop takes Θ(N2 log N)}
5: for (a, b) ∈ {1 . . . N}2 do
6: (va, vb) = (Φi,k(a, xk), Φj,k(b, xk))
7: (pa, pb) =

(
Pi[a], Pj [b]

)
8: best = Algorithm1 (va, vb, pa, pb) {O(

√
N)}

9: mi,j(a, b) = Φi,j(a, b)Φi,k(a, best)Φj,k(b, best)
10: end for {this loop takes O(N2

√
N)}

11: Return: mi,j

3.1 AN EXTENSION TO CLIQUES WITH
ARBITRARY DECOMPOSITIONS

By similar reasoning, we can apply our algorithm in
cases where there are more than three factors. We
begin with the simplest case, in which our factors can
be separated into three groups (which we note is always
the case for pairwise factors). An illustrative example
of such a clique is given in Figure 4(a), which we shall
call G (assumed to be maximal in some triangulated
graph). Each of the factors in this clique have been
labeled using differently coloured edges, and the max-
marginal we wish to compute has been labeled using
coloured nodes. It is possible to split this graph into
three groups X, Y , and Z, such that every factor is
contained within a single group, along with the max-
marginal we wish to compute.

5 6
8

7

4
3

2
1

(a) (b)

(a) We begin with a set of factors (each coloured clique is
a factor; dashed lines indicate overlapping factors, while
dotted lines indicate pairwise factors), which are assumed
to belong to some clique in our model; we wish to compute
the max-marginal with respect to one of those factors (in-
dicated using coloured nodes); (b) The factors are split into
three groups, such that every factor is entirely contained
within one of them (Algorithm 3, line 1).

(c) (d) (e)

(c) Any nodes contained in only one of the groups are
marginalised (Algorithm 3, lines 2, 3, and 4); the prob-
lem is now very similar to that described in Algorithm
2, except that nodes have been replaced by groups; note
that this essentially introduces maximal factors in Y ′ and
Z′; (d) For every value (a, b) ∈ dom(x3, x4), ΨY (a, b, x6)
is sorted (Algorithm 3, lines 5–7); (e) For every value
(a, b) ∈ dom(x2, x4), ΨZ(a, b, x6) is sorted (Algorithm 3,
lines 8–10).

c

b
a

M

(e) (f)

(e) For every n ∈ dom(X ′), we choose the best value of x6

by Algorithm 1 (Algorithm 3, lines 11–16); (f) The result
is marginalised with respect to M (Algorithm 3, line 17).

Figure 4: Algorithm 3, explained pictorially. In this
case, the most computationally intensive step is the
marginalisation of Z (in step (c)), which takes Θ(N5).
However, the algorithm can actually be applied recur-
sively to the group Z, resulting in an overall running
time of O(N4

√
N), for a max-marginal that would

have taken Θ(N8) to compute using the näıve solu-
tion.
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Algorithm 3 Compute the max-marginal of G with
respect to M , where G is split into three groups
Input: potentials ΦG(x) = ΦX(xX)ΦY (xY )ΦZ(xZ),

where M ⊆ X (see Fig. 4)
1: Define: X ′ = ((Y ∪Z)∩X)∪M ; Y ′ = (X∪Z)∩Y ;

Z ′ = (X ∪ Y ) ∩ Z {X ′ contains the variables in
X that are shared by at least one other group;
alternately, the variables in X \X ′ appear only in
X (sim. for Y ′ and Z ′)}

2: compute ΨX(xX′) = maxX\X′ ΦX(xX)
{we are marginalising over those variables in X
that do not appear in any of the other groups (or
in M); this takes Θ(N |X|) if done by brute force,
but may also be done recursively}

3: compute ΨY (xY ′) = maxY \Y ′ ΦY (xY ) {Θ(N |Y |)}
4: compute ΨZ(xZ′) = maxZ\Z′ ΦZ(xZ) {Θ(N |Z|)}
5: for n ∈ dom(X ∩ Y ) do
6: compute PY [n] by sorting ΨY (n; xY ′\X)

{ΨY (n; xY ′\X) is free over xY ′\X ; PY [n] stores
the |Y ′ \X|-dimensional indices that sort it}

7: end for {this loop takes Θ(|Y ′\X|N |Y ′| log N)}
8: for n ∈ dom(X ∩ Z) do
9: compute PZ [n] by sorting ΨZ(n; xZ′\X)

10: end for {this loop takes Θ(|Z ′\X|N |Z′| log N)}
11: for n ∈ dom(X ′) do
12: (va, vb) = (ΨY (n|Y ′ ; xY ′\X′), ΨZ(n|Z′ ; xZ′\X′))

{n|Y ′ is the ‘restriction’ of the vector n to those
indices in Y ′; hence ΨY (n|Y ′ ; xY ′\X′) is free in
xY ′\X′ , while n|Y ′ is fixed}

13: (pa, pb) =
(
PY [n|Y ′ ], PZ [n|Z′ ]

)
14: best = Algorithm1 (va, vb, pa, pb)
15: mX(n) = ΨX(n)ΨY (best; n|Y ′)ΨZ(best ; n|Z′)
16: end for {this loop takes O(N |X

′|√N |(Y ′∩Z′)\X′|)}
17: mM (xM ) = Naive(mX , M) {i.e., we are using the

näıve algorithm to marginalise mX(xX) with re-
spect to M ; this takes Θ(N |X|)}

The marginalisation steps of Algorithm 3 (Lines 2, 3,
and 4) may further decompose into smaller groups, in
which case Algorithm 3 can be applied recursively. For
instance, the graph in Figure 5(a) shows the marginal-
isation step from Algorithm 3, Line 4 (see Fig. 4(c)).
Since this marginalisation step is the asymptotically
dominant step in the algorithm, applying Algorithm 3
recursively lowers the asymptotic complexity.

Naturally, there are cases for which a decomposition
into three terms is not possible, such as

mi,j,k(xi, xj , xk) = max
xm

Φi,j,k(xi, xj , xk)×
Φi,j,m(xi, xj , xm)Φi,k,m(xi, xk, xm)Φj,k,m(xj , xk, xm)

(9)

(i.e., a clique of size four with third-order factors).

However, if the model contains factors of size K, it
must always be possible to split it into K + 1 groups
(e.g. four in the case of (eq. 9)).

Our optimizations can be applied in these cases simply
by adapting Algorithm 1 to solve problems of the form

î = argmax
i∈{1...N}

{v1[i]× v2[i]× · · · × vK [i]} . (10)

Figure 3(c) demonstrates how such an algorithm be-
haves in practice: if we have K lists, the cube in Fig-
ure 3(c) becomes a K-dimensional hypercube. Pseu-
docode is not shown, though it is similar to Algorithm
1. Again, we shall discuss the running time of this ex-
tension in Section 3.2. For the moment, we state the
following theorem:
Theorem 3. Algorithm 1 generalises to K lists with
an expected running time of O(KN

K−1
K ), yielding a

speed-up of Ω( 1
K N

1
K ) in cliques containing K-ary fac-

tors (it can be adapted to be O(min(N, KN
K−1

K )), if
we carefully avoid rereading entries).

Using this extension, we can extend Algorithm 3 to
allow for any number of groups (pseudocode is not
shown; all statements about the groups Y and Z sim-
ply become statements about K groups {G1 . . . GK}).
The one remaining case that has not been considered
is when the sequences v1 · · ·vK are functions of dif-
ferent (but overlapping) variables; this can be trivially
circumvented by ‘padding’ each of them to be func-
tions of the same variables, and by carefully applying
recursion.

As a final comment we note that we have not provided
an algorithm for choosing how to split the variables
into (K + 1)-groups, and we note that different splits
may result in better performance. However, even if
the split is chosen in a näıve way, we will still get the
performance increases mentioned.

3.2 EXPECTED-CASE COMPLEXITY

In this section we shall determine the expected-case
running time of Algorithm 1. Algorithm 1 traverses
va and vb until it reaches the smallest value of m for
which there is some j ≤ m such that m ≥ p−1

b [pa[j]].
Extensions of Algorithm 1 aim to find the smallest m
for which

max(i, p1[i], . . . , pK−1[i]) ≤ m. (11)

If M is a random variable representing this smallest
value of m, then we wish to find E(M). Simple anal-
ysis reveals that the probability of choosing a single
permutation p such that max(i, p[i]) > m is

P (M > m) =
(N −m)!(N −m)!

(N − 2m)!N !
. (12)
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Graph:
{The complete
graph KM , with
pairwise terms}

(a) (b) (c) (d) (e)
Näıve solution: Θ(N5) Θ(N3) Θ(N11) Θ(N6) Θ(NM )
Algorithm 3: O(N3

√
N) O(N2

√
N) O(N6

√
N) O(N5) O(N5M/6)

Speed-up: Ω(N
√

N) Ω(
√

N) Ω(N4
√

N) Ω(N) Ω(NM/6)

Figure 5: Some example graphs whose max-marginals are to be computed with respect to the coloured nodes,
using the three regions shown. Factors are indicated using differently coloured edges, while dotted edges always
indicate pairwise factors. (a) is the region Z from Figure 4 (recursion is applied again to achieve this result);
(b) is the graph used to motivate Algorithm 2; (c) shows a query in a graph with regular structure; (d) shows a
complete graph with six nodes; (e) generalises this to a clique with M nodes.

This is precisely 1 − F (m), where F (m) is the cumu-
lative density function of M . It is immediately clear
that 1 ≤ M ≤ bN/2c + 1, which defines the best and
worst-case performance of Algorithm 1.

Using the identity E(X) =
∑∞

x=1 P (X ≥ x), we can
write down a formula for the expected value of M

E(M) =
bN/2c∑
m=0

(N −m)!(N −m)!
(N − 2m)!N !

, (13)

which reflects the expected running time of Algorithm
1. Unfortunately, the corresponding expectation when
we have K− 1 permutations is not trivial to compute.
It is possible to write down a formula that generalizes
(eq. 12), though the expression is complicated and not
very informative; hence we shall instead rely on the
upper bounds mentioned in Theorems 2 and 3. Proofs
of these bounds are given in Appendix A.

4 EXISTING APPLICATIONS

Our results are immediately compatible with several
applications that rely on inference in graphical models.
As we have mentioned, our results apply to any model
whose cliques decompose into lower-order terms.

Often, potentials are defined only on nodes and edges
of a model. A Dth-order Markov model has a tree-
width of D, but in some cases contains only pairwise
relationships. Similarly ‘skip-chain CRFs’ (Sutton and
McCallum, 2006; Galley, 2006), and Junction-Trees
used in SLAM applications (Paskin, 2003) often con-
tain only pairwise terms. In each case, if the tree-
width is D, Algorithm 3 takes O(MND

√
N) (for a

model with M nodes and N states per node), yielding
a speed-up of Ω(

√
N).

Models for shape matching often exhibit similar prop-
erties (Sigal and Black, 2006). Third-order cliques fac-
torise into second order terms, resulting in a speed-up

of Ω(
√

N). Another similar model for shape match-
ing is that of Felzenszwalb (2005); this model again
contains third-order cliques, though it includes a ‘geo-
metric’ term constraining all three variables. However,
the third-order term is independent of the input data,
meaning that each of its rows can be sorted offline.
Here we have an instance of Algorithm 1 with three
lists, yielding a speed-up of Ω(N

1
3 ).

In Coughlan and Ferreira (2002), deformable shape-
matching is solved approximately using Loopy Belief-
Propagation. Their model has only second-order
cliques, meaning that inference takes Θ(MN2) per it-
eration. Although we cannot improve upon this re-
sult, we note that we can typically do exact inference
in a single iteration in O(MN2

√
N); thus our model

has the same running time as O(
√

N) iterations of the
original version. This result applies to all models con-
taining a single loop.

In McAuley et al. (2008), a model is presented for
graph-matching using Loopy Belief-Propagation; the
maximal cliques for D-dimensional matching have size
(D + 1), meaning that inference takes Θ(MND+1) per
iteration (it is shown to converge to the correct solu-
tion); we improve this to O(MND

√
N).

Belief-propagation can be used to compute LP-
relaxations in pairwise graphical models. In Sontag
et al. (2008), LP-relaxations are computed for pair-
wise models by constructing several third-order ‘clus-
ters’, which compute pairwise messages for each of
their edges.

Table 1 summarizes these results. Running times
reflect the expected case, assuming that max-product
belief-propagation is used in a discrete model. Some of
the referenced articles may suggest variants of the algo-
rithm (e.g. Gaussian models, or approximate schemes);
we believe that our approach may revive the exact, dis-
crete version as a tractable option in such cases.
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Table 1: Some existing work to which our results can potentially be applied (M nodes, N states per node).

REFERENCE APPLICATION RUNNING TIME OUR APPROACH
McAuley et al. (2008) D-d graph-matching Θ(MND+1), iterative O(MND

√
N), iterative

Sutton and McCallum (2006) Width-D skip-chain O(MND+1) O(MND
√

N)
Paskin (2003) (discrete case) SLAM, width D O(MND+1) O(MND

√
N)

Felzenszwalb (2005) Deformable matching Θ(MN3) Θ(MN
8
3 ) + offline steps

Coughlan and Ferreira (2002) Deformable matching Θ(MN2), iterative O(MN2
√

N)
Sigal and Black (2006) Pose reconstruction Θ(MN3) O(MN2

√
N)

Sontag et al. (2008) LP with M clusters Θ(MN3) O(MN2
√

N)

5 EXPERIMENTS

5.1 PERFORMANCE AND BOUNDS

For our first experiment, we compare the performance
of Algorithm 1 (and extensions) to the näıve solu-
tion. This is a core subroutine of each of the other
algorithms, meaning that determining its performance
shall give us an indication of the improvements we ex-
pect to obtain in real graphical models.

For each experiment, we generate N i.i.d. samples from
[0, 1) to obtain the lists v1 . . . vK . N is the domain size;
this may refer to a single node, or a group of nodes;
thus large values of N may appear even for binary-
valued models. K is the number of lists in (eq. 10); we
can observe this number of lists only if we are working
in cliques of size K +1, and then only if the factors are
of size K; therefore smaller values of K are probably
more realistic in practice (indeed, all but one of the
applications in Section 4 had K = 2).

The performance of our algorithm is shown in Figure
6 (left), for K ∈ {2, 3, 4}. The performance reported is
just the number of elements read from the lists. This
is compared to N itself, which is the number of ele-
ments read by the näıve version. The upper-bounds
from Section A are also reported, while the expected
performance (i.e., (eq. 13)) is reported for K = 2 (we
are not aware of an efficiently computable generalisa-
tion of (eq. 13) for K > 2).

5.2 CORRELATED VARIABLES

The expected case running time of our algorithm was
obtained under the assumption that the lists had in-
dependent order-statistics, as was the case for the pre-
vious experiment. We suggested that we will typically
obtain worse performance in the case of negatively cor-
related variables, and better performance in the case
of positively correlated variables; we will assess these
claims in this experiment.

We report the performance for two lists (i.e., for

Algorithm 1), whose values are sampled from a 2-
dimensional Gaussian, with covariance matrix

Σ =
[

1 c
c 1

]
, (14)

meaning that the two lists are correlated with corre-
lation coefficient c. Performance is shown in Figure 6
(centre) for different values of c.

5.3 2-D GRAPH MATCHING

Naturally, Algorithm 3 has additional overhead com-
pared to the näıve solution, meaning that it will not be
beneficial for small N . We reproduce the model from
McAuley et al. (2008), which performs 2-dimensional
graph matching, using a loopy graph with cliques of
size three, containing only second order potentials (as
described in Section 4); the Θ(NM3) performance of
their method is reportedly state-of-the-art.

We perform matching between a template graph with
M nodes, and a target graph with N nodes, which
requires a graphical model with M nodes and N states
per node (see McAuley et al., 2008). We fix M = 5
and vary N . Performance is shown in Figure 6 (right).
The running times appear to be comparable after only
N ' 6, meaning that our algorithm has a speed-up
over the solution of McAuley et al. (2008) of about
2
5

√
N ; thus it is significantly faster than the state-of-

the-art solution, even for small values of N . Plots of
t = N3

4000 and t/ 2
√

N
5 are overlayed on Figure 6 (right)

to estimate the runtime in seconds as a function of N .

6 CONCLUSION

We have presented a series of approaches that allow
us to improve the performance of the Junction-Tree
Algorithm for models that factorize into terms smaller
than their maximal cliques. We are able to improve the
expected computational complexity in models whose
cliques factorize, no matter the size or number of fac-
tors. Our results increase the class of models for which
exact inference remains a tractable option.
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Figure 6: Left: Performance of our algorithm over 100 trials; the dotted lines show the bounds from Section
A. Centre: Performance of our algorithm for different correlation coefficients. Right: The running time of our
method on a graph matching experiment over 10 trials.
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A BOUNDS AND PROOFS

Proof of Theorem 3 (sketch). We wish to determine
the expected value of the smallest m satisfying (eq. 11).
It can be shown that replacing the permutations in
(eq. 11) with random samples of the values from 1 to
N gives an upper bound on the expected value. This
allows us to compute an upper bound on (eq. 12):

P (M > m) ≤
(

1− m

N

)m

, (15)

and the corresponding version for K lists:

PK(M > m) ≤
(

1− mK−1

NK−1

)m

. (16)

In order to claim that the E(M) is O(f(N, K)), (for
K lists with N elements) it is sufficient to show that

∞∑
m=0

(
1− f(N, K)K−1

NK−1

)m

∈ O(f(N, K)). (17)

Evaluating this geometric progression, we see that
f(N, K) = N

K−1
K is a suitable choice. At each step,

K entries are read, resulting in the O(KN
K−1

K ) time
reported.

Theorem 2 is trivially proved as a special case of The-
orem 3. To summarize, the expected running time of
Algorithm 1 (for which we have K = 2 lists) is O(

√
N).

This algorithm can be extended to handle K lists, with
running time O(KN

K−1
K ).
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