
Fairness, bias, and
transparency in Machine

Learning
Module 4: Interpretable and explainable ML

This module

● 4.1: Introduction to interpretability and explainability
● Case study: the mythos of model interpretability
● 4.2: Explainability techniques for linear models
● 4.3: A short discussion of statistical significance
● 4.4: Sparse models
● 4.5: Variable selection
● 4.6: Model agnostic methods
● Case-study: Concept bottleneck models
● 4.7: How should explanations be evaluated?
● 4.8: Explainability of image classifiers
● 4.9: Explainability of language models

(approx. 2 weeks)

Interpretable and
explainable ML

4.1: Introduction to interpretability and explainability

This section

● Introduce "interpretability" in terms of basic desiderata of interpretable
models

“Black box” machine learning models

(features) Home loan
denied

Why do we want models that offer explanations?

Why might we want to know why our home loan was rejected?

see https://christophm.github.io/interpretable-ml-book/interpretability-importance.html
https://sentic.net/explainable-artificial-intelligence.pdf

https://christophm.github.io/interpretable-ml-book/interpretability-importance.html
https://sentic.net/explainable-artificial-intelligence.pdf

Categorization of interpretability techniques

● Global vs local
● Inherent vs post-hoc
● Model-based vs model agnostic

see https://course.ccs.neu.edu/ds4420sp20/slides/18-ds4420-interpretability.pdf

https://course.ccs.neu.edu/ds4420sp20/slides/18-ds4420-interpretability.pdf

Categorization of interpretability techniques

Global vs local:

Local interpretations explain individual predictions of the model

Global predictions interpret the model itself (e.g. via its parameters)

see https://course.ccs.neu.edu/ds4420sp20/slides/18-ds4420-interpretability.pdf

Heatmap
(global)

Model
weights
(local)

vs

https://course.ccs.neu.edu/ds4420sp20/slides/18-ds4420-interpretability.pdf

Categorization of interpretability techniques

Inherent vs post-hoc

Inherent explanations are built into the design of the model

Post-hoc explanations are used to explain “black-box” methods

see https://course.ccs.neu.edu/ds4420sp20/slides/18-ds4420-interpretability.pdf

Saliency
maps

(post-hoc)
vs

Regression
(inherent,
maybe!)

https://course.ccs.neu.edu/ds4420sp20/slides/18-ds4420-interpretability.pdf

Categorization of interpretability techniques

Model based vs model agnostic

Model-based methods can explain only one class (or a few classes) of model

Model agnostic methods can explain the predictions of any model

see https://course.ccs.neu.edu/ds4420sp20/slides/18-ds4420-interpretability.pdf

Decision
tree

(model-
based)

LIME
(model

agnostic)
vs

https://course.ccs.neu.edu/ds4420sp20/slides/18-ds4420-interpretability.pdf

What are desirable properties of interpretable models?

Trust

● Humans are reluctant to use ML models in critical tasks

● People are generally unwilling to trust new technologies

(Q: To what extent does interpretability itself make models more "trustworthy"?)

see https://thegradient.pub/interpretability-in-ml-a-broad-overview/

https://harvard-iacs.github.io/2020F-AC295/lectures/lecture11/presentation/lecture11.pdf

https://thegradient.pub/interpretability-in-ml-a-broad-overview/
https://harvard-iacs.github.io/2020F-AC295/lectures/lecture11/presentation/lecture11.pdf

What are desirable properties of interpretable models?

Safety

● Understand what features models are using to make their decisions

● Ensure that the model won't make decisions outside of desirable operating
characteristics

● Ensure that there's a way to "fix" the model if it's not making reasonable
decisions

see https://harvard-iacs.github.io/2020F-AC295/lectures/lecture11/presentation/lecture11.pdf

https://harvard-iacs.github.io/2020F-AC295/lectures/lecture11/presentation/lecture11.pdf

What are desirable properties of interpretable models?

Contestability

Illustrate the reasoning used by the model, i.e., so that the model must "justify"
its decisions

Give model users a chance to get different outcomes (e.g. if their homeloan was
denied)

(Q: To what extent does a model like a decision tree fulfil these conditions?)

see https://harvard-iacs.github.io/2020F-AC295/lectures/lecture11/presentation/lecture11.pdf

https://harvard-iacs.github.io/2020F-AC295/lectures/lecture11/presentation/lecture11.pdf

What are desirable properties of interpretable models?

Simulatability

● Would a human be able to repeat the steps taken by the model in order to
understand whether those steps are "reasonable" to them?

● I.e., is the model "simple" enough to understand?

(Q: Does this automatically exclude e.g. image classifiers? Are humans' own
decisions generally "simulatable"?)

see https://harvard-iacs.github.io/2020F-AC295/lectures/lecture11/presentation/lecture11.pdf

https://harvard-iacs.github.io/2020F-AC295/lectures/lecture11/presentation/lecture11.pdf

What are desirable properties of interpretable models?

Decomposability

● Can model decisions be decomposed into simpler "steps" such that we can
understand what the model is doing at each step

● (see e.g. decision trees)

see https://harvard-iacs.github.io/2020F-AC295/lectures/lecture11/presentation/lecture11.pdf

https://harvard-iacs.github.io/2020F-AC295/lectures/lecture11/presentation/lecture11.pdf

What are desirable properties of interpretable models?

Algorithmic transparency

● More general term: is the model easy to "understand"; is it "informative"; etc.

see https://harvard-iacs.github.io/2020F-AC295/lectures/lecture11/presentation/lecture11.pdf

https://harvard-iacs.github.io/2020F-AC295/lectures/lecture11/presentation/lecture11.pdf

What are desirable properties of interpretable models?

Functionally grounded: do explanations accurately reflect what the model is
doing (sometimes known as "faithfulness" or "fidelity")?

Application grounded: does deploying an interpretable model actually result in
better outcomes (more accurate, fairer, etc.)?

Human grounded: are interpretations actually "useful" to humans?

see https://arxiv.org/pdf/2108.04840

https://arxiv.org/pdf/2108.04840

Summary

Lots of potential goals from interpretable algorithms, many of which are quite
"fluffy"!

In this module we'll explore a range of "interpretable" models that exhibit each of
the above criteria

Main resources

● Interpretable Machine Learning: https://christophm.github.io/interpretable-
ml-book/ (free online textbook!)

● Post-hoc Interpretability for Neural NLP: https://arxiv.org/pdf/2108.04840
(specifically for NLP, but a good resource in general)

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://arxiv.org/pdf/2108.04840

Interpretable and
explainable ML

Case study: The mythos of model interpretability

The mythos of model interpretability

This paper (https://arxiv.org/pdf/1606.03490) discusses (mostly qualitatively)
various aspects of interpretability research, mostly arguing that:

● Interpretability has no agreed upon meaning, and is used in a quasi-
mathematical way

● Many of the interpretability techniques used at the time don’t meet the
desiderata of an interpretable method

https://arxiv.org/pdf/1606.03490

Desiderata

Trust: A user should trust that a model’s predictions are accurate

● Shouldn’t a user reasonably have the most “trust” in a model that’s the most
accurate (in which case “interpretability” serves no purpose)?

● We care not just that a model is right but also for which examples it is right
● Would a model be considered “trustworthy” if it is right when humans are

right (but mistaken when humans are mistaken)?

Desiderata

Transferability: “Trust” might also mean convincing a user that a model will
continue to work when deployed in a new scenario that differs from its training
objective.

E.g. a model predicting probability of death from pneumonia may associate
“asthma” with a low probability of death – but this is due to the more aggressive
treatment such patients receive. We would not want “has asthma” to be
associated with low risk in a system that was deployed for the purposes of
patient triage.

Properties of interpretable models – transparency

Simulatability: A model might be called “transparent” if a person can
contemplate the entire model at once, i.e., if they could reasonably be expected
to “simulate” its decisions in their head.

This is a fairly subjective definition!

Food for thought: are (wide) linear models, or (deep) decision trees any better
than neural networks in this regard?

Properties of interpretable models – transparency

Decomposability: A model might be considered transparent if each part of the
model (input, parameter, calculation) has an intuitive explanation, e.g. a branch of
a decision tree might correspond to “all patients with diastolic blood pressure
over 150”; or a parameter of a linear model may represent the strength
associated with a particular feature.

Food for thought: do these definitions qualify linear models or decision trees as
being more “interpretable”, or are potentially misleading given the complex
interactions between model components (see e.g. paradoxes associated with
parameter interpretation from early module)?

Properties of interpretable models – transparency

Algorithmic transparency: Can guarantees be made about the model itself, e.g.
will it converge to the optimal solution of the objective it seeks to optimize? This
would be true of models like least-squares regression but generally be true of
(e.g.) neural networks.

Food for thought: is there a fundamental tradeoff between algorithms that are
powerful and those that we can understand?

Discussion

Are linear models more/less interpretable than neural networks?

● Are the ways in which they are normally interpreted meaningful, given the
potentially complex correlations among features?

● If they are much less accurate, does their better "interpretability" matter at all?
Would we ever want "interpretable" but inaccurate results?

● Why not instead rely on post-hoc explanations of more powerful models?

● To what standards are humans held in this regard?

Discussion

How can claims regarding interpretability be qualified?

● One can assert that a linear model is "more interpretable" than a deep
network, though this statement is not usually backed by a measurable
objective

● Likewise, post-hoc, or other interpretability techniques that claim
interpretability should offer evidence that it has been achieved

Discussion

Is transparency at odds with the broader objectives of AI?

● Institutions may be biased against new models (and want "interpretability" in
order to trust them), but will (e.g.) lower-accuracy models ultimately be
considered more "trustworthy"?

Can interpretations potentially mislead?

● Interpretations can be plausible (and subjectively trustworthy) but ultimately
wrong; one could potentially develop explanations that were deliberately
wrong with a goal of misleading

Properties of interpretable models

(lots more in paper but I've probably covered enough...)

The paper is mainly interesting just to help you think about the nuances involved
in the problem, and is very readable (though certainly has a negative take on
interpretability in general!)

Interpretable and
explainable ML

4.2: Intro to explainability techniques for linear models

This section

● Very brief introduction to interpretability in linear models
● A few more evaluation metrics

A little about regression diagnostics

So far, we’ve evaluated regression models using the Mean Squared Error (MSE):

How low should the MSE be before it is “good enough”?

Mean, Variance, and MSE

(want to get through these fairly quickly so please revise if needed!)

Mean:

Variance:

MSE:

R^2 statistic

Interpreting the weights of a linear model

(1) Code example: see examples from 158/258, or from Module 1
(2) What do the weights “mean”

Interpreting the weights of a linear model

Interpreting the weights of a linear model

Interpreting the weights of a linear model

Linear models are often thought of as being “interpretable” compared to neural
networks, but these “interpretations” are so fragile that they’re fairly useless!

Even for these simple models, it seems that we need more sophisticated
interpretation techniques – this is mostly what we’ll cover in this module

Interpretable and
explainable ML

4.3: A short (?) discussion of statistical significance

This section

● Introduction to significance testing
● p-values and t-tests
● Significance tests for model coefficients
● Weight plots and effect plots
● Odds ratio (logistic regression)

Significance testing

● How can we determine whether a model’s predictions are better than
random?

● How can we determine whether a particular feature meaningfully
contributes to the model’s predictions?

● This is somewhat of a “classical statistics” view of the problem, which is
mostly here for completeness, though (in my opinion) not all that relevant to
large-scale machine learning systems

Motivating example

Which of these restaurants would you choose?

Basically, which one really has the higher rating?

Motivating example

Basically, which one really has the higher rating?

● We don’t observe the “real” average rating (or the real distribution of
ratings)

● Instead we observe a sample from a population
● We’d like to determine (e.g.) how likely one restaurant is to have a “real”

higher average, based on the samples

Motivating example

Basically, which one really has the higher rating?
How likely is it that Boba
Bar “really” has better
reviews? In other words: If
reviewers are a random
sample from the true
distribution of review
scores, how likely are we
to observe a difference in
averages of > 0.1?

Motivating example

Basically, which one really has the higher rating?

Answering this formally depends on a lot of things!

● What is the magnitude of the difference between the two averages?
● What is the size of the two samples?
● What is the variance of the two samples?

“Stats textbook” (or wikipedia!) example

● I can’t think of any simpler example than the one on wikipedia:

Imagine you flip a coin 20 times and it lands on heads 14 times. How likely is
it that the coin is fair?

● Formally: what is the probability that a fair coin would land on heads 14 or
more times?

“Stats textbook” (or wikipedia!) example

Formally: what is the probability that a fair coin, flipped 20 times, would land on
heads 14 or more times?

“Stats textbook” (or wikipedia!) example

Null hypothesis:

Observation:

(two-tailed) p-value:

More complex example

What is the probability that Wushiland Boba Kearny Mesa has an average rating
of 4.6?

picture from https://en.wikipedia.org/wiki/Student%27s_t-test

https://en.wikipedia.org/wiki/Student%27s_t-test

More complex example

What is the probability that Wushiland Boba Kearny Mesa has an average rating
of 4.6?

More complex example

The value of t will be normally distributed with mean 0 and variance 1 (see: a
stats class!)

More complex example

What is the probability that Wushiland Boba Kearny Mesa has a different
average rating than Boba Bar and Desserts?

picture from https://en.wikipedia.org/wiki/Student%27s_t-test

https://en.wikipedia.org/wiki/Student%27s_t-test

More complex example

What is the probability that Wushiland Boba Kearny Mesa has a different
average rating than Boba Bar and Desserts?

see https://libguides.library.kent.edu/SPSS/IndependentTTest

https://libguides.library.kent.edu/SPSS/IndependentTTest

T-test

These particular tests are called t-tests, where the goal is to compare averages
across small samples; several variants of these tests are used for different
conditions.

History of the test is interesting; these tests were designed by a statistician at the
Guinness Brewery (William Sealy Gosset), who wanted to assess the chemical
properties of barley with small sample sizes (see wikipedia for history)

What about for models?

So far we’ve compared population averages; but in this class we’re interested in
model predictions

To assess models, we’ll generally assess the “population” of model residuals:

What about for models?

So far we’ve compared population averages. But in this class we’re interested in
model predictions.

To assess models, we’ll generally assess the “population” of model residuals:

● Are the residuals greater than zero?
● Are the residuals of one model closer to zero (i.e., smaller in magnitude) than

the residuals of another model?

See textbook (Section 3.5.1) for an example

What about for model coefficients?

(this is actually the relevant bit!)

Suppose we’d like to evaluate whether some features have “large” coefficients
(“imporant”) and others have “small” coefficients (“not important”)

Note: we can’t compare coefficient values directly (why?)

see https://www.youtube.com/watch?v=1oHe1a3JqHw

https://www.youtube.com/watch?v=1oHe1a3JqHw

What about for model coefficients?

If we can’t compare coefficients directly, we need to get a sense of “variance” of a
coefficient (or something like that); e.g., is a coefficient “big enough” that we can
confidently say that it is greater than zero, accounting for the fact that there may
be more variability for larger coefficients

Again, this is critical if we want to interpret our model: raw feature weights are
(generally) not meaningful

see https://www.youtube.com/watch?v=1oHe1a3JqHw

https://www.youtube.com/watch?v=1oHe1a3JqHw

What about for model coefficients?

Different samples will generate different coefficients

see https://www.youtube.com/watch?v=1oHe1a3JqHw

https://www.youtube.com/watch?v=1oHe1a3JqHw

What about for model coefficients?

Our question is generally whether we can conclude that the true coefficient is
greater than zero, based on the coefficient estimated from the sample

That is, can we conclude that the feature is meaningfully related to the output
variable?

(though the same techniques can be used for other tests about coefficients too)

see https://www.youtube.com/watch?v=1oHe1a3JqHw

https://www.youtube.com/watch?v=1oHe1a3JqHw

What about for model coefficients?

Put differently, is the coefficient far enough away from zero that a value of zero is
not within the range of plausible errors due to sampling variation / randomness

For the test statistic we need to compute the standard error of a model
coefficient (again from Wikipedia):

see https://www.youtube.com/watch?v=1oHe1a3JqHw

https://www.youtube.com/watch?v=1oHe1a3JqHw

Explaining predictions using weight plots & effect plots

Weight plots: now, we can
report e.g. 95% confidence
intervals of feature
importances

Points are parameter values
(theta_i); bars indicate 95%
confidence intervals

(plot based on bike rental
data)

from https://christophm.github.io/interpretable-ml-book/limo.html

https://christophm.github.io/interpretable-ml-book/limo.html

Explaining predictions using weight plots & effect plots

from https://christophm.github.io/interpretable-ml-book/limo.html

https://christophm.github.io/interpretable-ml-book/limo.html

Explaining predictions using weight plots & effect plots

Effect plots: the effect that a particular feature value has on a prediction is equal
to:

Note: this is invariant to the particular scaling of any feature (e.g. inches vs cm)

from https://christophm.github.io/interpretable-ml-book/limo.html

https://christophm.github.io/interpretable-ml-book/limo.html

Explaining predictions using weight plots & effect plots

Effect plots show the
distribution of these effect
values to give a sense of how
much effect different features
have on the prediction

From this plot, it is clear that
temperature and days since
2011 have the greatest effect

from https://christophm.github.io/interpretable-ml-book/limo.html

https://christophm.github.io/interpretable-ml-book/limo.html

Explaining predictions using weight plots & effect plots

We can use the same idea to
compare the effects of
features from a particular
sample to the overall
distribution

from https://christophm.github.io/interpretable-ml-book/limo.html

https://christophm.github.io/interpretable-ml-book/limo.html

Do linear models make for “good” explanations?

We've formalized measuring whether features are "important", but:

● "Importance" may change or disappear depending on what other features
are present (see: feature selection)

● "Interpretation" of a feature in a linear model is restrictive and struggles to
account for correlation among features

● Interpretation is only reasonable to the extent that a linear model is actually
a good model of the data in the first place

● (lots more to say in link)

from https://christophm.github.io/interpretable-ml-book/limo.html#do-linear-models-create-good-explanations

https://christophm.github.io/interpretable-ml-book/limo.html#do-linear-models-create-good-explanations

Odds ratio (logistic regression)

How can we apply this type of interpretation to logistic regression?

What does the (linear) term in logistic regression correspond to?

see https://christophm.github.io/interpretable-ml-book/logistic.html

https://christophm.github.io/interpretable-ml-book/logistic.html

Odds ratio (logistic regression)

see https://christophm.github.io/interpretable-ml-book/logistic.html

https://christophm.github.io/interpretable-ml-book/logistic.html

Odds ratio (logistic regression)

We showed that logistic regression is a linear model for the log odds

(So?) how do the odds change given a unit change in a feature?

see https://christophm.github.io/interpretable-ml-book/logistic.html

https://christophm.github.io/interpretable-ml-book/logistic.html

Odds ratio (logistic regression)

A unit change in a feature changes the odds ratio by a multiplicative factor of
exp(beta_j)

Example:

see https://christophm.github.io/interpretable-ml-book/logistic.html

https://christophm.github.io/interpretable-ml-book/logistic.html

Odds ratio (logistic regression)

Not much more to say about this… there are some more specific examples in the
link

Otherwise, pitfalls to interpreting weights in this way are much the same as what
we saw for other types of linear models

see https://christophm.github.io/interpretable-ml-book/logistic.html

https://christophm.github.io/interpretable-ml-book/logistic.html

Study points & take-homes

● Even models we thought were "inherently" interpretable (e.g. linear models)
turn out to have much more complicated evaluations

● Even armed with more "sophisticated" statistical techniques, it is still hard to
determine "importance" and "significance" due to e.g. correlation among
features

Interpretable and
explainable ML

4.4: Sparse models

This section

● Introduce the notion of model "sparsity"
● Introduce the broader problem of variable selection
● Motivate sparsity (making models smaller) as a form of interpretability

Reminder: regularization

Recall that our (regularized) linear model looks like:

Reminder: regularization

What kind of model parameters will this lead to?

Reminder: regularization

What about an l1 regularized model?

Reminder: regularization

Claim: l2 regularized models have parameters that are roughly uniform (in
magnitude); l1 regularized models have sparse parameters

Reminder: regularization

“proof”:

Reminder: regularization

“proof” (from textbook)

Code example: housing prices

Idea: let’s perform feature selection via regularization

Based on example from
https://courses.cs.washington.edu/courses/cse416/18sp/slides/L4b_lasso-
regression.pdf

Use housing dataset from: https://www.kaggle.com/c/house-prices-advanced-
regression-techniques/

Code available in workbook4.ipynb workbook

https://courses.cs.washington.edu/courses/cse416/18sp/slides/L4b_lasso-regression.pdf
https://courses.cs.washington.edu/courses/cse416/18sp/slides/L4b_lasso-regression.pdf
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/

Code example: housing prices

Regression task: predict housing sale price using following features:

["LotArea", "YearBuilt", "CentralAir", "FullBath", "OverallCond", "GrLivArea",
"BedroomAbvGr", "Fireplaces"]

How do feature weights change as we increase the regularization strength?

Code example: housing prices

Parameters tend toward
zero as we increase the
regularization strength, but
never reach zero precisely

Code example: housing prices

Parameters tend toward zero as we increase the regularization strength, but
never reach zero precisely

Difficult to use this model for variable selection; perhaps we could try setting
some minimal parameter threshold (i.e., setting small parameters to zero), but:

● Thresholding parameters (and removing those with low weights) would be a
different model than the one we actually fit

● Parameter values aren’t comparable anyway, since they depend on feature
scales, e.g. features with large scale will tend to have small parameters but
can still be important

Code example: housing prices

Regression task: predict housing sale price using following features:

["LotArea", "YearBuilt", "CentralAir", "FullBath", "OverallCond", "GrLivArea",
"BedroomAbvGr", "Fireplaces"]

What if we use an l1 regularizer?

Code example: housing prices

Features reach exactly zero
as we increase the
regularization strength; the
fitted models are sparse

Elastic net regularization

“Limitations” of Lasso (l1 regularization):

● If the number of observations (n) exceeds the number of features (k), only at
most k features will be selected (who cares?)

● If many features are highly correlated, only one will be “selected” (isn’t this a
good thing?)

See also “elastic net” regularization, which combines both an l1 and an l2 penalty
simultaneouly (though maybe not so relevant to this class)

Code example: housing prices

l1 (lasso) and l2 (ridge)
penalties combined

Sparse models

So, we saw how the use of an l1 penalty can help to induce sparsity in a model;
arguably sparse models are more interpretable in the sense that they reduce the
feature space to a small, manageable number of features (usually called simply
“variable selection” rather than “interpretability”)

The way we interpret parameters doesn’t change, but note that where two correlated
features might have had large parameters in an l2 model, one of them will
generally “disappear” in the l1 model; as such, our assessment of the importance of
a particular feature could significantly change

Also worth considering the accuracy tradeoff, though neither the l1 nor l2 model is
guaranteed to be better in any particular context

Study points & take-homes

● We saw empirically that l1 regularizers induce sparsity, and discussed a bit
about why

Interpretable and
explainable ML

4.5: Variable selection

This section

● Look at the problem of variable selection
● Discuss a few specific variable selection strategies
● Discuss the use of variable selection as a form of interpretation

Today

● How can we experimentally determine which features (or sets of features) of
a model contribute most to its performance?

● How can we use these tests to build models that only include “useful”
features

● Instead of testing hypotheses etc., we’ll look at approaches that aim to
maximize model performance

Why do variable selection?

● Selecting important variables (features) in a model is a form of model
interpretation / explanation: it allows us to assess the contribution of model
features in terms of their predictive capacity

● Such techniques are also used to demonstrate empirically that a particular
feature is a useful addition to a model

● Note: interpretation could be different! “Significant” model parameters may
not contribute much to model performance

Feature selection versus parameter significance

● Note: parameters that are most “statistically significantly” non-zero are not
necessarily those that most contribute to a model’s performance

● Why?

Ablation tests

“Ablation” just means to remove something. An “ablation” of a model is just a
model with some component (or just some of its features) removed

Comparing a model with an ablated version measures how much that component
contributes to the model (assuming all other components are still present)

Output is similar to what it was when measuring significance: scores (e.g. change
in MSE) per features, but we are measuring importance based on predictive
capacity rather than “significance”

Ablation tests – code example

(exercise!)

Variable selection

Again note the difference between “predictive capacity” and “significance”: a rare
but extremely predictive feature will have little predictive importance as
measured by an ablation test

Another limitation of an ablation experiment is that features which are
“important” but highly correlated will not appear important when individually
ablated

To understand the importance of features (or components) even when they are
correlated, we might consider iteratively adding or removing them

Variable selection – code example

See workbook4.ipynb, based on an example from:
https://courses.cs.washington.edu/courses/cse416/18sp/slides/L4b_lasso-
regression.pdf

https://courses.cs.washington.edu/courses/cse416/18sp/slides/L4b_lasso-regression.pdf
https://courses.cs.washington.edu/courses/cse416/18sp/slides/L4b_lasso-regression.pdf

Code example: housing prices

Best model with zero
features

(will have R^2 = 0 by
definition)

Code example: housing prices

Best model with one
feature:

['GrLivArea']

Code example: housing prices

Best model with two
features:

['YearBuilt', 'GrLivArea']

Code example: housing prices

Best model with three
features:

['YearBuilt', 'GrLivArea',
'BedroomAbvGr']

Code example: housing prices

Best model with four
features:

['YearBuilt', 'OverallCond',
'GrLivArea',
'BedroomAbvGr']

Code example: housing prices

Best model with five
features:

['YearBuilt', 'OverallCond',
'GrLivArea',
'BedroomAbvGr',
'Fireplaces']

Code example: housing prices

Best model with six
features:

['LotArea', 'YearBuilt',
'OverallCond', 'GrLivArea',
'BedroomAbvGr',
'Fireplaces']

Code example: housing prices

Best model with six
features:

['LotArea', 'YearBuilt',
'CentralAir', 'OverallCond',
'GrLivArea',
'BedroomAbvGr',
'Fireplaces']

Code example: housing prices

Best model with all
features:

['LotArea', 'YearBuilt',
'CentralAir', 'FullBath',
'OverallCond', 'GrLivArea',
'BedroomAbvGr',
'Fireplaces']

(better example that I couldn’t reproduce!)

see https://courses.cs.washington.edu/courses/cse416/18sp/slides/L4b_lasso-regression.pdf

https://courses.cs.washington.edu/courses/cse416/18sp/slides/L4b_lasso-regression.pdf

(better example that I couldn’t reproduce!)

see https://courses.cs.washington.edu/courses/cse416/18sp/slides/L4b_lasso-regression.pdf

https://courses.cs.washington.edu/courses/cse416/18sp/slides/L4b_lasso-regression.pdf

Variable selection – code example

Notes:
● This type of approach would not be scalable!
● Need something more efficient (or “greedy”)

Code example: housing prices

Note: optimal feature combinations need not be nested, e.g. the best model
containing two features may include features that don’t appear in the best model
containing three features

(this didn’t happen in our example, though happens in this one:
https://courses.cs.washington.edu/courses/cse416/18sp/slides/L4b_lasso-
regression.pdf)

Also: this type of approach would not be scalable! We weed something more
efficient (or “greedy”)

https://courses.cs.washington.edu/courses/cse416/18sp/slides/L4b_lasso-regression.pdf
https://courses.cs.washington.edu/courses/cse416/18sp/slides/L4b_lasso-regression.pdf

Forward selection

Forward selection applies the same type of approach, but in a greedy fashion:
rather than considering all possible combinations of variables, we consider
adding one variable at a time

Note: based on the nesting issue we just saw, this may not select the best
possible model!

Forward selection

Start with a model M with no features

While (not every feature is included):

For every feature f that hasn’t been included yet:

Compute the performance (e.g. accuracy) of M + f

Add the feature with the best performance delta to M

(keep track of the order in which features were added)

Backward selection

Backward selection applies the process in reverse: start with all features
included, and iteratively discard whichever adds the least predictive capacity

Backward selection

Start with a model M with all features

While (the model still has some remaining features):

For every feature f in M:

Compute the performance (e.g. accuracy) of M - f

Remove the feature with the lowest delta from M

(keep track of the order in which features were removed)

Forward and backward selection

Both methods produce an ordered list of which features are the most
important (in forward selection, the most important features get added first, in
backward selection the most important features are the last to be removed)

Q: Will these two lists be the same? Can you get a sense of any qualitative
differences they may have?

Forward and backward selection

● Note: Requires fitting O(N^2) models (N is the number of features)
● For a few specific models there may be efficient ways of implementing this
● Ideally we might like to try out every possible combination of features to find

the best model with a certain number of features, but this would be
prohibitively expensive; this is just a heuristic

● More complex heuristics exist, see e.g. Forward-Backward selection

● Note: This is a form of interpretation (which features are important?) but
also a tool for model selection (what is a good model that includes a limited
set of features?)

Study points & take-homes

● Introduced ablation tests
● Introduced forward and backward selection strategies

Interpretable and
explainable ML
4.6: Model agnostic methods

This section

● Introduce the idea of "model agnostic" interpretation
● Explaining the predictions of any classifier (LIME)
● SHapley Additive exPlanations (SHAP)

Model agnostic methods

A "model agnostic" interpretability technique is a form of interpretability that
doesn't depend on the specific details of the underlying model

Put differently, rather than relying on a model being interpretable, we separate
the task of modeling and interpretation

see https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/XAI%20(v7).pdf

https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/XAI%20(v7).pdf

Explaining the predictions of any classifier (LIME)

LIME: Local interpretable model-agnostic explanations

● Some models are difficult to interpret (e.g. black-box neural network
models) whereas others are easier (e.g. linear models)

● Perhaps an interpretable model can be used to approximate the
uninterpretable model, and used to provide an explanation

see https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/XAI%20(v7).pdf

https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/XAI%20(v7).pdf

Explaining the predictions of any classifier (LIME)

see https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/XAI%20(v7).pdf

https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/XAI%20(v7).pdf

Problem: the (simple) linear model cannot approximate the neural network
everywhere

However, it can possibly approximate part of the neural network locally

(such models are called "locally interpretable")

Explaining the predictions of any classifier (LIME)

see https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/XAI%20(v7).pdf

https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/XAI%20(v7).pdf

Explaining the predictions of any classifier (LIME)

see https://homes.cs.washington.edu/~marcotcr/blog/lime/
see https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/XAI%20(v7).pdf

● Take any data point (sample) you
want to explain

● Sample nearby data points
● Fit a linear model (or some other

interpretable model)
● Interpret the linear model

In theory, the linear model should
“explain” part of the complex decision
boundary

https://homes.cs.washington.edu/~marcotcr/blog/lime/
https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/XAI%20(v7).pdf

Image example:

● Split image into superpixels
(segments)

● Randomly delete some segments

● Use black box to compute p(frog)

Explaining the predictions of any classifier (LIME)

from https://course.ccs.neu.edu/ds4420sp20/slides/18-ds4420-interpretability.pdf which is in turn from Hung-yi Lee

https://course.ccs.neu.edu/ds4420sp20/slides/18-ds4420-interpretability.pdf

Fit with linear model:

Explaining the predictions of any classifier (LIME)

from https://course.ccs.neu.edu/ds4420sp20/slides/18-ds4420-interpretability.pdf which is in turn from Hung-yi Lee

https://course.ccs.neu.edu/ds4420sp20/slides/18-ds4420-interpretability.pdf

Above is perhaps unsophisticated (depends on using image classifiers based on
segments!) but gives a general sense of how one might design an interpretation
scheme based on local perturbations

We'll see other explainability techniques specific to images later

Explaining the predictions of any classifier (LIME)

from https://course.ccs.neu.edu/ds4420sp20/slides/18-ds4420-interpretability.pdf which is in turn from Hung-yi Lee

https://course.ccs.neu.edu/ds4420sp20/slides/18-ds4420-interpretability.pdf

Code example: https://marcotcr.github.io/lime/tutorials/Lime%20-
%20basic%20usage%2C%20two%20class%20case.html

Explaining the predictions of any classifier (LIME)

https://marcotcr.github.io/lime/tutorials/Lime%20-%20basic%20usage%2C%20two%20class%20case.html
https://marcotcr.github.io/lime/tutorials/Lime%20-%20basic%20usage%2C%20two%20class%20case.html

LIME can have issues in terms of stability, and is also not “efficient”: The
contribution of the individual features, if added together, will not correspond to
the original prediction (it is, after all, just an approximation of the original model)

SHapley Additive exPlanations (SHAP)

Shapley values are an idea from game theory to distribute the profits from a
game among a coalition of (cooperative) participants in a way that is proportional
to their individual contribution.

SHapley Additive exPlanations (SHAP)

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Example: You (Player 1) and your friend (Player 2) enter a Kaggle competition,
and win $10,000. Your friend wants to split the money evenly, but you believe
you have superior ML skills and thus deserve a larger share. How should the
winnings be divided “fairly”?

SHapley Additive exPlanations (SHAP)

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Suppose you could go back in time and determine what your winnings would
have been if either of you had not been on the team. You determine the following
coalition values for different possible teams:

SHapley Additive exPlanations (SHAP)

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Player 1 deserves
more. But how to split?

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Player 1 deserves more. But how to split?

Idea: compute the expected marginal contribution of each player. That is,
compute the weighted average of each player’s contribution to all coalitions that
they could join. (This is a lot of words, but not much going on)

SHapley Additive exPlanations (SHAP)

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Player 1 deserves more. But how to split?

Example: Player 1 could join a coalition with Player 2, or Player 1 could join a
“coalition” with the empty set:

SHapley Additive exPlanations (SHAP)

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Player 1 deserves more. But how to split?

Example: Same for Player 2:

Note: sum of players’ contributions adds to the total (10,000)

SHapley Additive exPlanations (SHAP)

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Can generalize this to any number of players:

SHapley Additive exPlanations (SHAP)

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

(wikipedia)

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Example for three players: suppose we have the following coalition values:

SHapley Additive exPlanations (SHAP)

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

What is the marginal contribution of Player 1?

SHapley Additive exPlanations (SHAP)

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Different ways of forming a three-player coalition:

SHapley Additive exPlanations (SHAP)

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Summary: The marginal contributions of Player i are weighted by the probability
that they make that contribution. The contributions are then weighted by this
probability. In this way, we’re computing the expected marginal contribution of
each player.

SHapley Additive exPlanations (SHAP)

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Axioms: The Shapley value is the only “efficient” value that satisfies the
following axioms:

Symmetry: Two players are considered “interchangeable” if they make the same
contributions to all coalitions. If two players are interchangeable they should be
given an equal share of the game’s total value.

Null player property: If a player makes zero marginal contribution to all
coalitions then they get none of the total value.

Additivity: If we combine two (independent) games, then a player’s contribution
is the sum of contributions for the two individual games.

SHapley Additive exPlanations (SHAP)

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

How does this apply to ML?

Value of a game → model prediction

Players → feature values

(we’ll refer to “feature values” as “features” but note that it is the values and not
the features that contribute to the outcome)

From Shapley to SHAP

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Example: suppose we want to predict income from age (feature 1) and degree
(feature 2):

From Shapley to SHAP

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Example: suppose we want to predict income from age (feature 1) and degree
(feature 2).

Also need to assume a distribution over feature values:

From Shapley to SHAP

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Example: suppose we want to predict income from age (feature 1) and degree
(feature 2).

Q: What is the value of a “coalition” containing both feature (values)?

From Shapley to SHAP

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Q: What is the value of a “coalition” containing just the first feature?

A: Need to marginalize over the second feature:

From Shapley to SHAP

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Q: What is the marginal contribution of feature 2 to a coalition containing feature
1 (i.e., the contribution of “degree=1” to the prediction)?

From Shapley to SHAP

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

(to compute the Shapley value, still need to compute the contribution of feature 2
to a coalition containing no features, which would require marginalizing twice;
but let’s not!)

From Shapley to SHAP

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Axioms: In the context of ML, the Shapley value satisfies the following
properties/axioms:

Efficiency: (previously: the value of a game is divided among its players) For ML,
the prediction is divided among its features. Specifically, the sum of all Shapley
values and the average predicted value is equal to the observation’s prediction:

From Shapley to SHAP

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Axioms: In the context of ML, the Shapley value satisfies the following properties/axioms:

Symmetry: Two features will have the same Shapley value if they make the same contributions
to all coalitions.

Dummy: A feature will have a Shapley value of 0 if it never changes the prediction. In other
words, features that are not used in a model will not have a Shapley value.

Additivity: (for ensemble models) The overall Shapley value can be calculated by taking the
weighted average of Shapley values for each model in the ensemble.

Consistency: If, in a new model, a feature increases a prediction more than before, then its
Shapley value will increase. Thus we can compare feature contributions across different models.

From Shapley to SHAP

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Calculating exact Shapley values is computationally expensive! Complexity
increases combinatorially as we add more features. So we’d like some way to
approximate them.

One way we could approximate them is via sampling:

● Sample the feature values at random (recall that we know their distribution)
● Compare the prediction with the given feature value (+i) to predictions with

other (random) feature values:

Approximation of Shapley values

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

This type of approximation scheme is still impractical

The original SHAP paper (“A Unified Approach to Interpreting Model
Predictions”) describes various other approximation schemes (arguably, this is
the paper’s main contribution), though these are significantly more involved

The popularity of the above techniques owes largely to the success of these
approximations, and their efficient implementation via the SHAP Python package.

Code example (SHAP Python package): https://github.com/shap/shap

Approximation of Shapley values

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://github.com/shap/shap
https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

Note: the above section covers most of what’s in the original SHAP paper (“A
Unified Approach to Interpreting Model Predictions”, i.e., the paper which applies
these ideas to ML, rather than the original paper describing Shapley values). But
the treatment there is not so easy, so the presentation is based on the article
linked below.

SHAP

based on https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b

LIME and SHAP depend on perturbation of the input; it is possible to create
adversarial models that appear ethical when explained using perturbed inputs
but which are not ethical when evaluated without perturbation

As such, these models are only functionally-grounded as long as the model is
trained without malicious intent

If curious see: https://arxiv.org/pdf/2108.04840, https://arxiv.org/pdf/1911.02508

Adversarial attacks on LIME and SHAP

https://arxiv.org/pdf/2108.04840
https://arxiv.org/pdf/1911.02508

Study points & take-homes

● Introduced LIME and SHAP
● Briefly discussed some of their limitations

Interpretable and
explainable ML

Case-study: Concept bottleneck models

Concept bottleneck models

Rather than training a model to directly predict some outcome (e.g. "does this x-
ray indicate arthritis?"), force the model to predict via intermediate human-
provided "concepts" (e.g. "has bone spurs")

The goal is not only to make the model more inherently interpretable, but also
supports manipulation: e.g. we can query the model about what it would have
predicted if bone spurs had been identified

see https://slideslive.com/38928546/concept-bottleneck-models

https://slideslive.com/38928546/concept-bottleneck-models

Concept bottleneck models

Black-box model (image → prediction): not interpretable

see https://slideslive.com/38928546/concept-bottleneck-models

https://slideslive.com/38928546/concept-bottleneck-models

Concept bottleneck models

see https://slideslive.com/38928546/concept-bottleneck-models

Want the model to explain its predictions

https://slideslive.com/38928546/concept-bottleneck-models

Concept bottleneck models

Idea: explain predictions in terms of human-provided concepts

see https://slideslive.com/38928546/concept-bottleneck-models

https://slideslive.com/38928546/concept-bottleneck-models

Concept bottleneck models

see https://slideslive.com/38928546/concept-bottleneck-models

Want to be able to “manipulate” the model, and ask what it would have
predicted, given a different intermediate label

https://slideslive.com/38928546/concept-bottleneck-models

Concept bottleneck models

Idea: force predictions through a “bottleneck” of intermediate concepts

see https://slideslive.com/38928546/concept-bottleneck-models

https://slideslive.com/38928546/concept-bottleneck-models

Concept bottleneck models

Ways to train:

Independent:

Sequential:

Joint:

Standard (no concepts):

see https://slideslive.com/38928546/concept-bottleneck-models

https://slideslive.com/38928546/concept-bottleneck-models

Concept bottleneck models

Some findings:

● Fairly competitive with standard models (though this is dependent on a
dataset with sufficiently rich concepts)

● Not much trade-off between label accuracy and concept error (i.e., tuning the
model such that accuracy is high doesn’t make concept error low and vice
versa) (is this surprising?)

see https://slideslive.com/38928546/concept-bottleneck-models

https://slideslive.com/38928546/concept-bottleneck-models

Concept bottleneck models

Some findings:

● Training an end-to-end model,
and trying to recover concepts
from the trained model leads
to low concept accuracy

food for thought: would this
be true if we had much larger
unlabeled (i.e., no concepts)
datasets?

see https://slideslive.com/38928546/concept-bottleneck-models

https://slideslive.com/38928546/concept-bottleneck-models

Concept bottleneck models

Limitations:

● Need to have datasets with useful concepts; on the one hand this may be
required to meaningfully interpret models anyway; on the other hand,
accuracy may be limited compared to those possible with bigger unlabeled
(no concepts) datasets

see https://slideslive.com/38928546/concept-bottleneck-models

https://slideslive.com/38928546/concept-bottleneck-models

Interpretable and
explainable ML

4.7: How should explanations be evaluated?

This section

● A few words about how explanations should be evaluated in practice
● Somewhat outside the scope of this class (e.g. human subject experiments);

mostly just a reference to Doshi-Valez, 2017:
https://arxiv.org/pdf/1702.08608

Application-grounded evaluation: real humans, real
tasks
If researchers have a concrete application in mind, such as diagnosing patients with
a disease, the best way to show that the model works is to evaluate it with respect to
the task: doctors performing diagnoses

This reasoning aligns with evaluation in human-computer interaction and
visualization; e.g. a homework-hint system is evaluated on whether the student
achieves better post-test performance (Williams et al., 2016)

Examples of experiments include:
● Domain expert experiment with the exact application task
● Domain expert experiment with a simpler or partial task to shorten experiment

time and increase the pool of potentially-willing subjects

from https://arxiv.org/pdf/1702.08608

https://arxiv.org/pdf/1702.08608

Human-grounded metrics: real humans, simplified tasks

Human-grounded evaluation is about conducting simpler human-subject
experiments that maintain the essence of the target application; this is appealing
when experiments are challenging/expensive, since evaluations can be
completed with laypeople

The key question is how to evaluate the quality of an explanation without a
specific end-goal: ideally, our evaluation approach will depend only on the
quality of the explanation, regardless of (e.g.) the correctness of the associated
prediction

from https://arxiv.org/pdf/1702.08608

https://arxiv.org/pdf/1702.08608

Human-grounded metrics: real humans, simplified tasks

Example experiments include:

● Binary forced choice: humans are presented with pairs of explanations and must choose the
one that they find of higher quality

● Forward simulation/prediction: humans are presented with an explanation and an input, and
must correctly simulate the model’s output

● Counterfactual simulation: humans are presented with an explanation, an input, and an
output, and are asked what must be changed to change the method’s prediction to a desired
output

E.g. intrusion-detection tests (Chang et al., 2009) in topic models ask humans to find the
difference between the model’s true output and some corrupted output as a way to determine
whether the human has correctly understood what the model’s true output is

from https://arxiv.org/pdf/1702.08608

https://arxiv.org/pdf/1702.08608

Functionally-grounded evaluation: no humans, proxy
tasks
Functionally-grounded evaluation requires no human experiments; instead, it
uses some formal definition of interpretability as a proxy for explanation quality

Functionally-grounded evaluations are most appropriate if we have a class of
models that have already been validated, e.g. via human-grounded experiments;
they may also be appropriate when a method is not yet mature or when human
subject experiments are unethical

The challenge is to determine what proxies to use; for example, decision trees
have been considered interpretable in many situations (Freitas, 2014)

from https://arxiv.org/pdf/1702.08608

https://arxiv.org/pdf/1702.08608

Functionally-grounded evaluation: no humans, proxy
tasks
Examples of experiments include

● Show the improvement of prediction performance of a model that is already
proven to be interpretable (assumes that someone has run human
experiments to show that the model class is interpretable).

● Show that one’s method performs better with respect to certain regularizers—
for example, is more sparse—compared to other baselines (assumes someone
has run human experiments to show that the regularizer is appropriate).

from https://arxiv.org/pdf/1702.08608

https://arxiv.org/pdf/1702.08608

Interpretable and
explainable ML

4.8: Explainability of image classifiers

This section

● A few words about explainability of image classifiers in terms of individual
pixels

● Also somewhat outside the scope of this class; mostly just pointing to
related references

Saliency maps – “vanilla” gradients

Which pixels in an image contribute to our prediction that it belongs to a certain
class?

● SHAP and LIME generate such explanations by manipulating parts of the
image (e.g. occlusion)

● They are model-agnostic: explanations are based on manipulating the
image, rather than analysis of the model

based on https://christophm.github.io/interpretable-ml-book/pixel-attribution.html

https://christophm.github.io/interpretable-ml-book/pixel-attribution.html

Saliency maps

Here we’ll look at gradient-based methods:

● Roughly, gradient-based methods tell us how relevant is a particular pixel to
the classification of an image

● Specifically, how much will a change in a pixel cause a change in a
prediction?

based on https://christophm.github.io/interpretable-ml-book/pixel-attribution.html

https://christophm.github.io/interpretable-ml-book/pixel-attribution.html

Saliency maps

Motivating example:

Consider a linear classifier which given a class c assigns a score S_c(I) to an
image I (or image features):

(i.e., a regular old linear model). Here, the weights w_c would directly correspond
to the importance of the corresponding features.

see https://arxiv.org/pdf/1312.6034

https://arxiv.org/pdf/1312.6034

Saliency maps

But in practice, our score function S_c(I) will be highly non-linear. Instead, let’s
compute the first-order taylor expansion with respect to a particular point (i.e.,
image) I_0, i.e.,

see https://arxiv.org/pdf/1312.6034

https://arxiv.org/pdf/1312.6034

Saliency maps

That’s about it! Other minor
details, e.g. should we
visualize the absolute value
or should we visualize
positive and negative values
differently?

see https://arxiv.org/pdf/1312.6034

images and their
saliency maps for top-
1 predicted class:

https://arxiv.org/pdf/1312.6034

Saliency maps

see https://arxiv.org/pdf/1704.02685

Problem: certain commonly-used activation functions in neural networks will not
respond to perturbations (i.e., they’ll have zero gradient)

ReLU
Once i_1 = 1 and i_2 = 1,
perturbing the other value to
zero won’t change the output
(so we’d erroneously conclude
that those values aren’t related
to the label)

https://arxiv.org/pdf/1704.02685

Saliency maps – DeconvNet

see https://arxiv.org/pdf/1704.02685

Very roughly speaking, generalizes
the “vanilla” gradient-based method
by using a different choice to
backpropagate the gradient through
ReLU.

(if anyone can adequately distill the
idea of this paper into one slide, let me
know!)

See also e.g. GradCAM

https://arxiv.org/pdf/1704.02685

Interpretable and
explainable ML

4.9: Explainability of language models

This section

● Discuss how language models might be evaluated (mostly not generative
language models though)

● Mostly an extended case-study of a specific survey paper

Explainability of language models

We’ll mostly cover the paper “Post-hoc Interpretability for Neural NLP”
(https://arxiv.org/pdf/2108.04840), which covers only post-hoc interpretability,
and mostly covers local methods

https://arxiv.org/pdf/2108.04840

Very brief introduction to NLP concepts

● Bag-of-words models
● Cosine distance

I’ll spend almost no time on these so please revise if needed!

(but they’re only needed for a few examples so please keep paying attention
even if you miss those parts!)

Bag-of-words models

Q: How should I represent the
following piece of text using a
fixed-length feature vector?

Dark brown with a light tan
head, minimal lace and low
retention. Excellent aroma of
dark fruit, plum, raisin and red
grape with light vanilla, oak,
caramel and toffee. Medium
thick body with low carbonation.
Flavor has strong brown sugar
and molasses from the start
over bready yeast and a dark
fruit and plum finish. Minimal
alcohol presence. Actually, this
is a nice quad.

Bag-of-words models

Q: How should I represent the
following piece of text using a
fixed-length feature vector?

A: Vector counting which
dictionary words occur:

[3, 6, 0, 0, ….]

Dark brown with a light tan
head, minimal lace and low
retention. Excellent aroma of
dark fruit, plum, raisin and red
grape with light vanilla, oak,
caramel and toffee. Medium
thick body with low carbonation.
Flavor has strong brown sugar
and molasses from the start
over bready yeast and a dark
fruit and plum finish. Minimal
alcohol presence. Actually, this
is a nice quad.a and

Bag-of-words models

Note: randomly shuffling words preserves the bag-of-words representation
(roughly, this is why it’s called a “bag of words”):

Dark brown with a light tan head,
minimal lace and low retention.
Excellent aroma of dark fruit, plum,
raisin and red grape with light vanilla,
oak, caramel and toffee. Medium thick
body with low carbonation. Flavor has
strong brown sugar and molasses from
the start over bready yeast and a dark
fruit and plum finish. Minimal alcohol
presence. Actually, this is a nice quad.

yeast and minimal red body thick light
a Flavor sugar strong quad. grape over
is molasses lace the low and caramel
fruit Minimal start and toffee. dark
plum, dark brown Actually, alcohol
Dark oak, nice vanilla, has brown of a
with presence. light carbonation.
bready from retention. with finish. with
and this and plum and head, fruit, low
a Excellent raisin aroma Medium tan

Bag-of-words models

Lots of details to get right to actually implement this:

● How to keep the dictionary to a manageable size
● How to handle capitalization, punctuation, stopwords, stemming, etc.
● How to capture any notion of syntax (e.g. bags-of-ngrams), and when is this

necessary

For more detail refer to my other class notes (158/258), or textbook (or pretty
much any NLP class)

Motivating example

Predict the sentiment (positive or negative) of the sentence x:

from https://arxiv.org/pdf/2108.04840

input labelprediction

https://arxiv.org/pdf/2108.04840

Local explanations

Predict the sentiment (positive or negative) of the sentence x:

● Which tokens (words) are most important for the prediction [input features]?
● What would break the model’s predictions [adversarial examples]?
● What training examples influenced the prediction [influential examples]?
● What does the model consider a valid opposite example [counterfactuals]?
● What would a generated natural language explanation be?

from https://arxiv.org/pdf/2108.04840

https://arxiv.org/pdf/2108.04840

Local explanations – input features

Before getting sophisticated: for this task we could straightforwardly visualize
the features of a linear model

from https://arxiv.org/pdf/2108.04840

https://arxiv.org/pdf/2108.04840

Local explanations – input features

Which tokens (words) are most important
for the prediction (input features)?

● Similar to gradient-based explanations
of images (saliency maps)

● One complication: “pixels” in an image
don’t easily map to “words” in a
document

from https://arxiv.org/pdf/2108.04840

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

https://arxiv.org/pdf/2108.04840

Local explanations

Which tokens (words) are most important for the prediction [input features]?

● Think of the bag-of-words representation like a 2-d image
● Take the norm across the vocabulary dimension

from https://arxiv.org/pdf/2108.04840

https://arxiv.org/pdf/2108.04840

Local explanations

This will work, though has some of the same problems as with image saliency
maps:

● Important areas may have zero gradients; as with image models different
techniques can be used to resolve issues with ReLU activation etc.

● Since we took the norm across the vocabulary dimension, gradients no
longer have a direction (as compared to image models)

from https://arxiv.org/pdf/2108.04840

https://arxiv.org/pdf/2108.04840

Local explanations – LIME

We can also use LIME (or SHAP) to explain predictions of language models. As
before we need to:

● Sample nearby observations to x
● Train a linear model on those observations
● Visualize

Q: How should we sample “nearby” observations for language data?

from https://arxiv.org/pdf/2108.04840

https://arxiv.org/pdf/2108.04840

Local explanations – LIME

Q: How should we sample “nearby” observations for language data?

A: Cosine similarity

from https://arxiv.org/pdf/2108.04840

https://arxiv.org/pdf/2108.04840

Local explanations – LIME

from https://arxiv.org/pdf/2108.04840

https://arxiv.org/pdf/2108.04840

Local explanations – LIME

from https://arxiv.org/pdf/2108.04840

Notes:

● Cosine similarity of Bag-of-Words vectors (or variants) aren’t great
measures of semantic similarity (though can use alternatives)

● Can also mask tokens in x, for models which support masking
● Same ideas can mostly be applied to SHAP

https://arxiv.org/pdf/2108.04840

Briefly: another simple local explanation method consists of retrieving similar
examples from the training set; one can retrieve similar examples with both the
same and differente labels:

(see paper for several implementations with specific influence functions) “influence”

Local explanations – similar examples

from https://arxiv.org/pdf/2108.04840

https://arxiv.org/pdf/2108.04840

Adversarial examples

from https://arxiv.org/pdf/2108.04840

An adversarial example is an input that causes the model to produce a wrong
prediction due to limitations of the model

These are often generated by perturbing an existing example for which the
model produces a correct prediction

These can be relevant as explanations in the sense that they reveal the
underlying “logic” and limitations of the model

https://arxiv.org/pdf/2108.04840

Adversarial examples – HotFlip

from https://arxiv.org/pdf/2108.04840

Basic idea: replace words in a sentence with “similar” words (high cosine
similarity) that significantly change the prediction

In practice this is implemented by computing gradients:

perturbed input with single token
(v->\hat{v}) change

derivative of loss w.r.t. single
token

https://arxiv.org/pdf/2108.04840

Adversarial examples – HotFlip

from https://arxiv.org/pdf/2108.04840

This would trivially end up just replacing positive words by very negative ones
(for positively labeled sentences) and vice versa

To make sure the model selects paraphrases (i.e., words that will change the
prediction but leave the meaning unchanged), the model constrains the cosine
similarity between original and replaced tokens to be > 0.8

https://arxiv.org/pdf/2108.04840

Adversarial examples – HotFlip

from https://arxiv.org/pdf/2108.04840

adversarial
example

https://arxiv.org/pdf/2108.04840

That’s about enough! Lots more in paper

from https://arxiv.org/pdf/2108.04840

● Anchors: find short lists of words most relevant for making predictions (fairly
similar to LIME etc., but not gradient-based)

● Semantically equivalent adversaries: similar to HotFlip, but uses a
“paraphrasing model” to produce paraphrases rather than cosine similarity

● Counterfactual explanations:

https://arxiv.org/pdf/2108.04840

References for Module 4

● Interpretable Machine Learning: https://christophm.github.io/interpretable-ml-
book/

● A survey on XAI and natural language explanations:
https://sentic.net/explainable-artificial-intelligence.pdf

● The mythos of model interpretability: https://arxiv.org/abs/1606.03490
● Introduction to Machine Learning:

https://courses.cs.washington.edu/courses/cse416/
● From Shapley to SHAP: https://towardsdatascience.com/from-shapley-to-shap-

understanding-the-math-e7155414213b
● Concept Bottleneck Models: https://slideslive.com/38928546/concept-

bottleneck-models
● Post-hoc Interpretability for Neural NLP: https://arxiv.org/pdf/2108.04840

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://sentic.net/explainable-artificial-intelligence.pdf
https://arxiv.org/abs/1606.03490
https://courses.cs.washington.edu/courses/cse416/
https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b
https://towardsdatascience.com/from-shapley-to-shap-understanding-the-math-e7155414213b
https://slideslive.com/38928546/concept-bottleneck-models
https://slideslive.com/38928546/concept-bottleneck-models
https://arxiv.org/pdf/2108.04840

	Slide 1: Fairness, bias, and transparency in Machine Learning
	Slide 2: This module
	Slide 3: Interpretable and explainable ML
	Slide 4: This section
	Slide 5: “Black box” machine learning models
	Slide 6: Why do we want models that offer explanations?
	Slide 7: Categorization of interpretability techniques
	Slide 8: Categorization of interpretability techniques
	Slide 9: Categorization of interpretability techniques
	Slide 10: Categorization of interpretability techniques
	Slide 11: What are desirable properties of interpretable models?
	Slide 12: What are desirable properties of interpretable models?
	Slide 13: What are desirable properties of interpretable models?
	Slide 14: What are desirable properties of interpretable models?
	Slide 15: What are desirable properties of interpretable models?
	Slide 16: What are desirable properties of interpretable models?
	Slide 17: What are desirable properties of interpretable models?
	Slide 18: Summary
	Slide 19: Main resources
	Slide 20: Interpretable and explainable ML
	Slide 21: The mythos of model interpretability
	Slide 22: Desiderata
	Slide 23: Desiderata
	Slide 24: Properties of interpretable models – transparency
	Slide 25: Properties of interpretable models – transparency
	Slide 26: Properties of interpretable models – transparency
	Slide 27: Discussion
	Slide 28: Discussion
	Slide 29: Discussion
	Slide 30: Properties of interpretable models
	Slide 31: Interpretable and explainable ML
	Slide 32: This section
	Slide 33: A little about regression diagnostics
	Slide 34: Mean, Variance, and MSE
	Slide 35: R^2 statistic
	Slide 36: Interpreting the weights of a linear model
	Slide 37: Interpreting the weights of a linear model
	Slide 38: Interpreting the weights of a linear model
	Slide 39: Interpreting the weights of a linear model
	Slide 40: Interpretable and explainable ML
	Slide 41: This section
	Slide 42: Significance testing
	Slide 43: Motivating example
	Slide 44: Motivating example
	Slide 45: Motivating example
	Slide 46: Motivating example
	Slide 47: “Stats textbook” (or wikipedia!) example
	Slide 48: “Stats textbook” (or wikipedia!) example
	Slide 49: “Stats textbook” (or wikipedia!) example
	Slide 50: More complex example
	Slide 51: More complex example
	Slide 52: More complex example
	Slide 53: More complex example
	Slide 54: More complex example
	Slide 55: T-test
	Slide 56: What about for models?
	Slide 57: What about for models?
	Slide 58: What about for model coefficients?
	Slide 59: What about for model coefficients?
	Slide 60: What about for model coefficients?
	Slide 61: What about for model coefficients?
	Slide 62: What about for model coefficients?
	Slide 63: Explaining predictions using weight plots & effect plots
	Slide 64: Explaining predictions using weight plots & effect plots
	Slide 65: Explaining predictions using weight plots & effect plots
	Slide 66: Explaining predictions using weight plots & effect plots
	Slide 67: Explaining predictions using weight plots & effect plots
	Slide 68: Do linear models make for “good” explanations?
	Slide 69: Odds ratio (logistic regression)
	Slide 70: Odds ratio (logistic regression)
	Slide 71: Odds ratio (logistic regression)
	Slide 72: Odds ratio (logistic regression)
	Slide 73: Odds ratio (logistic regression)
	Slide 74: Study points & take-homes
	Slide 75: Interpretable and explainable ML
	Slide 76: This section
	Slide 77: Reminder: regularization
	Slide 78: Reminder: regularization
	Slide 79: Reminder: regularization
	Slide 80: Reminder: regularization
	Slide 81: Reminder: regularization
	Slide 82: Reminder: regularization
	Slide 83: Code example: housing prices
	Slide 84: Code example: housing prices
	Slide 85: Code example: housing prices
	Slide 86: Code example: housing prices
	Slide 87: Code example: housing prices
	Slide 88: Code example: housing prices
	Slide 89: Elastic net regularization
	Slide 90: Code example: housing prices
	Slide 91: Sparse models
	Slide 92: Study points & take-homes
	Slide 93: Interpretable and explainable ML
	Slide 94: This section
	Slide 95: Today
	Slide 96: Why do variable selection?
	Slide 97: Feature selection versus parameter significance
	Slide 98: Ablation tests
	Slide 99: Ablation tests – code example
	Slide 100: Variable selection
	Slide 101: Variable selection – code example
	Slide 102: Code example: housing prices
	Slide 103: Code example: housing prices
	Slide 104: Code example: housing prices
	Slide 105: Code example: housing prices
	Slide 106: Code example: housing prices
	Slide 107: Code example: housing prices
	Slide 108: Code example: housing prices
	Slide 109: Code example: housing prices
	Slide 110: Code example: housing prices
	Slide 111: (better example that I couldn’t reproduce!)
	Slide 112: (better example that I couldn’t reproduce!)
	Slide 113: Variable selection – code example
	Slide 114: Code example: housing prices
	Slide 115: Forward selection
	Slide 116: Forward selection
	Slide 117: Backward selection
	Slide 118: Backward selection
	Slide 119: Forward and backward selection
	Slide 120: Forward and backward selection
	Slide 121: Study points & take-homes
	Slide 122: Interpretable and explainable ML
	Slide 123: This section
	Slide 124: Model agnostic methods
	Slide 125: Explaining the predictions of any classifier (LIME)
	Slide 126: Explaining the predictions of any classifier (LIME)
	Slide 127: Explaining the predictions of any classifier (LIME)
	Slide 128: Explaining the predictions of any classifier (LIME)
	Slide 129: Explaining the predictions of any classifier (LIME)
	Slide 130: Explaining the predictions of any classifier (LIME)
	Slide 131: Explaining the predictions of any classifier (LIME)
	Slide 132: Explaining the predictions of any classifier (LIME)
	Slide 133: SHapley Additive exPlanations (SHAP)
	Slide 134: SHapley Additive exPlanations (SHAP)
	Slide 135: SHapley Additive exPlanations (SHAP)
	Slide 136: SHapley Additive exPlanations (SHAP)
	Slide 137: SHapley Additive exPlanations (SHAP)
	Slide 138: SHapley Additive exPlanations (SHAP)
	Slide 139: SHapley Additive exPlanations (SHAP)
	Slide 140: SHapley Additive exPlanations (SHAP)
	Slide 141: SHapley Additive exPlanations (SHAP)
	Slide 142: SHapley Additive exPlanations (SHAP)
	Slide 143: SHapley Additive exPlanations (SHAP)
	Slide 144: SHapley Additive exPlanations (SHAP)
	Slide 145: SHapley Additive exPlanations (SHAP)
	Slide 146: From Shapley to SHAP
	Slide 147: From Shapley to SHAP
	Slide 148: From Shapley to SHAP
	Slide 149: From Shapley to SHAP
	Slide 150: From Shapley to SHAP
	Slide 151: From Shapley to SHAP
	Slide 152: From Shapley to SHAP
	Slide 153: From Shapley to SHAP
	Slide 154: From Shapley to SHAP
	Slide 155: Approximation of Shapley values
	Slide 156: Approximation of Shapley values
	Slide 157: SHAP
	Slide 158: Adversarial attacks on LIME and SHAP
	Slide 159: Study points & take-homes
	Slide 160: Interpretable and explainable ML
	Slide 161: Concept bottleneck models
	Slide 162: Concept bottleneck models
	Slide 163: Concept bottleneck models
	Slide 164: Concept bottleneck models
	Slide 165: Concept bottleneck models
	Slide 166: Concept bottleneck models
	Slide 167: Concept bottleneck models
	Slide 168: Concept bottleneck models
	Slide 169: Concept bottleneck models
	Slide 170: Concept bottleneck models
	Slide 171: Interpretable and explainable ML
	Slide 172: This section
	Slide 173: Application-grounded evaluation: real humans, real tasks
	Slide 174: Human-grounded metrics: real humans, simplified tasks
	Slide 175: Human-grounded metrics: real humans, simplified tasks
	Slide 176: Functionally-grounded evaluation: no humans, proxy tasks
	Slide 177: Functionally-grounded evaluation: no humans, proxy tasks
	Slide 178: Interpretable and explainable ML
	Slide 179: This section
	Slide 180: Saliency maps – “vanilla” gradients
	Slide 181: Saliency maps
	Slide 182: Saliency maps
	Slide 183: Saliency maps
	Slide 184: Saliency maps
	Slide 185: Saliency maps
	Slide 186: Saliency maps – DeconvNet
	Slide 187: Interpretable and explainable ML
	Slide 188: This section
	Slide 189: Explainability of language models
	Slide 190: Very brief introduction to NLP concepts
	Slide 191: Bag-of-words models
	Slide 192: Bag-of-words models
	Slide 193: Bag-of-words models
	Slide 194: Bag-of-words models
	Slide 195: Motivating example
	Slide 196: Local explanations
	Slide 197: Local explanations – input features
	Slide 198: Local explanations – input features
	Slide 199: Local explanations
	Slide 200: Local explanations
	Slide 201: Local explanations – LIME
	Slide 202: Local explanations – LIME
	Slide 203: Local explanations – LIME
	Slide 204: Local explanations – LIME
	Slide 205: Local explanations – similar examples
	Slide 206: Adversarial examples
	Slide 207: Adversarial examples – HotFlip
	Slide 208: Adversarial examples – HotFlip
	Slide 209: Adversarial examples – HotFlip
	Slide 210: That’s about enough! Lots more in paper
	Slide 211: References for Module 4

