
Fairness, bias, and
transparency in Machine

Learning
Module 1: regression and classification

This module

● 1.1: Introduction to machine learning and regression
● 1.2: Linear regression
● 1.3: Feature engineering (briefly)
● 1.4: Gradient descent (very briefly)
● 1.5: Linear classification (logistic regression)
● 1.6: Exploring “interpretable” classifiers
● 1.7: Classifier evaluation
● 1.8: The learning pipeline (briefly)
● Case study: gender shades

(approx. 2 weeks)

Regression and
classification

1.1: Introduction to machine learning and regression

This section

● Informally introduce supervised learning via a few representative tasks
● Informally think about what potential fairness issues those tasks might

encounter

But I already saw this in XYZ class?

● I realize most people might have seen most of this content in another class,
but still have to cover the basics for those who haven’t

● I’ll try to cover it fairly quickly – faster than I do in my other classes
● The examples I give will relate specifically to fairness and bias issues in

regression and classification, so there should be some new content here
even for people who have seen regression and classification before

● Will also cover e.g. different classifiers and compare them in terms of
interpretability etc.

● That being said anyone is welcome to skip this content and come back
later, or watch the podcasts brush up on anything they missed

What is supervised learning?

Supervised learning is the process of trying to infer from labeled data the
underlying function that produced the labels associated with the data

What is supervised learning?

Given labeled training data of the form

Infer the function

What is supervised learning?

example task: income prediction

What is supervised learning?

example task: admissions outcomes

What is supervised learning?

example task: face recognition

What is supervised learning?

(self study) How does supervised learning differ from other types of machine
learning (unsupervised / semi-supervised)?

What does it mean to use “machine learning” to solve these tasks, as opposed to
using solutions based on heuristics, business logic, etc.

What are potential fairness issues in these tasks?

Income prediction:

● Predictions may be less accurate for certain groups that are less represented in
the data

● If used for downstream tasks (e.g. to approve home loans), predictions may
(indirectly) reflect biases

● In some contexts, use of the input variables (race, gender, etc.) may present legal
issues

● Predictions may reflect historical biases that are inconsistent with recent trends
● Certain features of the data (e.g. outliers) may lead to predictions that harm or

benefit certain groups (vague, but we’ll explore this example in this module!)

What are potential fairness issues in these tasks?

Admissions outcomes (or outcome prediction):

● Again, predictions may be less accurate for some groups based on historical
proportions, e.g. consider the model’s prediction for a popular school versus
one that has never been seen during training

● Some features may reflect cultural differences, e.g. wording or percentiles in
reference letters

● Reviewers may historically have had certain biases that are reflected in the
data

● etc.

What are potential fairness issues in these tasks?

Admissions outcomes (or outcome prediction):

● More exotic: reviewers decisions may be influenced by their recent decisions!

(case study for later)

from: https://cseweb.ucsd.edu/~jmcauley/pdfs/chi22.pdf

https://cseweb.ucsd.edu/~jmcauley/pdfs/chi22.pdf

What are potential fairness issues in these tasks?

Face recognition:

What are potential fairness issues in these tasks?

Face recognition:

from: https://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf

(case study
for later)

https://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf

How will “fair” ML differ from regular ML?

In addition to “data” and “labels”, we will (usually) also have some notion of a
sensitive attribute (or equivalently, a protected group/class)

● This attribute might be e.g. age / gender / skin tone / nationality, etc.
● Such an attribute is usually one (or more) of the features in the data and/or a

characteristic against which we want to measure outcomes
● We will usually consider this to be a binary attribute (e.g. “female” versus

“not female”)

How will “fair” ML differ from regular ML?

● Sometimes, sensitive attributes have restrictions around how they can be
used, e.g. colleges (in California) may not use race as a factor in admissions
decisions.

● This means we could not deploy a classifier that used race as a feature
● We could (maybe?) use the sensitive attribute when training our model and

selecting data, so long as that feature is not available at inference time
● In other applications (e.g. medicine), using the sensitive attribute is allowable

Sensitive attributes

Income prediction: age / gender / other demographic information

Admissions outcomes: age / gender / other demographic information

Face recognition: age / gender / other demographic information (but in this case
these are not features in the data, but rather prediction outcomes)

Sensitive attributes

We will use these attributes in various ways:

● To measure performance differences between groups (e.g. is a classifier less
accurate for females?)

● To modify the dataset or algorithm (e.g. to make data or outcomes more
“balanced” with respect to a particular group)

● To restrict what is available to an algorithm (e.g. in the event of legal
barriers to use of certain characteristics)

Study points & take-homes

● I’ll include these at the end of each module, use them to help recap the main
points!

● For now, just think about how lots of everyday ML problems can have
potential fairness considerations!

Regression and
classification

1.2: Linear regression

This section

● Introduce linear regression algorithms, and solutions to finding a line-of-
best fit

● Introduce the Mean Squared Error and related error metrics
● Explore some cases where fitting a model can result in a (qualitatively)

suboptimal solution
● (Informally) explore strategies to intervene, i.e., “fix” the model to get better

outcomes

Notation

To formalize the ideas we’ve introduced so far, let’s start with the following
problem variables:

Linear regression

Perhaps the simplest association we could assume between our features X and
our labels y would be a linear relationship, i.e., that the relationship between X
and y is defined as:

Linear regression

E.g. predict how long a user will play a video game for based on the length of
their review (this will demonstrate an example of bias!)

Linear regression

Code for this example: workbook1.ipynb (see course webpage)

Linear regression

● In this (pretty trivial) problem, our model nearly always overpredicts and
only underpredicts for occasional outlying instances

● Why is this bad?

Linear regression

● In this (pretty trivial) problem, our model nearly always overpredicts and
only underpredicts for occasional outlying instances

● Why does this happen?

What is actually being optimized?

When we fit our regressor we actually solved a problem of this form:

What is actually being optimized?

proof:

What is actually being optimized?

Why does such a model nearly always overpredict on our dataset?

What is actually being optimized?

(e.g. seismicity prediction)

What is actually being optimized?

(e.g. seismicity prediction)

What is actually being optimized?

● So, the model we fit is the best we could possibly do in terms of the MSE
● Put differently, interventions to “fix” this model will cause its MSE to be

worse
● But it is a “bad” model!

What sort of interventions might we apply to make this model “better”, and on
what basis would we argue that it’s better?

Note: statistical bias versus "bias"

● But I learned in my stats class that linear regression is an “unbiased
estimator”?!?

● This just means that, if model assumptions are satisfied, our procedure for
fitting the model parameters will estimate the true parameter values (in
expectation) (Q: can anyone word this better than me)

Some model interventions

Designing appropriate “fairness interventions” will be the goal of following
modules, but for now let’s think about the problem informally. E.g. we could:

1. Change what is being optimized: MSE vs MAE

(see workbook1 code)

Some model interventions

2. Remove outliers from the dataset

Some model interventions

3. Transform the features (or labels) to better correspond to the error
distribution

Some model interventions

4. Collect better features

Food for thought

What did we just do?

We just made our model work better for most of the samples by making it
worse for a minority of the samples (gamers!)

● Think of how this type intervention could be problematic in some scenarios!
● But: as outliers, they were getting fairly useless predictions anyway, so were

they really “harmed” by this intervention anyway?

Ultimately, these “quick and dirty” model interventions can be helpful but
highlight why the situation is more nuanced – and why we’ll need more
sophisticated interventions (and metrics)

Interpretability

What about model interpretability?

We’ll spend a large fraction of the course discussing interpretability, but for now,
let’s just think about the parameters of our linear model

Interpretability

Interpretability

Food for thought

Simple models (like linear models) might seem “interpretable” since we can
easily reason about their parameters

But this can easily be misleading due to the way parameters interact; is their
greater interpretability just an illusion?

If the model is not accurate, does it really matter whether it’s “interpretable” or
not?

Won’t really discuss now, but these will be the types of questions we examine in
the second half of the course

Anscombe’s quartet

(see workbook1.ipynb code)

Anscombe’s quartet

What’s the significance of all this?

● Models are approximations of data
● If we draw conclusions from models, those conclusions will probably be at

least as wrong as our models are!
● Specific models have certain assumptions and will poorly fit datasets that

violate those assumptions
● But that can be very hard to tell without looking at the data!

Study points & take-homes

● Discussed how particular modeling choices, such as the use of the MSE, are
due to underlying modeling assumptions

● In the example we showed, the “assumption” was about the shape of the
error distribution

● Data that violate these assumptions can lead to undesirable models (even
when using (statistically) “unbiased” estimators!); though this is just the first
of many potential issues

● Saw some heuristic intervention strategies, which (roughly) tried to better
align the data with model assumptions

Regression and
classification
1.3: Feature engineering

This section

● Explore strategies for feature engineering
● I mostly don’t want to spend too much time on this in this class, as it will

slow us down – so just want to give some pointers for self-revision (mostly,
see textbook: https://cseweb.ucsd.edu/~jmcauley/pml/pml_book.pdf)

https://cseweb.ucsd.edu/~jmcauley/pml/pml_book.pdf

Feature engineering – main points

1. Feature transformations
2. Binary and categorical features: one-hot encodings
3. Missing values
4. Temporal features
5. Transformation of output variables

These are all covered in the textbook, Section 2.3.1-2.3.5 (respectively)

Feature engineering – main points

1. Feature transformations

Linear models take the form:

That is they are linear in theta – we can still apply arbitrary transformations to
the features!

Feature engineering – main points

E.g. fitting a polynomial function
(from textbook, see also textbook

code samples)

Feature engineering – main points

2. Binary and categorical features: one-hot encodings

Suppose we want to encode e.g. job qualification as a function of gender. We
might want a model that looks something like:

How would we encode gender as a number?

Feature engineering – main points

2. Binary and categorical features: one-hot encodings

Naive encoding:

Feature engineering – main points

2. Binary and categorical
features: one-hot encodings

Our naive encoding works pretty
much out-of-the-box

Note that what we actually fit is
more like a bar plot than a “line”

Feature engineering – main points

2. Binary and categorical features: one-hot encodings

What if our features are not binary?

Naive encoding:

Feature engineering – main points

2. Binary and categorical features:
one-hot encodings

Naive encoding implies
relationships among the feature
values that don’t necessarily exist

Feature engineering – main points

2. Binary and categorical features: one-hot encodings

It sort of makes sense that this didn’t work: we want to fit four possible values,
but our model only has two parameters

Try a different encoding:

Feature engineering – main points

2. Binary and categorical features:
one-hot encodings

Model now has as many
parameters as there are feature
values

Feature engineering – main points

2. Binary and categorical features: one-hot encodings

● The above is called a one-hot encoding, and will show up when building
models based on all sorts of categorical features (though we’ll usually hide
these details)

● Can also have “multi-hot” encodings when multiple categories can be active
simultaneously, e.g. imagine a feature based on “nationality”

● Be careful with the details! E.g. to make sure feature dimensions aren’t
redundantly encoded – see textbook for details

Feature engineering – main points

3. Missing features

What should we do if certain features are (sometimes) missing?

With (e.g.) gender this was pretty easy – just make a dimension in our encoding
for “n/a”

But what about a numerical feature like income?

Feature engineering – main points

3. Missing features

Two commonly used options:

● Missing value imputation: replace any missing instances by a specific value,
e.g. by a population average or mode

Feature engineering – main points

3. Missing features

Two commonly used options:

● Missing value indicator: replace our feature with two features:

Feature engineering – main points

3. Missing features

Two commonly used options:

● Missing value indicator: replace our feature with two features, so that the
parameterized model becomes:

Feature engineering – main points

4. Temporal features

Suppose we want to predict a regression outcome (such as a rating) based on the
day of the week

Once again let’s try a naive encoding:

Feature engineering – main points

4. Temporal features

line of best fit with naive encoding:

Feature engineering – main points

4. Temporal features

Can just try a one-hot encoding again! E.g:

Feature engineering – main points

4. Temporal features

line of best fit with one-hot encoding:

Feature engineering – main points

5. Transformation of output variables

Consider for example trying to predict upvotes on reddit with a linear model

Feature engineering – main points

Feature engineering – main points

5. Transformation of output variables

Details of the dataset don’t matter too much: point is that the relationship
between features and the output variable is not linear – so at first glance we
might think it can’t be fit by a linear model

Looks a bit more like an exponential function, e.g.:

Feature engineering – main points

5. Transformation of output variables

Although the exponential function is not linear (in theta), the equation is
equivalent to:

Which is linear in theta!

Feature engineering – main points

Let’s fit this new model:

Looks much better, and (after we
transform the predictions back to
their original scale) has lower MSE
than the original model

Feature engineering – main points

Feature engineering is certainly not the main point of this course (hence why I
only spent ~10 slides on it), but we’ll apply these types of simple operations to
various models throughout the course

So, revise this material on your own (above examples are from the textbook:
https://cseweb.ucsd.edu/~jmcauley/pml/pml_book.pdf) if you’re behind on any of
this

https://cseweb.ucsd.edu/~jmcauley/pml/pml_book.pdf

Feature engineering

Code examples in textbook Chapter 2:
https://cseweb.ucsd.edu/~jmcauley/pml/code/chap2.html

https://cseweb.ucsd.edu/~jmcauley/pml/code/Chapter%202.ipynb

https://cseweb.ucsd.edu/~jmcauley/pml/code/chap2.html
https://cseweb.ucsd.edu/~jmcauley/pml/code/Chapter%202.ipynb

Study points & take-homes

Five feature engineering strategies to cover most situations:

1. Features can be arbitrarily transformed in linear models (even though
parameters cannot be)

2. One-hot encodings
3. Dealing with missing attributes
4. Dealing with temporally-evolving data
5. Transformation of output variables

Regression and
classification

1.4: Gradient descent

This section

● Define the gradient descent process
● Show how this process can be used to fit complex models

Fitting models with gradient descent

So far, when solving regression problems, we’ve looked for closed form
solutions. That is, we’ve set up a system of equations and attempted to solve
them for \theta.

As we begin to fit more complex models, a closed form solution may no longer
be available.

Fitting models with gradient descent

Gradient descent is an approach to search for the minimum value of a function,
by iteratively finding better solutions based on an initial starting point.

1. Start with an initial guess for θ
2. Compute the derivative $\partial / \partial \theta f(\theta)$. Here $f(\theta)$ is

the MSE (or whatever criterion we are optimizing) under our model θ
3. Update our estimate of \theta := \theta - \alpha \cdot f’(\theta)$
4. Repeat Steps (2) and (3) until convergence

Fitting models with gradient descent

Fitting models with gradient descent

If actually trying to implement such a model “from scratch”, main issues include:

● Given a particular starting point, the model may only achieve a local rather than a
global optimum. It might be important to come up with a good initial “guess” for
θ, or to investigate variants less susceptible to local minima.

● The step size must be chosen carefully. If α is too large, the procedure
may overshoot the minimum and obtain a worse solution during the next iteration

● “Convergence” is not well-defined. We might define it based on the change in
θ (or $f(\theta)$) between iterations, or we might use our validation set
(see later)

Linear regression via gradient descent

Let’s consider the example of minimizing the Mean Squared Error of a linear
model:

Linear regression via gradient descent

The derivative can be computed as follows:

Study points & take-homes

● Not much, this section is mostly here for completeness
● We will occasionally look at gradient-based methods in later modules, so try

to at least become comfortable with (the idea of) computing gradients of
objective functions with respect to particular parameters

Regression and
classification
1.5: Linear classification

This section

● Introduce classification
● Show how linear regression can be adapted to develop logistic regression
● Nothing on fairness issues yet (save this for a following section on classifier

evaluation)

Intro to classification

To develop regressors, we wanted to build a model f_θ whose estimates
$f_\theta(x_i)$ were as close as possible to the (real-valued) labels y_i

To develop classifiers, we might instead seek to associate positive values of $x_i
\cdot \theta$ with positive labels ($y_i = 1$), and negative values of $x_i \cdot
\theta$ with negative labels ($y_i = 0$).

Intro to classification

So our classifier would look like:

Intro to classification

We could then write down the accuracy associated with such a model:

Intro to classification

Sounds great! All we have to do is select the value of theta that maximizes the
accuracy of the classifier

Let’s try doing gradient ascent…

Intro to classification

Problem: the derivative is zero everywhere!

Intro to classification

Solution: sigmoid function

Logistic regression

Logistic regression treats the sigmoid function as a measure of the probability
that a sample has a particular label, i.e.,

Logistic regression

Assuming our samples are independent, we can then write down the probability
of our entire dataset (this is called the “likelihood”):

Logistic regression

We can now do gradient ascent! Take the log of the likelihood:

Logistic regression

And compute its derivative:

Logistic regression

Lots of other little details:

● Getting step-sizes etc. right
● Setting termination criteria correctly
● Initialization
● Dealing with local vs. global optima (more relevant as we explore more

complex models)

But in practice we’ll just let our library function do this for us!

Logistic regression

Once trained, we classify points according to:

Logistic regression

Code examples in textbook Chapter 3:

https://cseweb.ucsd.edu/~jmcauley/pml/code/chap3.html
https://cseweb.ucsd.edu/~jmcauley/pml/code/Chapter%203.ipynb

https://cseweb.ucsd.edu/~jmcauley/pml/code/chap3.html
https://cseweb.ucsd.edu/~jmcauley/pml/code/Chapter%203.ipynb

Study points & take-homes

● Likewise, mostly here for completeness: just want to make sure everyone
knows how at least one classifier works!

● Later, when we explore interventions (Module 3), we will explore how to
modify the objective functions of classifiers, so worth understanding at least
at a surface level

Regression and
classification

1.6: Exploring “interpretable” classifiers

This section

● Exploration of alternative classification techniques
○ Decision trees
○ Nearest neighbors
○ SVMs (maybe, probably skip if we’re more than two weeks in by now!)
○ Multilayer perceptrons (maybe)

● Generally, just exploring different ways a classifier can be built
● Informally, exploring whether these classifiers are “more interpretable” than

linear classification techniques

A few words about other classification techniques…

● Decision trees
● Nearest neighbors
● SVMs (maybe)
● Multilayer perceptrons (maybe)

Decision trees and nearest neighbors are intended to demonstrate that different types of
classifiers can have quite a different notion of “interpretability” compared to a linear classifier;

SVMs are intended to demonstrate that “good” classifiers depend on specific modeling
assumptions, which determine the classification boundary;

Multilayer perceptrons are included to introduce “neural” models and (later) to explore the notion
that neural models are “less interpretable” than other models

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

● Internal nodes test
attributes

● Leaf nodes assign a class
● Branches for each attribute

value
● Inputs are classified by

traversing the tree

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

● Decision trees can represent any function of the input attributes (though
could require exponentially many nodes to do so)

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

● Learning the simplest (smallest) decision tree is NP-complete (Hyafil &
Rivest ‘76)

● Instead will use greedy heuristics to create:
○ Start with an empty tree
○ Split on next best attribute
○ Recurse

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Q: How should we choose a good attribute to split?

E.g. for this subtree, should we split on x_1 or x_2?

x_1 x_2 y

T T T

T F T

T T T

T F T

F T T

F F F

F T F

F F F

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Q: How should we choose a good attribute to split?

E.g. for this subtree, should we split on x_1 or x_2?

A: treat counts at leaves as probability distributions so that
we can measure uncertainty

x_1 x_2 y

T T T

T F T

T T T

T F T

F T T

F F F

F T F

F F F

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Q: How should we choose a good attribute to split?

A: treat counts at leaves as probability distributions so that we can measure
uncertainty

A “good” split is one that makes us more certain about our classification:

● Deterministic (all true or all false) is good
● Uniform is bad
● What about something in between?

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf; also Vibhav Gogate

Entropy is a statistical measure of the level of uncertainty in an event:

● High entropy (entropy close to 1):
○ From a uniform-like distribution
○ Flat histogram
○ Sampled values are less predictable

● Low entropy (entropy close to 0):
○ Highly variable (peaks and valleys) distribution/histogram
○ Sampled values are more predictable

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Entropy formula:

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Entropy example: x_1 x_2 y

T T T

T F T

T T T

T F T

F T T

F F F

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

To split, we want to measure what the entropy will be if we split based on a
particular attribute. For this we measure the conditional entropy H(Y|X) of a
variable Y conditioned on X:

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Conditional entropy example: x_1 x_2 y

T T T

T F T

T T T

T F T

F T T

F F F

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Want to measure the information gain, i.e., the decrease in entropy (uncertainty)
after splitting:

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Overall algorithm:

● Start with an empty tree
● Split on next best attribute (feature) (e.g. information gain)

● Recurse

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

When should we stop?

● If all samples in a subset have the same label or attribute values, can stop
● What to do otherwise? What about e.g. stopping based on information gain?

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

● Instead we’ll generally fit a full tree
● Such a model will always get zero error on the training set (which is to say, it

will overfit!)
● So, we need some strategy for selecting “simple” trees, e.g. a fixed depth, or

a minimum number of samples per leaf

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

based on https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Much more to say about decision trees for those
interested (though not so relevant to this class!):

● E.g. fitting based on a threshold (i.e., dealing
with real-valued attributes)

● Random forest classifiers
● Can also be used for regression! (note:

cannot actually fit a linear function!)

https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf

Decision trees

Is a decision tree “more interpretable” than other types of classifier?

● Yes: following a path in a decision tree tells us exactly why an instance was
classified in a certain way

● Yes: decisions can be “decomposed” into multiple steps
● No (or, at least not more than any other classifier…): a small change in even a

single feature value may mean traversing a different part of the tree with very
different characteristics

● Is it more “human like” than a linear model?

(put differently: this is an example of a classifier with “built in” explainability, though
doesn’t exhibit the property that similar instances will be treated similarly)

Decision trees: food for thought

Does it have other desirable characteristics?

● Is it more “human like” than a linear model? If a doctor diagnoses a
condition, is their underlying thinking actually similar to a decision tree? Or is
it more like a linear (additive) model? Or neither?

● Does it give a user a means of “recourse” (see later)? E.g. if a user has their
loan denied, they might be able to see that this decision was based on an
income threshold, and know what income they’d need for the loan to be
approved; is this useful?

Nearest neighbors

Nearest neighbor classification:
classify a point according to:

Issues:

● Is a single neighbor reliable? (see:
k nearest neighbors)

● Is each feature equally important?
(see: weighted nearest neighbors)

example: “comps”in real estate

Nearest neighbors

Is a nearest neighbor classifier “more interpretable” than other types of classifier?

● Yes: unlike regression or a decision tree, it provides “real-world” exemplars
as evidence for a decision.

● No: provides no attribution of individual features to its decisions

Support Vector Machines

When we studied logistic regression, we fit a classification model of the form:

Like linear regression, the specific value of theta we fit depends on certain
modeling assumptions: different assumptions would lead to different models!

Support Vector Machines

E.g. where would logistic regression place the decision boundary for this dataset?

positive
examples negative

examples

Support Vector Machines

Where should it place the decision boundary?

positive
examples negative

examples

Support Vector Machines

The dataset is:

● Well-separated (for the most part)
● Has only a few ambiguous points in the middle
● Changing the predictions for those points in the middle means moving the

decision boundary a lot
● So: we might want a decision function that specifically focuses on the

“difficulty to classify” examples (which logistic regression does not)
● SVMs: directly optimize the number of misclassifications

Support Vector Machines

A classifier can be defined by a hyperplane (line):

Support Vector Machines

A classifier can be defined by a hyperplane (line):

Support Vector Machines

Not all lines are equally good

Support Vector Machines

support
vectors

● An SVM seeks the
classifier (in this case a
line) that is furthest
from the nearest points

● This can be written in
terms of a specific
optimization problem:

such that

Support Vector Machines

But: is finding such a separating hyperplane even possible?

Support Vector Machines

Or: is it actually a good idea?

Support Vector Machines

“Soft-margin” formulation:

want the margin to be
as wide as possible

while penalizing points on
the wrong side of it

such that

Support Vector Machines

● SVMs seek to find a hyperplane (in two dimensions, a line) that optimally
separates two classes of points

● The “best” classifier is the one that classifies all points correctly, such that
the nearest points are as far as possible from the boundary

● If not all points can be correctly classified, a penalty is incurred that is
proportional to how badly the points are misclassified (i.e., their distance
from this hyperplane)

Support Vector Machines

Is an SVM “more interpretable” than other types of classifier?

(probably not?)

It is fairer than logistic regression?

● Yes: optimizes the number of errors, so will tend to make more reasonable
predictions for the most marginal cases

● No: “confidence” score of an SVM (distance from boundary) doesn’t
correspond to a particularly meaningful concept, compared to a probability
score

Multilayer perceptron

The methods we’ve seen so far have interpretability at the cost of complexity.
But in practice classifiers may be more complex black box models:

(features) Home loan
denied

Multilayer perceptron

Multilayer perceptrons (MLPs) are a staple of neural networks, offering a way to learn
non-linear transformations and interactions among features.

Roughly, a ‘layer’ of an MLP transforms a vector of inputs to a (possibly lower
dimensional) vector of outputs; typically, outputs are related to inputs via a linear
transformation followed by a non-linear activation, e.g.:

Here x is a vector of input variables, f(x) is a vector of output variables, and M is a
learned matrix, such that each term in Mx is a weighted combination of the original
features in x.

Multilayer perceptron

While the above is just one layer of a multilayer perceptron, several such layers
can be ‘stacked’ in order for the network to learn complex non-linear functions.

Eventually, the final layer predicts some desired output, e.g. a regression or
classification objective. E.g. the final layer might take a weighted combination of
features from the previous layer:

i.e., similar to the output of a logistic regressor (for a classification task).

Multilayer perceptron

The multilayer perceptron might be visualized as follows:

(features) Home loan
denied

Multilayer perceptron

Q: How would our linear model look if we tried to visualize it this way?

Multilayer perceptron

Compared to a decision tree or a linear model, a multilayer perceptron (or other
“deep network”) might seem less interpretable

What criteria might support (or refute) that categorization?

Study points & take-homes

● For the purpose of this class, no need to study any of the above classifiers in
detail

● Instead, think generally about:
○ Different assumptions lead to different classifiers (and therefore, different decisions) given

the same data; thus, even our choice of classification function may be a source of bias or
unfairness;

○ How would you justify the choice of one classifier over another in the event that they led to
consequentially different decisions for some subgroup of people?

○ By what criteria would you call any of these classifiers “more interpretable” than others?

Regression and
classification
1.7: Classifier evaluation

Some definitions – mathematical notation

● Label:

● Prediction:

Evaluating classification models

Accuracy:

Error:

Evaluating classification models

Example: accuracy and error are not enough

True and false positives (and negatives)

● TP

● FP

● TN

● FN

True and false positives (and negatives) – rates

● TPR

● FPR

● TNR

● FNR

Balanced error rate

Optimizing the balanced error rate

Looking ahead: fairness interventions

This was (sort of…) a fairness intervention!

We improved the performance of the classifier with respect to a particular
group (individuals with a particular label) by modifying the training objective

More complex fairness interventions that we’ll see later will generally have the
same flavor (though will be more complex…)

Looking ahead: fairness interventions

This is (roughly speaking) what we’ll later call an “in-processing” intervention:

● Pre-processing: try to get fairer outcomes by modifying the dataset (before
training)

● In-processing: try to get fairer outcomes by modifying the training objective
(during training)

● Post-processing: try to get fairer outcomes by modifying the model’s
predictions (after training, or more simply during inference)

Looking ahead: fairness interventions

Note: we could have achieved a similar outcome via pre-processing:

● If we have N examples from the positive class and M examples from the
negative class (and suppose N > M)

● Build a new dataset that includes all samples from the larger (in this case,
positive) class, and randomly samples N instances from the smaller class
(i.e., so that some instances will be repeated)

● This would still optimize a balanced error rate

Looking ahead: fairness interventions

Exercise: what might a post-processing intervention look like?

Other metrics

ROC Curve

see e.g. https://afraenkel.github.io/fairness-book/content/07-score-functions.html

https://afraenkel.github.io/fairness-book/content/07-score-functions.html

Other metrics

Precision / recall / F1 / etc.

Looking ahead: fairness interventions

(we’ll come back to this later, and look at all sorts of interventions for different
settings and their relative advantages / disadvantages)

Other metrics

Precision / recall / F1 / etc.

These don’t show up much in this class, so I won’t spend time covering them.

For self study see https://cseweb.ucsd.edu/~jmcauley/pml/pml_book.pdf Section
3.3.3

https://cseweb.ucsd.edu/~jmcauley/pml/pml_book.pdf

What’s to come?

We’ll look at lots of metrics in the upcoming modules. Generally speaking, we’ll
want to compute metrics with respect to particular groups (e.g. female versus not
female) that exhibit a particular feature:

Example

Let’s build a synthetic datasets to explore error rates, and in particular explore
error rates by group (gender, in this example)

These type of “per group” metrics will form the basis of most of our fairness
metrics and interventions in the next module

Example – synthetic data generation

for sample in range(1000):

female = 1

if random.random() > 0.5: female = 0

qualified = 0

years_of_exp = random.random() * 10 # 0 to 10 years of

experience

if female:

if random.random() > 0.6 - years_of_exp*0.05: qualified = 1

else:

if random.random() > 0.5 - years_of_exp*0.05: qualified = 1

X.append([1,years_of_exp,female])

y.append(qualified)

Example

(walk through code example from workbook1)

Example

Need to address two issues when training a model:

● How do classifiers reproduce (or amplify!) biases from data?
● How can biases arise as a function of different features (e.g. if female

applicants generally have more/less experience than males), or as a function
of differences in group sizes (e.g. if 90% of applicants are male)?

Study points & take-homes

● Understand the difference between error types (FP vs FN)
● Understand how to express errors and evaluate classifiers in terms of rates

(TPR, TNR, etc.)
● Understand the rationale (and ideally, the definition) behind different error

metrics, including BER, AUC

Regression and
classification
1.8: The learning pipeline

This section

● Introduce generalization, overfitting, and underfitting
● Introduce the concept of model “complexity” and regularization
● Introduce validation sets and the idea of a machine learning “pipeline”
● Discuss the difference between the l1 and l2 norms
● Describe general guidelines implementing a model pipeline

Generalization, overfitting and underfitting

So far, when evaluating models, we considered training a model to predict labels y
from a dataset X; we then evaluated the model by comparing the predictions f(x_i) to
the labels y_i.

Critically, we’re using the same data to train the model as we’re using to evaluate it.

The risk in doing so is that our model may not generalize well to new data. For
example, fitting a dataset with an increasingly high-degree polynomial would
continue to lower the errors of the predictor.

Such models could fit the data very closely, but it is unclear whether they would
capture meaningful trends in the data.

Generalization, overfitting and underfitting

E.g. which function fits the data better?

Generalization, overfitting and underfitting

Need to address two issues when training a model:

1. We should not evaluate a model on the same data that was used to train it.
Rather we should use a held-out dataset (i.e., a test set).

2. Features that improve performance on the training data will not necessarily
improve performance on the held-out data.

Evaluating a model on held-out data gives us a sense of how well we can expect
that model to work ‘in the wild.’

This held-out data, known as a test set, measures how well our model can be
expected to generalize to new data.

Generalization, overfitting and underfitting

Overfitting occurs when our model works well on our training data, but does not
generalize well to held-out (test) data

Underfitting occurs when our model is insufficiently complex to capture the
underlying dynamics in a dataset (meaning that both its training error and test
error are high)

Generalization, overfitting and underfitting

Q: But how can we detect overfitting or underfitting?

● (Just about) all models will work better on seen data compared unseen data,
so having worse performance on the training set doesn’t necessarily mean
we’ve overfit (i.e., there may be no model that generalizes better)

● Likewise, poor performance on the training set doesn’t necessarily mean
we’ve underfit: possibly no model is capable of fitting the data (based on the
available features)

A: We’ll need to try several models of varying complexity to find which one
generalizes best

Generalization, overfitting and underfitting

Study points & take-homes

● Try to reproduce the above plot! Concepts like underfitting and overfitting
should make intuitive sense, rather than being things you try to memorize

● Understand the functions of training, validation, and test sets
● Be able to implement a model fitting / regularization pipeline: if this is

totally new to you, I’d suggest going through the textbook (Personalized
Machine Learning) to brush up

Regression and
classification

Case study: Gender Shades

Goals

Face detection systems anecdotally seem to work poorly on faces of users from
underrepresented groups, either failing to detect a face entirely, or being more
likely to misgender the face of a user from an underrepresented group

How well do existing commercial solutions to face/gender classification systems
work, and how much do results differ as a function of gender or skin tone?

Classifiers are evaluated from IBM, Microsoft, and Face++ (Chinese dominant)

Dataset

To assess bias, the authors create a new dataset that is more balanced with
respect to characteristics of interest

new dataset

Dataset

Gender and skin tone are labeled manually, into 6 skin tone classes

Note that these datasets are small – as such they are suitable mostly for
evaluation but not for model training

Key findings:

● All systems (significantly!) less accurate for females

Key findings:

● Separating across skin tone, much of the performance degradation is for
darker-skinned females

Key findings:

● All classifiers perform better on male faces than female faces (8.1% − 20.6%
difference in error rate)

● All classifiers perform better on lighter faces than darker faces (11.8% −
19.2% difference in error rate)

● All classifiers perform worst on darker female faces (20.8% − 34.7% error
rate)

● Microsoft and IBM classifiers perform best on lighter male faces (error rates
of 0.0% and 0.3% respectively)

● Face++ classifiers perform best on darker male faces (0.7% error rate)
● The maximum difference in error rate between the best and worst classified

groups is 34.4%

Key findings:

● 95.9% of the faces misgendered by Face++ were those of female subjects

what does this look like in terms of error categories?

Key findings:

● 95.9% of the faces misgendered by Face++ were those of female subjects

& why should this happen?

Food for thought

● To what extent are findings aligned with dataset characteristics (i.e.,
performance outcomes are proportional to representation)?

● The authors wrote the paper to highlight an area where “companies should
do better”.
○ What would be a better outcome and what would be required to achieve that outcome?
○ What incentives do companies have to make these algorithms better?

Food for thought

● Face classification is not equivalent to (e.g.) recidivism prediction – mistakes
have much lower consequences

● In the case of recidivism prediction, we might make an argument that
lowering the overall accuracy of a classifier is “worth it” if it makes the
classifier substantially fairer with respect to certain subgroups

● Could we make a similar argument for face classification? What is a fair
trade in terms of the number of mistakes we would tolerate for male users in
order to increase the accuracy for female users?

References for Module 1

● Fairness & Algorithmic Decision Making: https://afraenkel.github.io/fairness-
book/

● A Survey on Bias and Fairness in Machine Learning:
https://dl.acm.org/doi/pdf/10.1145/3457607

● Fairness in Machine Learning: https://arxiv.org/pdf/2010.04053
● Gender Shades: Intersectional Accuracy Disparities in Commercial Gender

Classification. Buolamwini and Gebru, 2018
● Introduction to Machine Learning:

https://people.csail.mit.edu/dsontag/courses/ml16/

https://afraenkel.github.io/fairness-book/
https://afraenkel.github.io/fairness-book/
https://dl.acm.org/doi/pdf/10.1145/3457607
https://arxiv.org/pdf/2010.04053
https://people.csail.mit.edu/dsontag/courses/ml16/

	Slide 1: Fairness, bias, and transparency in Machine Learning
	Slide 2: This module
	Slide 3: Regression and classification
	Slide 4: This section
	Slide 5: But I already saw this in XYZ class?
	Slide 6: What is supervised learning?
	Slide 7: What is supervised learning?
	Slide 8: What is supervised learning?
	Slide 9: What is supervised learning?
	Slide 10: What is supervised learning?
	Slide 11: What is supervised learning?
	Slide 12: What are potential fairness issues in these tasks?
	Slide 13: What are potential fairness issues in these tasks?
	Slide 14: What are potential fairness issues in these tasks?
	Slide 15: What are potential fairness issues in these tasks?
	Slide 16: What are potential fairness issues in these tasks?
	Slide 17: How will “fair” ML differ from regular ML?
	Slide 18: How will “fair” ML differ from regular ML?
	Slide 19: Sensitive attributes
	Slide 20: Sensitive attributes
	Slide 21: Study points & take-homes
	Slide 22: Regression and classification
	Slide 23: This section
	Slide 24: Notation
	Slide 25: Linear regression
	Slide 26: Linear regression
	Slide 27: Linear regression
	Slide 28: Linear regression
	Slide 29: Linear regression
	Slide 30: What is actually being optimized?
	Slide 31: What is actually being optimized?
	Slide 32: What is actually being optimized?
	Slide 33: What is actually being optimized?
	Slide 34: What is actually being optimized?
	Slide 35: What is actually being optimized?
	Slide 36: Note: statistical bias versus "bias"
	Slide 37: Some model interventions
	Slide 38: Some model interventions
	Slide 39: Some model interventions
	Slide 40: Some model interventions
	Slide 41: Food for thought
	Slide 42: Interpretability
	Slide 43: Interpretability
	Slide 44: Interpretability
	Slide 45: Food for thought
	Slide 46: Anscombe’s quartet
	Slide 47: Anscombe’s quartet
	Slide 48: Study points & take-homes
	Slide 49: Regression and classification
	Slide 50: This section
	Slide 51: Feature engineering – main points
	Slide 52: Feature engineering – main points
	Slide 53: Feature engineering – main points
	Slide 54: Feature engineering – main points
	Slide 55: Feature engineering – main points
	Slide 56: Feature engineering – main points
	Slide 57: Feature engineering – main points
	Slide 58: Feature engineering – main points
	Slide 59: Feature engineering – main points
	Slide 60: Feature engineering – main points
	Slide 61: Feature engineering – main points
	Slide 62: Feature engineering – main points
	Slide 63: Feature engineering – main points
	Slide 64: Feature engineering – main points
	Slide 65: Feature engineering – main points
	Slide 66: Feature engineering – main points
	Slide 67: Feature engineering – main points
	Slide 68: Feature engineering – main points
	Slide 69: Feature engineering – main points
	Slide 70: Feature engineering – main points
	Slide 71: Feature engineering – main points
	Slide 72: Feature engineering – main points
	Slide 73: Feature engineering – main points
	Slide 74: Feature engineering – main points
	Slide 75: Feature engineering – main points
	Slide 76: Feature engineering
	Slide 77: Study points & take-homes
	Slide 78: Regression and classification
	Slide 79: This section
	Slide 80: Fitting models with gradient descent
	Slide 81: Fitting models with gradient descent
	Slide 82: Fitting models with gradient descent
	Slide 83: Fitting models with gradient descent
	Slide 84: Linear regression via gradient descent
	Slide 85: Linear regression via gradient descent
	Slide 86: Study points & take-homes
	Slide 87: Regression and classification
	Slide 88: This section
	Slide 89: Intro to classification
	Slide 90: Intro to classification
	Slide 91: Intro to classification
	Slide 92: Intro to classification
	Slide 93: Intro to classification
	Slide 94: Intro to classification
	Slide 95: Logistic regression
	Slide 96: Logistic regression
	Slide 97: Logistic regression
	Slide 98: Logistic regression
	Slide 99: Logistic regression
	Slide 100: Logistic regression
	Slide 101: Logistic regression
	Slide 102: Study points & take-homes
	Slide 103: Regression and classification
	Slide 104: This section
	Slide 105: A few words about other classification techniques…
	Slide 106: Decision trees
	Slide 107: Decision trees
	Slide 108: Decision trees
	Slide 109: Decision trees
	Slide 110: Decision trees
	Slide 111: Decision trees
	Slide 112: Decision trees
	Slide 113: Decision trees
	Slide 114: Decision trees
	Slide 115: Decision trees
	Slide 116: Decision trees
	Slide 117: Decision trees
	Slide 118: Decision trees
	Slide 119: Decision trees
	Slide 120: Decision trees
	Slide 121: Decision trees
	Slide 122: Decision trees
	Slide 123: Decision trees
	Slide 124: Decision trees
	Slide 125: Decision trees: food for thought
	Slide 126: Nearest neighbors
	Slide 127: Nearest neighbors
	Slide 128: Support Vector Machines
	Slide 129: Support Vector Machines
	Slide 130: Support Vector Machines
	Slide 131: Support Vector Machines
	Slide 132: Support Vector Machines
	Slide 133: Support Vector Machines
	Slide 134: Support Vector Machines
	Slide 135: Support Vector Machines
	Slide 136: Support Vector Machines
	Slide 137: Support Vector Machines
	Slide 138: Support Vector Machines
	Slide 139: Support Vector Machines
	Slide 140: Support Vector Machines
	Slide 141: Multilayer perceptron
	Slide 142: Multilayer perceptron
	Slide 143: Multilayer perceptron
	Slide 144: Multilayer perceptron
	Slide 145: Multilayer perceptron
	Slide 146: Multilayer perceptron
	Slide 147: Study points & take-homes
	Slide 148: Regression and classification
	Slide 149: Some definitions – mathematical notation
	Slide 150: Evaluating classification models
	Slide 151: Evaluating classification models
	Slide 152: True and false positives (and negatives)
	Slide 153: True and false positives (and negatives) – rates
	Slide 154: Balanced error rate
	Slide 155: Optimizing the balanced error rate
	Slide 156: Looking ahead: fairness interventions
	Slide 157: Looking ahead: fairness interventions
	Slide 158: Looking ahead: fairness interventions
	Slide 159: Looking ahead: fairness interventions
	Slide 160: Other metrics
	Slide 161: Other metrics
	Slide 162: Looking ahead: fairness interventions
	Slide 163: Other metrics
	Slide 164: What’s to come?
	Slide 165: Example
	Slide 166: Example – synthetic data generation
	Slide 167: Example
	Slide 168: Example
	Slide 169: Study points & take-homes
	Slide 170: Regression and classification
	Slide 171: This section
	Slide 172: Generalization, overfitting and underfitting
	Slide 173: Generalization, overfitting and underfitting
	Slide 174: Generalization, overfitting and underfitting
	Slide 175: Generalization, overfitting and underfitting
	Slide 176: Generalization, overfitting and underfitting
	Slide 177: Generalization, overfitting and underfitting
	Slide 178: Study points & take-homes
	Slide 179: Regression and classification
	Slide 180: Goals
	Slide 181: Dataset
	Slide 182: Dataset
	Slide 183: Key findings:
	Slide 184: Key findings:
	Slide 185: Key findings:
	Slide 186: Key findings:
	Slide 187: Key findings:
	Slide 188: Food for thought
	Slide 189: Food for thought
	Slide 190: References for Module 1

