Experimental Combinatorics on Words

Using the Walnut Prover

Jeffrey Shallit
School of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada
shallit@cs.uwaterloo.ca
https://www.cs.uwaterloo.ca/“shallit

Joint work with Jean-Paul Allouche, Emilie Charlier, Narad
Rampersad, Dane Henshall, Luke Schaeffer, Eric Rowland, Daniel
Go¢, and Hamoon Mousavi.

/31

What is Combinatorics on Words?

1. The study of the properties of finite and infinite words (strings
of symbols) over a finite alphabet ¥

2. For example, the famous Lyndon-Schiitzenberger theorem
describes when the product (concatenation) of two words
commutes: when xy = yx

3. The Fine-Wilf theorem describes how long two infinite
periodic sequences, of period h and k, can agree — without
agreeing forever

Seven Points of this Talk

1. Experimental techniques can be used to guess infinite words
satisfying a given prefix-invariant property P

2. Once the answer has been guessed, it can often be stated in
first-order logic in an extension of Presburger arithmetic

3. An automaton-based decision procedure exists for many such
extensions

4. The decision procedure is relatively easy to implement and
often runs remarkably quickly, despite its formidable
worst-case complexity — and we have an implementation that
is publicly available (Walnut)

/31

Seven Points of the Talk

5. Many results already in the literature (in dozens of papers and
Ph. D. theses) can be reproved by our program in a matter of
seconds (including fixing at least one that was wrong!)

6. Many new results can be proved

7. There are some well-defined limits to what we can do because
either

> the property is not expressible in first-order logic; or
» the underlying sequence leads to undecidability

A classical avoidability problem in words

> A square is a nonempty block of the form xx, where x is a
word.

» Examples in English include hotshots and murmur

> It is easy to see that every word of length > 4 over a 2-letter
alphabet has a square within it: either 00 or 11 or 0101 or
1010.

» But how about words over a 3-letter alphabet?
» Thue proved that the infinite word

a=apaiaz---=210201--- ,

generated by iterating the morphism 2 — 210, 1 — 20, and
0 — 1, is squarefree.

» Once guessed, this result can be rigorously proved using our
decision procedure.

A classical avoidability problem in words

» We hope that a is an automatic sequence, that is, it is
generated by a finite automaton as follows:
» The automaton must accept inputs n > 0 represented in some
base k, and reach a state with associated output a,

» It turns out that base-2 works with the following automaton:

Figure : The automaton for Thue's sequence

Using the Walnut prover

To use the Walnut prover, first we define the automaton TH in a
file called TH.txt. Then we run the prover. Here's the output:

eval thues "Ei En (n>=1) & Aj (j<n) => TH[i+j]=TH[i+j+n]":

n>=1 has 2 states: 107ms

j<n has 2 states: 1ms

THL(i+j)]1=TH[((i+j)+n)] has 12 states: 169ms

(j<n=>TH[(i+j)1=TH[((i+j)+n)]) has 25 states: 20ms

(A j (§<o=>TH[(i+j)]=TH[((i+j)+n)])) has 1 states: 21bms

(m>=1 & (A j (j<o=>TH[(i+3j)]1=THL((i+j)+n)1))) has 1 states: 2ms

(En (n>=1 & (A j (j<n=>TH[(i+j)I=TH[((i+j)+n)]1)))) has 1 states: 1ms

(Ei (En (n>=1 & (A j (j<n=>TH[(i+j)]1=THL[((i+j)+n)1))))) has 1 states: 1ms
total computation time: 578ms

and the output is “false”.

A general approach to finding infinite sequences satisfying

a prefix-invariant property

» There is a heuristic method to find infinite sequences
satisfying some prefix-invariant property P, similar to what we
did for avoiding squares.

» If the method succeeds, it actually provides a proof of
correctness.

» The method is to guess an appropriate automaton and then
verify its correctness using our prover.

> There are two things left to explain:

1. How do we guess the automaton, if it exists?

2. How does the prover work?

If the sequence can be computed

If the sequence can be explicitly computed and there is an
automaton calculating it, we can use a decimation procedure to
guess the automaton:

» We start by taking the sequence and “decimating” it; that is,
we form a new sequence by taking every k'th term starting
with ag, then every k'th term starting with a;, and so forth,
up to starting with ax_1

» This gives us k subsequences:

aodkazk - -

d1dk4+1a2k+1 """

dk—142k—1d3k—1 """

If the sequence can be computed

» We then try to match these sequences against previously
computed subsequences of the original sequence; if two agree
on hundreds or thousands of terms, we guess that they agree
forever

» Any unmatched sequence is then decimated in the same way,
until no unmatched sequences remain.

» From this we can make an automaton, with each sequence
represented by a state

10/31

If the sequence is unknown

If the sequence satisfying the property P is unknown
» We can use breadth-first search to enumerate all strings w of
length 1,2 3, ... satisfying P
» For each string we can efficiently find the minimal automaton
generating an infinite sequence for which w is a prefix
» We can then use our decision procedure on this automaton

» If an automaton generating a sequence with property P, this
will eventually find it

11/31

The procedure with the Thue sequence

a[n] = 210201210120210201202101210201210120210121020120210201210120210201202101
20020220022020020220200220020220022020022002022020020220022020020220200

a[2n] =
a[2n+1]
a[4n] =
a[4n+1]
a[4n+2]
a[4n+3]
a[8n+1]
a[8n+2]
a[8n+5]
a[8n+6]

121110121011121110111210121110121011121012111011121110121011121110111

a[2n]

1111111111111111111111111111111311111111111111111111111111111111111111

= 022020022002022020020220022020022002022002202002022020022002022020020

a[n]

= al[4n+1]

a[4n+2]
al4n+1]
a[2n]

From these sequences we can form the automaton which accepts
the sequence in Isd format.

12/31

The Isd-first automaton for the Thue sequence

0
é
1

Figure : The Isd-first automaton for Thue's sequence

Now a standard technique for reversing the digits in an automaton
gives us the automaton we saw before.

13/31

First-order logic

» Let Th(N, +,0,1) denote the set of all true first-order
sentences in the logical theory of the natural numbers with
addition.

» This is sometimes called Presburger arithmetic.

» Here we are allowed to use any number of variables, logical
1" "

connectives like “and”, “or", “not”, etc., and quantifiers like
Jand V.

14 /31

Presburger’s theorem

Figure : Mojzesz Presburger (1904-1943)

Presburger proved that Th(N, +,0,1) is decidable: that is, there
exists an algorithm that, given a sentence in the theory, will decide
its truth. He used quantifier elimination.

15/31

Decidability of Presburger arithmetic: Rabin’s proof

Rabin found a much simpler proof of Presburger’s result, based on
automata.

Ideas:

> represent integers in an integer base k > 2 using the alphabet
Y ={0,1,...,k—1}.

> represent n-tuples of integers as words over the alphabet %7,
padding with leading zeroes, if necessary. This corresponds to
reading the base-k representations of the n-tuples in parallel.

» For example, the pair (21,7) can be represented in base 2 by

the word
[1,0][0,0][1, 1][0, 1][1, 1].

16/31

Decidability of predicates

The relation x + y = z can be checked by a simple 2-state
automaton depicted below, where transitions not depicted lead to
a nonaccepting “dead state”.

{la,b,c] : a+b=c} {la,b,c] : a+b+1=c+k}
{[a,b,c] : a+b+1=c}

_/

{[a,b,c] : 3+b:C—|—k}

Figure : Checking addition in base k

17/31

Decidability of Presburger arithmetic: proof sketch

> Relations like x = y and x < y can be checked similarly.

» Given a formula with free variables x1, xo, . .., x,, we construct
an automaton accepting the base-k expansion of those
n-tuples (xi, ..., xp) for which the proposition holds.

» If a formula is of the form 3xy, x, ... x, p(x1,...,Xn), then
we use nondeterminism to “guess” the x; and check them.

» If the formula is of the form Vp, we use the equivalence
Vp = —3d-p; this may require using the subset construction to
convert an NFA to a DFA and then flipping the “finality” of
states.

» Finally, the truth of a formula can be checked by using the
usual depth-first search techniques to see if any final state is
reachable from the start state.

18/31

The bad news

» The worst-case running time of the algorithm above is
bounded above by

. _QP(N)
2% :
where the number of 2's in the exponent is equal to the
number of quantifier alternations, p is a polynomial, and N is

the number of states needed to describe the underlying
automatic sequence.

» This bound can be improved to double-exponential.

19/31

The good news

» With a small extension to Presburger's logical theory —
adding the function Vi(n), the largest power of k dividing n
— one can also verify many more interesting statements
(examples to follow). But then the worst-case time bound

returns to
. _2P(N)

2%
» Beautiful theory due to Biichi, Bruyere, Hansel, Michaux,
Villemaire, etc.

» Despite the awful worst-case bound on running time, an
implementation often succeeds in verifying statements in the
theory in a reasonable amount of time and space.

» Many old results from the literature can be verified with this
technique, and many new ones can be proved.

20/31

An extended example: avoiding the pattern xxx~

» By x® we mean the reversal of the string x. For example,
(stressed)” = desserts.

» An example of this pattern in English is contained in the word
bepepper.

> Are there infinite binary words avoiding this pattern?

21/31

An extended example: avoiding the pattern xxx~

» We start by trying depth-first search.
» It gives the lexicographically least such sequence.

» This gives the word
(001)3(10)* = 001001001101010- - - .

» So in particular the word (10)* = 101010 - - avoids the
pattern. (Easy proof!)

» This suggests: are there any other periodic infinite words
avoiding xxxR?

» Also: are there any aperiodic infinite words avoiding xxx?

22 /31

An extended example: avoiding the pattern xxx~

When we search for other primitive words z such that z“ avoids
the pattern, we find there are some of length 10:

0010011011 0011011001 0100110110 0110010011 0110110010
1001001101 1001101100 1011001001 1100100110 1101100100

» We notice that each of these words is of the form ww.
» This suggests looking at words of this form.

» The next ones are w = 001001001101100100100, and its
shifts and complements.

23 /31

An extended example: avoiding the pattern xxx~

» To summarize, here are the solutions we've found so far:

w | [w]
01 2
00100 5

001001001101100100100 | 21

> The presence of the numbers 2,5,21 suggests some connection
with the Fibonacci numbers.

24 /31

An aperiodic word avoiding xxx®

» Suppose we take the run-length encodings of the strings of
length 21. One of them looks familiar: 2122121221221. This
is a prefix of the infinite Fibonacci word generated by 2 — 21,
1—-2.

» This suggests the construction of an infinite aperiodic word
avoiding xxx®: take the infinite Fibonacci word, and use it as
“repetition factors” for 0 and 1 alternating. This gives the
word

R =001001101101100100110- - -

which we conjecture avoids xxx~.

» Can we find an automaton generating this sequence? Yes, but
now it is not based on base-2 representations, but rather
Fibonacci (or “Zeckendorf") representations.

25 /31

An aperiodic word avoiding xxx®

» Every non-negative integer can be represented, essentially
uniquely, as a sum of distinct Fibonacci numbers, provided
that we never use two adjacent Fibonacci numbers.

» We can try to find an automaton for our sequence in much
the same way as we did for Thue's sequence.

> When we do, we get the following automaton of 8 states.

Figure : Fibonacci automaton generating the sequence R

26 /31

An aperiodic word avoiding xxx®

» We now have the conjecture that the word generated by this
automaton (a) is aperiodic and (b) avoids xxx~

» Both conjectures can be proved using our decision procedure.

» We just need to write predicates for them:

» Ultimate periodicity:

dp>13IN >0Vi> N R[i] =R[i + p].
» Has xxxR:
di>03dn>1Vt<n

(Ri+t]=R[i+t+n]) A (R[i+t]=R[i+3n—1-—t]).

27 /31

What other properties of automatic sequences are

decidable?

v

A difficult candidate: abelian properties

We say that a nonempty word x is an abelian square if it is of
the form ww’ with |w| = |w/| and w’ a permutation of w.
(An example in English is the word reappear.)

Luke Schaeffer showed that the predicate for abelian
squarefreeness is indeed inexpressible in Th(N, +,0,1, V)

However, for some sequences (e.g., Thue-Morse, Fibonacci)
many abelian properties are decidable

28 /31

Other limits to the approach

» Consider the morphism a — abcc, b — bcc, ¢ — c.

» The fixed point of this morphism is
s = abccbcccebceccceebecceeceeeb - - -

> It encodes, in the positions of the b’s, the characteristic
sequence of the squares.

» So the first-order theory Th(N, +,0,1, n — s[n]) is powerful
enough to express the assertion that “n is a square”

» With that, one can express multiplication, and so it is
undecidable (Matiyasevich).

29 /31

Two Open Problems

» Let p denote the characteristic sequence of the prime
numbers. Is the logical theory Th(N,+,0,1,n — p(n))
decidable?

» Is the following problem decidable? Given two k-automatic
sequences (a(n))n>0 and (b(n))n>0, are there integers ¢ > 1
and d > 0 such that a(n) = b(cn + d) for all n?

30/31

The Walnut Prover

Our publicly-available prover, written by Hamoon Mousavi, is
called Walnut and can be downloaded from

www.cs.uwaterloo.ca/~shallit/papers.html .

31/31

www.cs.uwaterloo.ca/~shallit/papers.html

