
Experimental Combinatorics on Words

Using the Walnut Prover

Jeffrey Shallit
School of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1

Canada
shallit@cs.uwaterloo.ca

https://www.cs.uwaterloo.ca/~shallit

Joint work with Jean-Paul Allouche, Émilie Charlier, Narad
Rampersad, Dane Henshall, Luke Schaeffer, Eric Rowland, Daniel
Goč, and Hamoon Mousavi.

1 / 31

What is Combinatorics on Words?

1. The study of the properties of finite and infinite words (strings
of symbols) over a finite alphabet Σ

2. For example, the famous Lyndon-Schützenberger theorem
describes when the product (concatenation) of two words
commutes: when xy = yx

3. The Fine-Wilf theorem describes how long two infinite
periodic sequences, of period h and k , can agree — without
agreeing forever

2 / 31

Seven Points of this Talk

1. Experimental techniques can be used to guess infinite words
satisfying a given prefix-invariant property P

2. Once the answer has been guessed, it can often be stated in
first-order logic in an extension of Presburger arithmetic

3. An automaton-based decision procedure exists for many such
extensions

4. The decision procedure is relatively easy to implement and
often runs remarkably quickly, despite its formidable
worst-case complexity — and we have an implementation that
is publicly available (Walnut)

3 / 31

Seven Points of the Talk

5. Many results already in the literature (in dozens of papers and
Ph. D. theses) can be reproved by our program in a matter of
seconds (including fixing at least one that was wrong!)

6. Many new results can be proved

7. There are some well-defined limits to what we can do because
either

◮ the property is not expressible in first-order logic; or
◮ the underlying sequence leads to undecidability

4 / 31

A classical avoidability problem in words

◮ A square is a nonempty block of the form xx , where x is a
word.

◮ Examples in English include hotshots and murmur

◮ It is easy to see that every word of length ≥ 4 over a 2-letter
alphabet has a square within it: either 00 or 11 or 0101 or
1010.

◮ But how about words over a 3-letter alphabet?

◮ Thue proved that the infinite word

a = a0a1a2 · · · = 210201 · · · ,

generated by iterating the morphism 2 → 210, 1 → 20, and
0 → 1, is squarefree.

◮ Once guessed, this result can be rigorously proved using our
decision procedure.

5 / 31

A classical avoidability problem in words

◮ We hope that a is an automatic sequence, that is, it is
generated by a finite automaton as follows:

◮ The automaton must accept inputs n ≥ 0 represented in some
base k , and reach a state with associated output an

◮ It turns out that base-2 works with the following automaton:

q3/1

q2/0q1/1q0/2

0

0

1

1

0

0

1

1

Figure : The automaton for Thue’s sequence

6 / 31

Using the Walnut prover

To use the Walnut prover, first we define the automaton TH in a
file called TH.txt. Then we run the prover. Here’s the output:

eval thues "Ei En (n>=1) & Aj (j<n) => TH[i+j]=TH[i+j+n]":

n>=1 has 2 states: 107ms

j<n has 2 states: 1ms

TH[(i+j)]=TH[((i+j)+n)] has 12 states: 169ms

(j<n=>TH[(i+j)]=TH[((i+j)+n)]) has 25 states: 20ms

(A j (j<n=>TH[(i+j)]=TH[((i+j)+n)])) has 1 states: 215ms

(n>=1 & (A j (j<n=>TH[(i+j)]=TH[((i+j)+n)]))) has 1 states: 2ms

(E n (n>=1 & (A j (j<n=>TH[(i+j)]=TH[((i+j)+n)])))) has 1 states: 1ms

(E i (E n (n>=1 & (A j (j<n=>TH[(i+j)]=TH[((i+j)+n)]))))) has 1 states: 1ms

total computation time: 578ms

and the output is “false”.

7 / 31

A general approach to finding infinite sequences satisfying
a prefix-invariant property

◮ There is a heuristic method to find infinite sequences
satisfying some prefix-invariant property P , similar to what we
did for avoiding squares.

◮ If the method succeeds, it actually provides a proof of
correctness.

◮ The method is to guess an appropriate automaton and then
verify its correctness using our prover.

◮ There are two things left to explain:

1. How do we guess the automaton, if it exists?

2. How does the prover work?

8 / 31

If the sequence can be computed

If the sequence can be explicitly computed and there is an
automaton calculating it, we can use a decimation procedure to
guess the automaton:

◮ We start by taking the sequence and “decimating” it; that is,
we form a new sequence by taking every k ’th term starting
with a0, then every k ’th term starting with a1, and so forth,
up to starting with ak−1

◮ This gives us k subsequences:

a0aka2k · · ·

a1ak+1a2k+1 · · ·

...

ak−1a2k−1a3k−1 · · ·

9 / 31

If the sequence can be computed

◮ We then try to match these sequences against previously
computed subsequences of the original sequence; if two agree
on hundreds or thousands of terms, we guess that they agree
forever

◮ Any unmatched sequence is then decimated in the same way,
until no unmatched sequences remain.

◮ From this we can make an automaton, with each sequence
represented by a state

10 / 31

If the sequence is unknown

If the sequence satisfying the property P is unknown

◮ We can use breadth-first search to enumerate all strings w of
length 1, 2, 3, . . . satisfying P

◮ For each string we can efficiently find the minimal automaton
generating an infinite sequence for which w is a prefix

◮ We can then use our decision procedure on this automaton

◮ If an automaton generating a sequence with property P , this
will eventually find it

11 / 31

The procedure with the Thue sequence

a[n] = 2102012101202102012021012102012101202101210201202102012101202102012021012

a[2n] = 200202200220200202202002200202200220200220020220200202200220200202202002

a[2n+1] = 1211101210111211101112101211101210111210121110111211101210111211101112

a[4n] = a[2n]

a[4n+1] = 11

a[4n+2] = 0220200220020220200202200220200220020220022020020220200220020220200202

a[4n+3] = a[n]

a[8n+1] = a[4n+1]

a[8n+2] = a[4n+2]

a[8n+5] = a[4n+1]

a[8n+6] = a[2n]

From these sequences we can form the automaton which accepts
the sequence in lsd format.

12 / 31

The lsd-first automaton for the Thue sequence

1

1

0

0

0

1

0

0, 1

a[n]
2

a[2n] a[4n + 2]
0

a[2n + 1]
1

a[4n + 1]
1

12

Figure : The lsd-first automaton for Thue’s sequence

Now a standard technique for reversing the digits in an automaton
gives us the automaton we saw before.

13 / 31

First-order logic

◮ Let Th(N,+, 0, 1) denote the set of all true first-order
sentences in the logical theory of the natural numbers with
addition.

◮ This is sometimes called Presburger arithmetic.

◮ Here we are allowed to use any number of variables, logical
connectives like “and”, “or”, “not”, etc., and quantifiers like
∃ and ∀.

14 / 31

Presburger’s theorem

Figure : Mojżesz Presburger (1904–1943)

Presburger proved that Th(N,+, 0, 1) is decidable: that is, there
exists an algorithm that, given a sentence in the theory, will decide
its truth. He used quantifier elimination.

15 / 31

Decidability of Presburger arithmetic: Rabin’s proof

Rabin found a much simpler proof of Presburger’s result, based on
automata.

Ideas:

◮ represent integers in an integer base k ≥ 2 using the alphabet
Σk = {0, 1, . . . , k − 1}.

◮ represent n-tuples of integers as words over the alphabet Σn
k ,

padding with leading zeroes, if necessary. This corresponds to
reading the base-k representations of the n-tuples in parallel.

◮ For example, the pair (21, 7) can be represented in base 2 by
the word

[1, 0][0, 0][1, 1][0, 1][1, 1].

16 / 31

Decidability of predicates

The relation x + y = z can be checked by a simple 2-state
automaton depicted below, where transitions not depicted lead to
a nonaccepting “dead state”.

{[a, b, c] : a+ b = c}

{[a, b, c] : a + b + 1 = c}

{[a, b, c] : a + b = c + k}

{[a, b, c] : a+ b + 1 = c + k}

Figure : Checking addition in base k

17 / 31

Decidability of Presburger arithmetic: proof sketch

◮ Relations like x = y and x < y can be checked similarly.

◮ Given a formula with free variables x1, x2, . . . , xn, we construct
an automaton accepting the base-k expansion of those
n-tuples (x1, . . . , xn) for which the proposition holds.

◮ If a formula is of the form ∃x1, x2, . . . xn p(x1, . . . , xn), then
we use nondeterminism to “guess” the xi and check them.

◮ If the formula is of the form ∀p, we use the equivalence
∀p ≡ ¬∃¬p; this may require using the subset construction to
convert an NFA to a DFA and then flipping the “finality” of
states.

◮ Finally, the truth of a formula can be checked by using the
usual depth-first search techniques to see if any final state is
reachable from the start state.

18 / 31

The bad news

◮ The worst-case running time of the algorithm above is
bounded above by

22
..
.2p(N)

,

where the number of 2’s in the exponent is equal to the
number of quantifier alternations, p is a polynomial, and N is
the number of states needed to describe the underlying
automatic sequence.

◮ This bound can be improved to double-exponential.

19 / 31

The good news

◮ With a small extension to Presburger’s logical theory —
adding the function Vk(n), the largest power of k dividing n

— one can also verify many more interesting statements
(examples to follow). But then the worst-case time bound
returns to

22
..
.2p(N)

.

◮ Beautiful theory due to Büchi, Bruyère, Hansel, Michaux,
Villemaire, etc.

◮ Despite the awful worst-case bound on running time, an
implementation often succeeds in verifying statements in the
theory in a reasonable amount of time and space.

◮ Many old results from the literature can be verified with this
technique, and many new ones can be proved.

20 / 31

An extended example: avoiding the pattern xxx
R

◮ By xR we mean the reversal of the string x . For example,
(stressed)R = desserts.

◮ An example of this pattern in English is contained in the word
bepepper.

◮ Are there infinite binary words avoiding this pattern?

21 / 31

An extended example: avoiding the pattern xxx
R

◮ We start by trying depth-first search.

◮ It gives the lexicographically least such sequence.

◮ This gives the word

(001)3(10)ω = 001001001101010 · · · .

◮ So in particular the word (10)ω = 101010 · · · avoids the
pattern. (Easy proof!)

◮ This suggests: are there any other periodic infinite words
avoiding xxxR?

◮ Also: are there any aperiodic infinite words avoiding xxxR?

22 / 31

An extended example: avoiding the pattern xxx
R

When we search for other primitive words z such that zω avoids
the pattern, we find there are some of length 10:

0010011011 0011011001 0100110110 0110010011 0110110010

1001001101 1001101100 1011001001 1100100110 1101100100

◮ We notice that each of these words is of the form ww .

◮ This suggests looking at words of this form.

◮ The next ones are w = 001001001101100100100, and its
shifts and complements.

23 / 31

An extended example: avoiding the pattern xxx
R

◮ To summarize, here are the solutions we’ve found so far:

w |w |

01 2
00100 5

001001001101100100100 21

◮ The presence of the numbers 2,5,21 suggests some connection
with the Fibonacci numbers.

24 / 31

An aperiodic word avoiding xxx
R

◮ Suppose we take the run-length encodings of the strings of
length 21. One of them looks familiar: 2122121221221. This
is a prefix of the infinite Fibonacci word generated by 2 → 21,
1 → 2.

◮ This suggests the construction of an infinite aperiodic word
avoiding xxxR : take the infinite Fibonacci word, and use it as
“repetition factors” for 0 and 1 alternating. This gives the
word

R = 001001101101100100110 · · ·

which we conjecture avoids xxxR .

◮ Can we find an automaton generating this sequence? Yes, but
now it is not based on base-2 representations, but rather
Fibonacci (or “Zeckendorf”) representations.

25 / 31

An aperiodic word avoiding xxx
R

◮ Every non-negative integer can be represented, essentially
uniquely, as a sum of distinct Fibonacci numbers, provided
that we never use two adjacent Fibonacci numbers.

◮ We can try to find an automaton for our sequence in much
the same way as we did for Thue’s sequence.

◮ When we do, we get the following automaton of 8 states.

a/0 b1/0 a1/1 b0/0 b/1 a0/0 a2/1 b2/1

0

1 0 1

0

0

0

1

0

0

1

0

Figure : Fibonacci automaton generating the sequence R

26 / 31

An aperiodic word avoiding xxx
R

◮ We now have the conjecture that the word generated by this
automaton (a) is aperiodic and (b) avoids xxxR .

◮ Both conjectures can be proved using our decision procedure.

◮ We just need to write predicates for them:

◮ Ultimate periodicity:

∃p ≥ 1 ∃N ≥ 0 ∀i ≥ N R[i] = R[i + p].

◮ Has xxxR :
∃i ≥ 0 ∃n ≥ 1 ∀t < n

(R[i + t] = R[i + t + n]) ∧ (R[i + t] = R[i + 3n − 1− t]).

27 / 31

What other properties of automatic sequences are
decidable?

◮ A difficult candidate: abelian properties

◮ We say that a nonempty word x is an abelian square if it is of
the form ww ′ with |w | = |w ′| and w ′ a permutation of w .
(An example in English is the word reappear.)

◮ Luke Schaeffer showed that the predicate for abelian
squarefreeness is indeed inexpressible in Th(N,+, 0, 1,Vk)

◮ However, for some sequences (e.g., Thue-Morse, Fibonacci)
many abelian properties are decidable

28 / 31

Other limits to the approach

◮ Consider the morphism a → abcc , b → bcc , c → c .

◮ The fixed point of this morphism is

s = abccbccccbccccccbccccccccb · · ·

◮ It encodes, in the positions of the b’s, the characteristic
sequence of the squares.

◮ So the first-order theory Th(N,+, 0, 1, n → s[n]) is powerful
enough to express the assertion that “n is a square”

◮ With that, one can express multiplication, and so it is
undecidable (Matiyasevich).

29 / 31

Two Open Problems

◮ Let p denote the characteristic sequence of the prime
numbers. Is the logical theory Th(N,+, 0, 1, n → p(n))
decidable?

◮ Is the following problem decidable? Given two k-automatic
sequences (a(n))n≥0 and (b(n))n≥0, are there integers c ≥ 1
and d ≥ 0 such that a(n) = b(cn + d) for all n?

30 / 31

The Walnut Prover

Our publicly-available prover, written by Hamoon Mousavi, is
called Walnut and can be downloaded from

www.cs.uwaterloo.ca/~shallit/papers.html .

31 / 31

www.cs.uwaterloo.ca/~shallit/papers.html

