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ABSTRACT

Regular expressions have been studied for nearly 50 years, yet many intriguing problems
about their descriptive capabilities remain open. In this paper we sketch some new
results and discuss what remains to be solved.
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1. Introduction

The class of regular languages is one of the most important and best-understood
classes of languages in computer science. A regular language can be represented in
several different ways (without trying to be exhaustive):

� as the language accepted by

– a deterministic finite automaton (DFA);

– a nondeterministic finite automaton (NFA); or

– a nondeterministic finite automaton with ε-transitions (NFA-ε);

� as the language specified by

– a regular expression (RE), allowing the operations of union (+), concatena-
tion (typically represented implicitly by juxtaposition), and Kleene closure
(∗) [29, 41, 10];

– a generalized regular expression (GRE), allowing the additional operations
of intersection (∩) and complement (¬) [41].
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The pioneering paper of Meyer and Fischer in 1971 [42] compared the relative
descriptional complexity of these models and others. Since then, many papers on
descriptional complexity of regular languages have been published. Most of these
focussed on the state complexity sc(L) for certain languages L, where by state com-
plexity we mean the smallest number of states in a DFA accepting a given language;
see, for example, [52]. Less attention has been given to the number of states in NFA’s
[27, 26], and even less attention has been given to the size of the shortest regular
expression for a given language. In this paper, we focus on this last measure.

There does not seem to be any uniform agreement on how to measure the size of a
regular expression over an alphabet Σ. One obvious measure is the ordinary length:
the total number of symbols, including parentheses ([2, p. 396], [25]). For example,
the regular expression (0+10)∗(1+ε) has ordinary length 12. Note there is no explicit
symbol for concatenation in such a scheme. Another measure is based on the length
of the expression converted to (parenthesis-free) reverse polish form, using an explicit
operator • for concatenation [53]. Thus the previous regular expression would be
written 010 •+ ∗ 1ε+ • and would have reverse polish length 10. We denote reverse
polish length of an expression E by |rpn(E)|. Evidently reverse polish length is the
same as the number of nodes in the syntax tree for the expression.

However, the most useful measure in practice seems to be the total number of
alphabetic symbols, counted with multiplicity [41, 44, 18, 33]. By an alphabetic
symbol we mean an element of Σ, ignoring all operations, parentheses, and the special
symbols ε and ∅. Under this measure, for the expression (0 + 10)∗(1 + ε) would
have length 4. We denote the number of alphabetic symbols of an expression E by
|alph(E)|.

It does not seem to have been previously observed that these three measures are
essentially identical, up to a constant multiplicative factor. We say “essentially”
because one can always artificially inflate the ordinary length of a regular expression
by adding arbitrarily many multiplicative factors of ε, additive factors of ∅, etc. In
order to avoid such trivialities, we define what it means for a regular expression to be
collapsible, as follows:

Definition 1 Let E be a regular expression over the alphabet Σ, and let L(E) be
the language specified by E. We say E is collapsible if any of the following conditions
hold:

1. E contains the symbol ∅ and |E| > 1;

2. E contains a subexpression of the form FG or GF where L(F ) = {ε};
3. E contains a subexpression of the form F +G or G+ F where L(F ) = {ε} and

ε ∈ L(G).

Otherwise, if none of the conditions hold, E is said to be uncollapsible.

Note that an expression such as a+a is uncollapsible by our definition, although it
can be simplified to just a. However, it is known that the regular expression identities
are not finitely axiomatizable (even over a unary alphabet) [13, 1]. Thus it is not
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realistic to expect that more rules like the ones given above could achieve ultimate
simplification.

Definition 2 If E is an uncollapsible regular expression such that

1. E contains no superfluous parentheses; and

2. E contains no subexpression of the form F ∗∗.

then we say E is irreducible.

Note that a minimal regular expression for E is uncollapsible and irreducible, but
the converse does not necessarily hold.

We now prove the following theorem relating ordinary length, alphabetic length,
and reverse polish length of a regular expression.

Theorem 3 Let E be a regular expression over Σ. Then we have

(a) |alph(E)| ≤ |E|;
(b) If E is irreducible and |alph(E)| ≥ 1, then |E| ≤ 11|alph(E)| − 4;

(c) |rpn(E)| ≤ 2|E| − 1;

(d) |E| ≤ 2|rpn(E)| − 1;

(e) |alph(E)| ≤ 1
2 (|rpn(E)|+ 1);

(f) If E is irreducible and |alph(E)| ≥ 1, then |rpn(E)| ≤ 7|alph(E)| − 2.

We prove (b), leaving the rest to the reader. We need the following lemmas:

Lemma 4 If E is a regular expression without alphabetic symbols, then L(E) = {ε}
or L(E) = ∅.

Proof. Clear. 2

We now state a lemma due to Ilie & Yu [25]. For a string w we define |w|ε to be
the number of occurrences of the symbol ε in w.

Lemma 5 Let E be an uncollapsible regular expression over Σ containing at least
one alphabetic symbol. Then |E|ε ≤ |alph(E)|. If equality occurs, then ε ∈ L(E).

Proof. By induction on the height of the expression tree induced by E. If this
height is 0, then, since E contains at least one alphabetic symbol, we have E = a for
some a ∈ Σ, and the result clearly follows.

Now assume the result is true for all uncollapsible E whose corresponding expres-
sion tree has height < h; we prove it for all E with an expression tree of height
h.

If E = F ∗ then F is uncollapsible. By induction the desired conclusions hold for
F , and hence trivially for E.
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If E = FG, then since E is uncollapsible, F and G must also be uncollapsible. By
the definition of “uncollapsible”, neither F nor G evaluate to ε or ∅. Hence F and
G contain at least one alphabetic symbol. Then by induction |F |ε ≤ |alph(F )| and
|G|ε ≤ |alph(G)|. Hence |E|ε ≤ |alph(E)|. Furthermore, if |E|ε = |alph(E)|, then
|F |ε = |alph(F )| and |G|ε = |alph(G)|. Hence ε ∈ L(F ) and ε ∈ L(G), and hence
ε ∈ L(E).

Finally, if E = F + G, then again F and G are uncollapsible. First we consider
the case where at least one of F , G contains no alphabetic symbol. If both contain
no alphabetic symbol, then E is reducible, so we assume without loss of generality
that F contains no alphabetic symbol and G does. Then F evaluates to ε and by
induction |G|ε ≤ |alph(G)|. If |G|ε = |alph(G)|, then ε ∈ L(G), and so E is reducible.
Thus |G|ε < |alph(G)| and hence |E|ε ≤ |alph(E)|. Furthermore ε ∈ L(E).

If both F and G contain alphabetic symbols, then by induction the number of
occurrences of ε in F (respectively, G) is ≤ the number of alphabetic symbols in F
(respectively, G). Hence the same inequality holds for E. Furthermore, if the number
of of occurrences of ε in E equals the number of alphabetic symbols in E, then the
same must be true for F and G. Hence ε ∈ L(F ) and ε ∈ L(G), and hence ε ∈ L(E).

2

We can now prove Theorem 3 (b).

Proof. Let E be an irreducible regular expression containing n alphabetic symbols,
for n ≥ 1. By Lemma 5, there are at most n occurrences of ε in E. Now consider the
expression tree for E. Disgregarding any occurrences of Kleene ∗, the tree is a binary
tree with ≤ 2n leaves, and hence has at most 2n− 1 internal nodes corresponding to
occurrences of +. It remains to count parentheses and stars. In the worst case every
internal node gives rise to two parentheses, which gives ≤ 4n−2 parentheses. Finally,
each internal node and non-ε node could have an associated Kleene ∗, which gives
≤ 3n− 1 stars. Adding these, we get 2n+ (2n− 1) + (4n− 2) + (3n− 1) ≤ 11n− 4.

2

Remark: Ilie & Yu [25] proved a stronger version of inequality (f).
It may be worth noting that there exist irreducible regular expressions with n

alphabetic symbols of length 10n− 4. For example, for n = 3 one such expression is

(((a1 + ε)∗ + (a2 + ε)∗)∗ + (a3 + ε)∗)∗.

Similar expressions were given by Ilie & Yu [25].
For generalized regular expressions, there is no bound analogous to those of Theo-

rem 3 (b) and (f), as can be seen by considering an expression of the form

(¬ε)(¬ε)(¬ε) · · · (¬ε)

which has no alphabetic symbols at all. For generalized regular expressions, therefore,
we must use either the measures of ordinary length or reverse polish length.

There are very few techniques known for bounding the size of a regular expression
for a given language. One technique uses the following easy observations:
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Proposition 6 Let L be a nonempty regular language.

(a) If the length of the shortest string in L is n, then |alph(E)| ≥ n for any regular
expression E with L(E) = L.

(b) If further L is finite, and the length of the longest string in L is n, then
|alph(E)| ≥ n for any regular expression E with L(E) = L.

Another technique uses Theorem 10 given below, which states that given an RE
E with |alph(E)| = n, there exists an NFA M with at most n + 1 states such that
L(M) = L(E). Hence a lower bound on the number of states in an NFA accepting L
implies a similar lower bound on the length of an equivalent regular expression. To
obtain lower bounds on the number of states in an NFA we may use the following
result of Birget [7] (rediscovered in a weaker form by Glaister & Shallit [21]):

Theorem 7 Let L be a regular language. If there exist t pairs of strings
{(x1, y1), . . . , (xt, yt)} such that

(i) xiyi ∈ L for 1 ≤ i ≤ t;

(ii) xiyj 6∈ L or xjyi 6∈ L for all i, j with 1 ≤ i < j ≤ t;

then any NFA accepting L must have at least t states.

Finally, there is the method of Ehrenfeucht & Zeiger [18], which, while powerful,
seems restricted in application to finite automata over large alphabets in which each
transition is labeled with a unique symbol.

2. Some examples

In this section we consider some simple families of examples and obtain regular ex-
pressions for them, some provably optimal.

Sometimes short regular expressions can be found through an analogue of Horner’s
rule for evaluating polynomials.

Example 1. Consider the language Rn := {0, 02, 03, . . . , 0n}. We can, of course,
specify this language with a regular expression of the form 0 + 00 + 000 + · · · + 0n;
such a regular expression is of length Θ(n2). However, the regular expression 0 +
0(0 + 0(0 + 0(· · · ))) is of length Θ(n). Another way to say this is to define r1 := 0,
r2 := 0 + 00, and rn+1 := 0 + 0(rn) for n ≥ 2. This immediately gives |rn| = 5n − 6
for n ≥ 2.

Example 2. Similarly, consider Sn := {0i1i : 0 ≤ i ≤ n}. If we define s0 := ε,
s1 := ε + 01, and sn+1 = ε + 0(sn)1 for n ≥ 1, then it is clear that L(sn) = Sn and
furthermore |sn| = 6n− 2 for n ≥ 1.

Example 3. Consider Tn := {0i1j : 0 ≤ i ≤ j ≤ n}. If we define t0 := ε,
t1 := ε+ 1 + 01, and tn+1 = (0 + ε)(tn)1 + ε, then L(tn) = Tn and |tn| = 10n− 4 for
n ≥ 1.
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By the technique of the longest string in Proposition 6 (b), each of the bounds in
Examples 1–3 is optimal, up to a constant factor.

Sometimes divide-and-conquer is a useful technique for constructing regular ex-
pressions. The following example was obtained in discussions with J. Karhumäki,
and we thank him for allowing us to reproduce it here.

Example 4. Let Σ = {0, 1}. For a string w = a1a2 · · · an ∈ Σn, define omit(w) =
Σn − {w}. Then for n ≥ 2 we have

omit(a1a2 · · · an) = Σb
n
2
comit(abn

2
c+1 · · · an) + omit(a1 · · · abn

2
c)abn

2
c+1 · · · an.

Thus, for example,

omit(1111) = (0 + 1)(0 + 1)((0 + 1)0 + 01) + ((0 + 1)0 + 01)11.

This recursively-defined regular expression has O(n log n) alphabetic symbols.

Example 5. The binomial language B(n, k) is defined as follows:

B(n, k) = {x ∈ {0, 1}n : |x|1 = k}.

Thus, for example, B(4, 2) = {0011, 0101, 0110, 1001, 1010, 1100}.
We can find a (not necessarily optimal) regular expression E(n, k) for B(n, k) by

divide and conquer. We split a typical string in half; if the first half contains i 1’s, then
the second half must contain k − i 1’s. This gives the following recursive definition
for E(n, k):

E(n, k) =











0n, if k = 0;

Ẽ(n, n− k), if k > n
2 ;

∑

0≤i≤k E(bn2 c, i)E(dn2 e, k − i), if 0 < k ≤ n
2 .

Here Ẽ, where E is a regular expression, changes each 0 to 1 and vice versa, and leaves
other characters unchanged. For example, E(4, 2) = 0011+(01+10)(01+10)+1100.

Let L(n, k) = |alph(E(n, k))|, the alphabetic length of E(n, k). Then

Theorem 8 For each fixed k ≥ 0, we have L(n, k) = O(n(log n)k), where the implied
constant depends on k.

Proof. We begin by proving the inequality

L(2n, k) ≤ 2n
(

n+ k

k

)

(1)

for n ≥ 0 and 0 ≤ k ≤ 2n. We prove this by induction on n + k. The base case is
n = k = 0. Then L(2n, k) = L(1, 0) = 1 ≤ 20

(

0
0

)

.
Now assume the result is true for n+k < N ; we prove it for n+k = N . If k > 2n−1

then k′ = 2n − k < 2n − 2n−1 = 2n−1 < k. Hence

L(2n, k) = L(2n, k′) ≤ 2n
(

n+ k′

k′

)

≤ 2n
(

n+ k

k

)

.
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Otherwise k ≤ 2n−1. Then from the recursive definition for E(n, k), we have

L(2n, k) =
∑

0≤i≤k

(

L(2n−1, i) + L(2n−1, k − i)
)

= 2
∑

0≤i≤k

L(2n−1, i)

≤ 2
∑

0≤i≤k

2n−1
(

n− 1 + j

j

)

= 2n
(

n+ k

k

)

.

Now, letting n′ = dlog2 ne and using Eq. (1), we have

L(n, k) ≤ L(2n
′

, k)

≤ 2n
′

(

n′ + k

k

)

≤ 2n
′ (n′ + k)k

k!

≤ 2n
((log2 n) + k + 1)k

k!

= O(n(log n)k).

2

As an aside, the numbers L(n, k) have some very interesting combinatorial prop-
erties, which we summarize here:

Theorem 9 (a) L(n, k) = L(bn2 c, k) + L(dn2 e, k) + L(n, k − 1) for 1 ≤ k ≤ n
2 .

(b) L(2n, n) = L(2n, j) + L(2n, n− j − 1) for 0 ≤ j < n.

(c) L(4n, 2n) = 2(n+ 1)L(2n, n) for n ≥ 1.

(d) L(2n+1, 2n) = 2n+2(20 + 1)(21 + 1) · · · (2n−1 + 1) for n ≥ 1.

(e) L(2n+1, 2n) = Θ(2
n2

2
+n

2 ).

Proof.

(a) From the definition we have

L(n, k) =
∑

0≤i≤k

(

L(bn
2
c, i) + L(dn

2
e, k − i)

)

and
L(n, k − 1) =

∑

0≤i≤k−1

(

L(bn
2
c, i) + L(dn

2
e, k − 1− i)

)

.

Subtracting the second from the first, we get

L(n, k)− L(n, k − 1) = L(bn
2
c, k) + L(bn

2
c, k).
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(b) We have L(2n, j) + L(2n, n− j − 1) =
∑

0≤i≤j

(L(n, i) + L(n, j − i)) +
∑

0≤i≤n−j−1
(L(n, i) + L(n, n− j − i− 1))

=
∑

0≤i≤j

L(n, i) +
∑

0≤i≤n−j−1
L(n, j + i+ 1) +

∑

0≤i≤n−j−1
L(n, i) +

∑

0≤i≤j

L(n, n− j + i)

=
∑

0≤i≤j

L(n, i) +
∑

j+1≤i≤n

L(n, i) +
∑

0≤i≤n−j−1
L(n, i) +

∑

n−j≤i≤n

L(n, i)

= 2
∑

0≤i≤n

L(n, i)

= L(2n, n).

(c) From (b) we have

L(2n, j) + L(2n, n− j − 1) = L(2n, j) + L(2n, n+ j + 1) = L(2n, n).

Hence

L(4n, 2n) = 2
∑

0≤i≤2n
L(2n, i) = 2(n+ 1)L(2n, n).

(d) Iterate (c).
(e) From (d) we have

2n+220+1+···+n−1 ≤ L(2n+1, 2n) ≤ 2n+220+1+···+n−1α

where α = (1 + 2−0)(1 + 2−1)(1 + 2−2) · · · .= 4.768462. 2

It is possible to prove that our expressions for E(n, 0) and E(n, 1) are optimal, up
to a constant multiplicative factor, but we do not know this for E(n, k), k ≥ 2.

3. Conversion problems

In this section we consider problems about converting from one method of representing
a regular language to another.

Converting from a regular expression to a DFA or NFA has been well-studied. We
define an NFA to be non-returning if there are no transitions entering the initial state.
Then we have the following theorem ([33, 34],[22, Thm. 16]).

Theorem 10 Let E be a regular expression with |alph(E)| = n. Then there exists a
non-returning NFA accepting L(E) with ≤ n+1 states, and a DFA accepting E with
≤ 2n + 1 states.

It is easy to see that this upper bound for RE to NFA conversion is tight, even in
the unary case (as can be seen by considering the regular expression specifying any
single word of length n). Surprisingly, however, it does not seem to be known if the
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upper bound for RE to DFA conversion is tight; most likely it is not.1 The regular
expression Er := (0 + (01∗)r−10)∗ has 2r alphabetic symbols and Leung [35] proved
that the minimal DFA for L(Er) has 2

r states. This implies a worst case lower bound
of 2

n
2 for RE to DFA conversion.

However, this bound can be improved somewhat by a simple variation on Leung’s
expression.

Theorem 11 Let Fr denote the regular expression

(0∗(01∗)r−10)∗.

Then this expression has 2r alphabetic symbols and the minimal DFA for L(Fr) has
2r + 2r−2 states. This gives a worst case lower bound of 5

4 · 2
n
2 for RE to DFA

conversion.

Proof. We give a sketch of the proof. First, we can create an NFA Mr =
(Q,Σ, δ, q0, F ) that accepts L(Fr), as follows:

Q = {q0, q1, . . . , qr, qr+1}
Σ = {0, 1}
F = {q0, qr+1}

δ(q0, 0) = δ(q1, 0) = {q1, q2}
δ(q0, 1) = δ(q1, 1) = δ(qr+1, 0) = δ(qr+1, 1) = ∅
δ(qi, 0) = {qi+1}, 1 < i < r

δ(qi, 1) = {qi}, 1 < i ≤ r

δ(qr, 0) = {q0, q1, qr+1}.
When we apply the subset construction to this NFA to get a DFA with states being

subsets of Q, we find that only certain subsets of Q are reachable: namely, sets of the
form

(a) {q0};
(b) {q0, q1, qr+1} ∪ X, where X ⊆ {q2, q3, . . . , qr};
(c) {q1, q2} ∪ Y , where Y ⊆ {q3, q4, . . . , qr};
(d) Z, where Z ⊆ {q2, q3, . . . , qr}.
Let us see why these states are reachable. For any subset P ⊆ Q define the string

xP := 0xr0xr−10 · · · 0x20 where

xi =

{

ε, if qi ∈ P ;

1, otherwise.

Then it is not difficult to see that

1Using a non-standard definition of the length of a regular expression, Leiss [32, 34] proved the
upper bound for RE to DFA conversion is tight.
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(a) δ(q0, ε) = {q0};
(b) If P = {q0, q1, qr+1} ∪ X, where X ⊆ {q2, q3, . . . , qr}, then δ(q0, 0r+1xP ) = P ;

(c) If P = {q1, q2} ∪ Y , where Y ⊆ {q3, q4, . . . , qr}, then δ(q0, 0r+11xP ) = P ;

(d) If P ⊆ {q2, q3, . . . , qr}, then δ(q0, 0r+11xP 1) = P .

Furthermore, all of these subsets are pairwise distinguishable (in the sense of [24,
p. 68]), with the exception that {q0} is equivalent to {q0, q1, qr+1}. The total number
of states needed is therefore 2r−1 + 2r−2 + 2r−1 = 5

42
r. 2

Open Problem 1. What is the worst case in RE to DFA conversion for alphabet
size ≥ 2?

One can also consider variations on Open Problem 1 involving restricted classes of
regular expressions. For example, consider regular expressions of the form

(w1 + w2 + · · ·+ wj)
∗,

where each wi is a word. Over a unary alphabet, the deterministic state complexity of
the corresponding language is bounded byO(n2), where n =

∑

1≤i≤j |wi|. This follows
immediately from classical results on the so-called Frobenius problem [9] which asks,
given a list of j integers a1, a2, . . . , aj with gcd(a1, a2, . . . , aj) = 1, find the largest
integer not representable as a non-negative integer linear combination of the ai.

Currently, only the trivial upper bound of 2n is known for the deterministic state
complexity in the case of non-unary alphabets. Finding a tight upper bound can be
thought of as the non-commutative generalization of the Frobenius problem.

For a long time, it was thought that the true state complexity of this problem was
O(n2). Recently, however, the third author found the following class of examples that
achieves 2Ω(

√
n).

Let t be an integer ≥ 2, and define strings as follows:

y := 01t−10

xi := 1t−i−101i+1, 0 ≤ i ≤ t− 2

Let St := {0, x0, x1, . . . , xt−2, y}. Thus, for example,

S6 := {0, 1111101, 1111011, 1110111, 1101111, 1011111, 0111110}.

Theorem 12 S∗t has state complexity 3t2t−2 + 2t−1.

The proof of this theorem is rather complicated, so we just sketch a proof of the
following slightly weaker result:

Theorem 13 sc(S∗t ) ≥ 2t−2.
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Proof. First, we create an NFA Mt = (Q, {0, 1}, δ, p0, F ) that accepts S∗t . This
NFA has 3t− 1 states

Q = {p0, p1, . . . , pt, q1, q2, . . . , qt−1, r1, r2, . . . , rt−1}
with only one final state F = {p0}. The transition function δ is defined as follows:

δ(p0, 0) = {p0, p1}
δ(pi, 1) = {pi+1}, 1 ≤ i ≤ t− 1

δ(pn, 0) = {p0}
δ(p0, 1) = {q1}
δ(qi, 1) = {qi+1}, 1 ≤ i ≤ t− 2

δ(qi, 0) = {ri}, 1 ≤ i ≤ t− 1

δ(ri, 1) = {ri+1}, 1 ≤ i ≤ t− 2

δ(rn−1, 1) = {p0}
For example, the NFA M6 is illustrated below.

1

000

111

1

1

0

00

1111

1

10 1

0

r5r4r3r2r1

q5q4q3q2q1

p6p5p4p3p2p1p0

11

Figure 1: The NFA M6

Let T be any subset of {r1, r2, . . . , rt−2}, and write T = {ri1 , ri2 , . . . , rij} for j
indices 1 ≤ i1 < i2 < · · · < ij ≤ t− 2. We claim that the 2t−2 strings

y xt−2y xt−3xt−2y xt−4xt−3xt−2y · · · x1x2 · · ·xt−2y xi1xi2 · · ·xijy
are pairwise inequivalent under the Myhill-Nerode equivalence relation.

To show this, we first argue that any subset of states of the form T ′ := {p0, rt−1}∪T ,
where T is as in the previous paragraph, is reachable from p0. We claim that the
following path reaches T ′:

{p0} y−→ {p0, rt−1}
xt−2y−→ {p0, rt−2, rt−1}

xt−3xt−2y−→ {p0, rt−3, rt−2, rt−1}
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xt−4xt−3xt−2y−→ · · · x1x2···xt−2y−→

{p0, r1, r2, . . . , rt−1}
xi1

xi2
···xij

y
−→ {p0, ri1 , ri2 , . . . , rij , rt−1}.

Finally, we argue that each of these subsets of states is inequivalent. This is because
given two distinct such subsets, say T ′ and T ′′, there must be an ri, 1 ≤ i ≤ t − 2,
that is contained in one (say T ′) but not the other. Then reading the string 1t−i takes
T ′ to p0, but not T ′′. 2

Since the alphabetic length of the strings in St is n = t2+ t+1, it now follows that
this example has state complexity 2Ω(

√
n).

Let us now turn to the unary case of RE to DFA conversion. Define

g(n) := max
∑

ni≤n
lcm(n1, n2, . . .).

It is known that g(n) = e
√
n logn(1+o(1)) (see, for example, [43]).

Theorem 14 Let E be a regular expression over a unary alphabet with |alph(E)| = n.
Then there exists a DFA accepting E with ≤ g(n)+(n−1)2+2 states. Furthermore for
each n there exists a regular expression E with |alph(E)| = n such that the smallest
equivalent DFA has g(n) states.

Note that e
√
n log n grows much more rapidly than (n − 1)2 + 2, so the upper and

lower bounds are (relatively) quite close.

Proof. By Theorem 10 we know there is a non-returning NFA of n + 1 states
accepting L(E). By a result of Mandl [39] this means there is a DFA with g(n) +
(n− 1)2 + 2 states accepting L(E).

For the lower bound, we first find the partition n = n1 + n2 + · · · + nt which
maximizes g(n). By a well-known result [43, p. 501] we may assume the ni are powers
of distinct primes, say ni = pei

i for 1 ≤ i ≤ t. Now let E = (an1)∗ + · · ·+ (ant)∗; this
has n alphabetic symbols.

It is easy to see that there is a DFA with n1n2 · · ·nt = g(n) states accepting
L(E). Such an automaton is cyclic, and we may assume the states are numbered
q0, q1, . . . , qg(n)−1. To see it is minimal, it suffices to show that for each i, j with
0 ≤ i < j < g(n) the states qi and qj are distinguishable in the sense of [24, p. 68].

Since 0 < j−i < g(n), there exists at least one nk such that nk|/j−i. By the Chinese
Remainder Theorem, there exists t such that t+j ≡ 0 (mod nk) but t+i ≡ 1 (mod nl)
for all l 6= k. Now t+ i ≡ i− j (mod nk), and so t+ i 6≡ 0 (mod nk). It follows that
qi and qj are distinguishable states, being distinguished by the string at. 2

We now turn to the converse problem, which has not received as much attention:
converting from a DFA or NFA to an RE. For unary languages, we have the following
easy result:
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Theorem 15 If L is a unary regular language, accepted by a DFA M with n states,
then it is specified by an RE of size O(n). Furthermore, there exist infinitely many
regular languages for which the smallest corresponding regular expression is of size
Ω(n).

Proof. We may assume without loss of generality that the transition diagram of
M is connected. This transition diagram has a “tail” of t ≥ 0 states and a “cycle” of
c ≥ 1 states, with n = t+ c. It follows that there exist sets A ⊆ {ε, a, . . . , at−1} and
B ⊆ {ε, a, . . . , ac−1} such that

L(M) = A+Bat(ac)∗ (2)

See, for example, [45]. Now, using the analogue of Horner’s rule mentioned above, we
can generate A with a regular expression of length O(t + 1), and B with a regular
expression of length O(c).

For the lower bound, consider the regular language {an−1}. This is accepted by
a DFA with n + 1 states, and specified by a regular expression of length n − 1. No
smaller regular expression will suffice, by Proposition 6. 2

Theorem 16 If L is a unary regular language, accepted by an NFA with n states,
then it is specified by a regular expression E with alph(E) ≤ 2n2 + 4n.

Proof. A theorem of Chrobak [12] says that for any unary NFA, there exists an
equivalent NFA in Chrobak normal form (where there is a “tail” of at most n2 + n
states, ending with a single nondeterministic state, followed by cycles with at most n
states in total). Using the analogue of Horner’s rule mentioned above in

�
2 this can

be converted into a regular expression with the stated length. 2

When implemented, this method appears to give results that are significantly
smaller than those produced by Grail [40].

Open Problem 2. Does there exist an infinite family of unary regular languages such
that the blow-up from number of states in an NFA to length of a regular expression
is quadratic?

Note that an O(n/ log n)n upper bound is known for the number of distinct lan-
guages accepted by unary NFA’s with n states [47]. If a matching lower bound could
be proved, this would show that there are unary regular languages, accepted by an
NFA with n states, that require Ω(n log n)-length regular expressions.

For languages over arbitrary alphabets we have the following upper bound, essen-
tially due to McNaughton & Yamada [41]:

Theorem 17 If L is a regular language, accepted by a DFA or NFA M =
(Q,Σ, δ, q1, F ) where |Q| = n and |Σ| = k, it can be specified by an RE E such
that |alph(E)| ≤ nk4n.
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Proof. We use the McNaughton-Yamada algorithm [41, 24]. We assume Q =

{q1, q2, . . . , qn}. The algorithm defines a sequence of regular expressions α
(l)
i,j which

specify all words taking the automaton from state qi to state qj without passing
through (i.e., both entering and leaving) a state numbered higher than ql. Then we
have

α
(l)
i,j := α

(l−1)
i,j + α

(l−1)
i,l α

(l−1)
l,l

∗
α
(l−1)
l,j .

If we define Tl = maxi,j |alph(α(l)i,j)| then clearly Tl ≤ 4Tl−1. Since T0 ≤ k, it follows

that Tn ≤ k4n. Now L(M) can be specified by the union of the α
(n)
1,i for all i with

qi ∈ F . The bound follows. 2

Although this upper bound seems large, other methods of NFA to RE conversion
(such as state elimination) seem to generate even larger upper bounds.

The preceding upper bound can be improved in certain special cases. For example,
if the transition diagram of the NFA has no long paths, we can get a better bound,
as the following theorem shows.

Theorem 18 Let G be a edge-labeled directed graph with n vertices and outdegree
bounded above by D. Suppose the number of edges in a longest simple path (not
repeating vertices or edges) in G that starts with vertex u is at most k. (By the length
of the path we mean the number of edges.) Then for all vertices v, there is a regular
expression E denoting all walks from u to v with |alph(E)| = O(Dk+1nk).

Proof. Fix a vertex s in G. We compute a set of regular expressions ts,q corre-
sponding to walks from s to vertices q of G. The procedure is recursive. First remove
all edges into s, and call the new graph G′.

Next suppose there is a directed edge s → p labeled a, with p 6= s. Let H ′ be the
subgraph of G′ containing all vertices reachable from p in G′. Since we have removed
all edges into s, the longest simple starting with p in H ′ is of length ≤ k− 1. We now
recursively construct expressions rp,j which are the regular expressions corresponding
to walks from p to vertex j in H ′. We do this for each p 6= s and edge s→ p.

Now we use the rp,j to construct expressions for walks from s to vertices j in G.
Let j1, j2, . . . , jl be the vertices in G distinct from s having an edge to s in G, labeled
a1, a2, . . . , al respectively. First, we construct regular expressions ts,s corresponding to
all walks from s to itself. Let s have b self-loops with labels c1, . . . , cb. Let p1, p2, . . . , pf
be vertices distinct from s having an edge from s with labels d1, d2, . . . , df , respec-
tively. Then we define

ts,s :=



(
∑

1≤i≤b

ci) +
∑

1≤i≤f

(di
∑

1≤m≤l

rpi,jm
am)





∗

. (3)

Finally, we construct ts,q for q 6= s. We define

ts,q := ts,s +
∑

1≤i≤f

dirpi,q. (4)

Correctness is left to the reader.
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It remains to estimate the size of the expressions ts,s and ts,q. Let g(k) denote the
maximum number of alphabetic symbols in any ts,q over all pairs s, q ∈ G (including
the case where s = q), over all G with outdegree bounded by D, such that the
length of the longest simple path starting from s to a vertex in G is ≤ k. Then we
have, using (3) and the inequalities b ≤ D, f ≤ D, and l ≤ n− 1, that |alph(ts,s)| ≤
D+D(1+(n−1)(g(k−1)+1)). Furthermore |alph(ts,q)| ≤ D(1+g(k−1))+|alph(ts,s)|.
It follows that g(k) ≤ D(n+ 2) +Dng(k − 1). Now a simple induction shows

g(k) ≤ (Dn)kg(0) +D(n+ 2)
(Dn)k − 1

Dn− 1
.

Since g(0) ≤ D, the result follows. 2

We observe that if k = o(n/ log n), then this bound is superior to that in Theo-
rem 17.

Another improvement on the upper bound in Theorem 17 arises from other special
classes of transition diagrams.

Theorem 19 Let M = (Q,Σ,∆, q0, F ) be an NFA with r states, such that its tran-
sition diagram can be drawn in the plane with no edges crossing. Then there exists a
regular expression E for L(M) with |α(E)| ≤ eO(

√
r).

Proof. The basic idea is divide-and-conquer. Instead of computing the regular
expression for L(M) by state elimination or the dynamic programming approach
of McNaughton-Yamada, which are iterative methods working one state a time, we
divide the transition diagram forM into two pieces and work on each piece separately.
This is similar to “nonserial dynamic programming” [37].

We use the following well-known theorem of Lipton & Tarjan [36]: if G is an
undirected planar graph with r vertices, then the vertices of G can be written as the
(not necessarily disjoint) union of two sets A and B such that

(a) there are no edges from A−B to B −A,

(b) |A−B|, |B −A| ≤ 2r/3, and

(c) |A ∩B| ≤
√
8r.

(Djidjev [16] improved the “8” in part (c) to “6”, and Alon, Seymour, & Thomas [4]
further improved this to 9/2.) We apply this theorem to the underlying undirected
graph of the transition diagram for M for all sufficiently large M . (For small M we
use the McNaughton-Yamada algorithm instead.)

Here is the idea: we find a planar partition of the vertices of the transition diagram
for M into A and B. Let C = A ∩ B, t = |C|, and C = {c1, c2, . . . ct}. Now suppose
qu, qv are both vertices of A; if qu ∈ A and qv ∈ B −A a similar argument applies.

We can now decompose any walk connecting qu to qv as follows: either we go from
qu to qv without leaving A, or the walk eventually leaves A and enters B −A. If the
latter, it must leave A through a vertex of C, since there are no edges connecting
A − B to B − A. Now the walk is in B − A. Since qv ∈ A, at some point the walk
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must leave B−A and return to A, and it can do so only through a vertex of C. This
“ping-pong” between A and B −A can occur arbitrarily many times. Eventually we
leave B −A and return to A, and finally we enter qv.

We can now create an NFA M ′ = (Q′,∆, p0, δ, F ) that encodes this walk in its
transitions, with a single symbol representing a sequence of transitions for M . This
NFA has 2t+ 3 states, and is defined as follows:

Q′ = {p0, p1, . . . , pt, p′1, . . . , p′t, f1, f2}
∆ = {[ci, cj , A], 〈ci, cj , B −A〉 : 1 ≤ i, j ≤ t}

∪ {[u, ci, A], [ci, v, A] : 1 ≤ i ≤ t}
∪ {[u, v,A]}

δ(p0, [u, v,A]) = f1

δ(p0, [u, ci, A]) = pi, 1 ≤ i ≤ t

δ(pi, 〈ci, cj , B −A〉) = p′j , 1 ≤ i, j ≤ t

δ(p′i, [ci, cj , A]) = pj , 1 ≤ i, j ≤ t

δ(p′i, [ci, v, A]) = f2

F = {f1, f2}.
Here the symbol [x, y, S] is intended to represent all walks from x to y in the transition
diagram of M , such that all internal vertices lie in S. The symbol 〈x, y, S〉 is similar,
but adds the extra condition that this walk has at least one vertex in S.

Since |Q′| = 2t+3 and |Σ′| = 2t2+2t+1, it follows from the proof Theorem 17 that
we can construct a regular expression E for L(M ′) with at most 1+(2t2+2t+1)42t+3

alphabetic symbols. (The “1” comes from the path from p0 to f1, and the other term
corresponds to the path from p0 to f2.) Now for each symbol of the form [x, y, S] we
recursively determine regular expressions specifying the labels of walks from x to y
with internal nodes in S. We then substitute these regular expressions for [x, y, S] in
E.

A slightly different procedure is needed for symbols of the form 〈ci, cj , B−A〉. For
these we create a digraph G with vertices (B − A) ∪ {c1, . . . , ct} ∪ {c′1, . . . , c′t} and
labeled edges those induced by the subgraph B −A, together with edges

{ci a→ q : q ∈ B −A}

and

{q a→ c′i : δ(q, a) = ci}.

We then use the procedure of Theorem 17 to find a regular expression for all walks
from ci to c′j in G. This digraph has |B| + |C| ≤ 2r/3 + 2

√
8r states. Again, we

substitute these regular expressions for 〈ci, cj , B −A〉 in E.

If we let T (n) denote the length of the resulting regular expression denoting all
walks between two vertices in an NFA with n states, we get the recurrence relation

T (n) ≤ 4O(
√
n)T (2n/3 + 2

√
8n),
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which has the solution T (n) ≤ eO(
√
n). Since the expression we construct represents

all paths going from qu to qv, it follows that we can construct such an expression that
represents all paths from the original start state to the original final states. Then the
resulting regular expression specifies L(M), and has size ≤ nT (n) = eO(

√
n). 2

Not much seems to be known about the class of languages possessing planar DFA’s.
It is known that inherently nonplanar DFA’s exist (i.e., DFA’s for which no planar
DFA accepts the same language) [8].

We note that the eO(
√
n) upper bound also holds for any family of NFA’s whose

transition diagrams are of bounded genus [20], or exclude any fixed complete graph
Ki as a minor [3].

As an example, consider the languages

Ln = {x ∈ {a, b}∗ : |x|a ≡ |x|b ≡ 0 (mod n)}

for n ≥ 1. The language Ln can be accepted by an NFA with n2 states, as illustrated
in Figure 1 for the case n = 4.

a a a

a a a

a

a

a a a

a

a a a

a

b

b

b

b

b

b

b

b

b

b
bb

b

b

b
b

Figure 2: NFA for the language L4 = {x ∈ {a, b}∗ : |x|a ≡ |x|b ≡ 0 (mod 4)}

Since this transition diagram can be embedded in a torus (which is of genus 2), it
follows that there are regular expressions of size eO(n) for Ln.
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It seems like divide-and-conquer, combined with a heuristic graph separator al-
gorithm (e.g., [46]), or an approximation algorithm (e.g., [19]) would be a powerful
technique for creating relatively short regular expressions for arbitrary automata in
software packages such as Grail [49].

Finally, the upper bound of Theorem 17 can be improved in the case of finite
languages, as we will prove in a corollary of the result below.

Theorem 20 Let A = (Q,Σ, δ, q0, F ) be a DFA or NFA with t states, over an al-
phabet of size k = |Σ|. Write Q = {q0, q1, . . . , qt−1}. Then for all qi, qj ∈ Q and
n ≥ 1 there is a regular expression E denoting all walks of length n from qi to qj
with |alph(E)| < k(t + 1)n(log2 t)+1. The same bound holds for a regular expression
denoting all walks of length ≤ n.

We need the following lemma:

Lemma 21 Suppose V (n) = s(V (bn2 c) + V (dn2 e)) for n ≥ 2. Then

V (n) = V (1)(2bsa+1 + (2a − b)sa)

for all n ≥ 1, where n = 2a + b, 0 ≤ b < 2a.

Proof. By induction on n. The result is clearly true for n = 1. Now assume it is
true for all n′ < n. We prove it for n. By induction we have

V (bn
2
c) = V (2a−1 + b b

2
c)

= V (1)(2b b
2
csa + (2a−1 − b b

2
c)sa−1).

Similarly,

V (dn
2
e) = V (1)(2d b

2
e)sa + (2a−1 − d b

2
e)sa−1).

Now the result follows from V (n) = s(V (bn2 c) + V (dn2 e)). 2

Now we can prove Theorem 20:

Proof. We use an old idea that can be found, for example, Burks & Wang [11],
Glushkov [22, Thm. 22], and Ehrenfeucht & Zeiger [18].

Create a t × t matrix M = (mi,j)0≤i,j<t such that mi,j is a regular expression
specifying all labeled edges taking A from state qi to state qj . We can now define
a multiplication for such matrices, where ordinary addition is replaced by + and
ordinary multiplication by concatenation. More precisely, if N = (ni,j)0≤i,j<t, then
MN = (ui,j)0≤i,j<t, where

ui,j = (mi,1)(n1,j) + · · ·+ (mi,t−1)(nt−1,j). (5)

Then it is easy to see that if Mk = (m
(k)
i,j )0≤i,j<t, then m

(k)
i,j is a regular expression

specifying the labels of all length-k walks from qi to qj .
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Now define S(n) = max0≤i,j<t |alph(m(n)
i,j )|. From Eq. (5) we see that

S(n) ≤ t(S(bn
2
c) + S(dn

2
e)).

Now use Lemma 21 with V (1) ≤ k and s = t. We get

S(n) ≤ k(2bta+1 + (2a − b)ta)

< k(nt1+log2 n + ntlog2 n)

= kn(t+ 1)tlog2 n

= kn(t+ 1)nlog2 t

= k(t+ 1)n(log2 t)+1,

as desired. Here we have used the inequalities b < n
2 , 2

a − b ≤ n, and a ≤ log2 n.
Now consider a regular expression for all strings of length ≤ n. Our analysis above

can then be repeated without change, except for the following: we add ε to each entry
on the diagonal of M . 2

Corollary 22 If A is a DFA or NFA with r states over a k-letter alphabet, and L(A)
is finite, then there is a regular expression E specifying L(A) with

|alph(E)| ≤ kr(r + 1)(r − 1)(log2 r)+1.

Proof. Such a machine accepts no strings of length ≥ r. Use Theorem 20 with
t = r and n = r− 1. Finally, the strings accepted by A correspond to paths from the
initial state to all final states, so we get an extra multiplicative factor of r. 2

After this abundance of upper bounds, we state the following

Open Problem 3. Do there exist a constant c, a fixed alphabet Σ, and a family
of languages Ln (n ≥ 1) defined over Σ, accepted by DFA’s (resp. NFA’s) with f(n)
states, such that the smallest corresponding regular expression has size 2cf(n)?

Trivial lower bounds follow from basic enumeration results for the languages ac-
cepted by DFA’s and NFA’s [17].) Namely, there exist DFA’s over an alphabet of size
2 or greater where the corresponding regular expressions have length Ω(n), and there
exist NFA’s over an alphabet of size 2 or greater where the corresponding regular
expressions have length Ω(n2). Ehrenfeucht & Zeiger [18] gave a family of examples
with n states achieving exponential blow-up, but their alphabet size grew quadrati-
cally with n. Only in 2000 was any nontrivial lower bound proved for fixed alphabet
size: building on the approach of Ehrenfeucht & Zeiger, Waizenegger [51] gave an
example of an NFA over a 4-letter alphabet such that the smallest corresponding
regular expression has at least Ω(2

3
√
n) alphabetic symbols.

In particular, it would be interesting to determine the size of the minimum regular
expressions for the following languages:
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� Σ∗wΣ∗ for w ∈ {0, 1}∗. This language can be accepted by a DFA with |w|+ 1
states. For certain w (e.g., w = 0n), there are short regular expressions but for
other w (e.g., the finite Fibonacci words [6]), the expressions appear to be long.

� The language of strings over {0, 1} representing numbers in base 2 divisible by n.
This language can be accepted by e+ r states, where n = 2e · r, r odd. Regular
expressions for this language seem large, particularly when n is a prime.

New techniques seem to be needed here. Perhaps techniques from circuit complex-
ity may be helpful. As an example, consider the language

Ln = {w ∈ {0, 1}∗ : |w| = n, |w|1 is even}.

There is a DFA of size 2n+ 1 that accepts Ln. We show

Theorem 23 The minimal regular expression for Ln is of size Ω(n2).

Proof. To prove this lower bound we show how to transform a regular expression
for Ln into a boolean formula for Ln of the same size. Our lower bound then follows
from Khrapchenko’s Ω(n2) lower bound for the boolean formula size of Ln [28, 54].
The transformation we define below can be applied to any regular expression that
specifies a binary language where all words in the language have the same length.

The transformation works as follows. Let R be a regular expression for a language
L where all words in L have length n. Note that since words in L have the same
length, each alphabetic symbol in R matches exactly one position of a word in L. We
will use this fact below. We go through the regular expression R and do the following:

1. If we encounter an alphabetic symbol a and amatches position i, then we replace
a by xi if a = 1 and by ¬xi if a = 0.

2. If we encounter + (union), then we replace + by ∨ (OR).

3. If we encounter · (concatenation), then we replace · by ∧ (AND).

4. We leave the parenthesis unchanged.

Let the resulting boolean formula be B = χ(R). We claim that

Lemma 24 (a1, a2, · · · , an), ai ∈ {0, 1} is a satisfying assignment for B if and only
if a1a2 · · · an ∈ L.

Proof. We proceed by induction on the alphabetic length of R.
Base case: |R| = 1. In this case R contains exactly one alphabetic symbol. The

lemma follows immediately from the definition of B.
Inductive case:

1. R = R′ +R′′. Let B′ = χ(R′) and B′′ = χ(R′′). From the definition, we have

B = χ(R) = χ(R′) ∨ χ(R′′) = B′ ∨B′′.
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By definition, (a1, · · · , an) is a satisfying assignment for B if and only if it is
a satisfying assignment for B′ or B′′. By induction, (a1, · · · , an) is a satisfying
assignment for B′ or B′′ if and only if a1 · · · an ∈ L(R′)∪L(R′′). So the lemma
is true in this case.

2. R = R′R′′. Let B′ = χ(R′) and B′′ = χ(R′′). From the definition, we have

B = χ(R) = χ(R′) ∧ χ(R′′) = B′ ∧B′′.

By definition, (a1, · · · , an) is a satisfying assignment for B if and only if it is a
satisfying assignment for B′ and B′′. By construction, there exists i such that
B′ is a boolean formula on the variables (x1, · · · , xi) and B′′ is a boolean for-
mula on the variables (xi+1, · · · , xn). So by induction (a1, · · · , ai) is a satisfying
assignment for B′ if and only if a1 · · · ai ∈ L(R′) and (ai+1, · · · , an) is a satisfy-
ing assignment for B′′ if and only if ai+1 · · · an ∈ L(R′′). Hence (a1, · · · , an) is
a satisfying assignment for B if and only a1 · · · an ∈ L. So this case is true and
we are done.

2

To complete the proof of Theorem 23, note that the standard definition of size of
B = χ(R) equals the alphabetic size of R. It follows that |R| = |B| = Ω(n2). 2

One can also ask similar questions for converting from a DFA or NFA to a GRE,
but no nontrivial lower bounds appear to be known here.

We now turn to another question about GRE’s. What is maximum possible size
blow-up in going from a GRE to RE? (As mentioned before, to avoid trivialities, we
must use the reverse polish length or ordinary length when measuring the size of the
GRE.)

Surprisingly, the blow-up is not even elementary. (By “elementary”, we mean a
function of the form

22
2···2

n

where the number of 2’s is bounded.) This seems to be a “folklore” result apparently
first published by Dang [14]. (For a related result, see [48].)

Theorem 25 The worst-case size blow-up from GRE to RE is not elementary.

Here is an argument, suggested to us by Albert Meyer (personal communication):

Proof. Suppose every GRE R of size n has an equivalent RE R′ having ≤ f(n)

alphabetic symbols. where f(n) is an elementary function of the form 22
···2n

for some
finite number of levels of exponents.

Now by Theorem 10, R′ can be converted to an equivalent DFA having at most
≤ 2f(n)+1 states. But, as is well-known, a DFA M of t states accepts the empty
language if and only if it accepts no string of length < t [24, pp. 63–64]. Hence we
would have the following algorithm A for determining if L(R) = ∅: for each string x
of length ≤ 2f(n)+1, determine if x ∈ L(R). If the answer is no for all these x, return
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“yes”; otherwise, return “no”. Since we can decide if x ∈ L(R) in time polynomial in
x+ |R| ([24, pp. 75–76]; [23, 31]) the running time of algorithm A is elementary. But
this contradicts a well-known result of Stockmeyer that there is no algorithm that
runs in elementary time which decides if the language specified by a GRE is empty.
([2, p. 422], [50]). 2

For the unary case, however, the situation is somewhat different. Let sc(L) denote
the deterministic state complexity of a regular language L, i.e., the number of states in
a minimal DFA for L. Yu, Zhuang, & Salomaa [52] proved that, for unary languages
L1 and L2 we have

sc(L1L2) ≤ sc(L1)sc(L2)

sc(L1 ∪ L2) ≤ sc(L1)sc(L2)

sc(L1 ∩ L2) ≤ sc(L1)sc(L2)

sc(L1) = sc(L1)

sc(L∗1) ≤ (sc(L1)− 1)2 + 1.

(For further results along these lines, see [45].) From this, a result of Dang [15] easily
follows:

Theorem 26 For an generalized regular expression over a unary alphabet {a}, define
its “refined length” as follows:

rlen(r1r2) = rlen(r1) + rlen(r2)

rlen(r1 + r2) = rlen(r1) + rlen(r2)

rlen(r1 ∩ r2) = rlen(r1) + rlen(r2)

rlen(¬r1) = max(rlen(r1), 1)

rlen(r∗1) = 2rlen(r1)

rlen(a) = 1

rlen(ε) = rlen(∅) = 0.

(Note this definition of length is non-standard.) Then sc(L(r)) ≤ 3rlen(r).

4. Operations on regular languages

In this section we examine how various operations involving regular languages affect
the length of the regular expression representing them.

In particular, what is maximum blow-up in going from an RE for L to the shortest
possible RE for L = Σ∗ − L? For the unary case optimal results are known.

Theorem 27 If E is a regular expression with |alph(E)| = n specifying a unary

regular language L, then there exists a regular expression E ′ of length eO(
√
n logn)

specifying L. Furthermore, there exist infinitely many regular languages for which
this bound is achieved.
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Proof. Convert the RE to an NFA using the usual method; convert the NFA to a
DFA using the subset construction, interchange accepting and non-accepting states,
and convert the resulting DFA to an RE. The first, third, and fourth steps involve
only a linear blow-up, while the second can increase the size of the resulting DFA by
e
√
n logn, as is well-known (e.g., [12, 39, 38]). This gives a bound of eO(

√
n log n).

This upper bound can be achieved using an expression like

ε+ r1(00)
∗ + r2(000)

∗ + r4(00000)
∗ + · · ·+ rp−1(0

p)∗

where rn is the regular expression defined above in Section 2, and p is the largest prime
≤ n. Using a result from [5], this regular expression is of length t = O(n2/(log n)).

However, the regular expression for the complement is of length eO(
√
t log t), since the

shortest string in the complement is 0p1p2···pk , where p1, p2, . . . , pk = p are the primes
≤ n, and by the prime number theorem we have p1p2 · · · pk = en(1+o(1)). 2

How about the case of larger alphabets? For the upper bound, the best result we
currently know is doubly-exponential. First convert the RE to a DFA, interchange
accepting and non-accepting states; and, finally, convert back to an RE. This gives
an upper bound of the form c2

n

for a constant c.
For a lower bound, we have the following examples.

Theorem 28 Define En = (0 + 1)∗0(0 + 1)n−10(0 + 1)∗. Then

(a) En is a regular expression with |alph(En)| = 2n+ 4;

(b) L(En) is accepted by a minimal DFA with 2n + 1 states;

(c) L(En) is accepted by an NFA with n+ 2 states;

(d) L(En) is not accepted by any NFA with < 2n states;

(e) L(En) is not specified by any regular expression E with |alph(E)| < 2n − 1.

Proof. (a) Clear.
(b) follows because we can accept L(En) with 2n+1 states by using a state labeled

with every string of length n, indicating the last n symbols seen, plus one more state
for the accepting state once we detect 0(0 + 1)n−10. The initial state is [111 · · · 1].

To see this is minimal, we use the Myhill-Nerode theorem. Note that for the states
labeled with strings, say w and w′, we must have w and w′ differ in some letter.
Without loss of generality, assume w has a 0 in position i but w′ does not. Now
append enough 1’s and then a 0 to make the 0 in position i occur n symbols from the
added 0. Now w will be accepted and w′ won’t be. To see the additional accepting
state is distinguishable from all the labeled states, note that ε distinguishes them.

(c) Easy. Use a state that loops on everything, followed by a transition on 0,
followed by n transitions on everything, followed by a transition on 0, followed by a
state that loops on everything.

(d) Use Birget’s theorem (Theorem 7). If w ∈ {0, 1}∗, let w̃ be the string obtained
from w by changing every 0 to a 1 and vice-versa. In Birget’s theorem let S be the
set of pairs

{(w, w̃) : w ∈ {0, 1}n}.
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Clearly ww̃ ∈ L(En), since any two symbols that are n positions apart are different.
Now if w 6= x then (say) there is a 0 in a position in w that has a 1 in the corresponding
position of x. Then wx̃ ∈ L(En) since there are two 0’s n positions apart.

(e) If L(En) were specified by a regular expression with 2n−1 symbols there would
be an NFA for L(En) with 2n states by Theorem 10, a contradiction. 2

This leads to

Open Problem 4: What is the maximum achievable blow-up in going from a regular
expression for L to a shortest regular expression for L?

Here is an interesting example over a class of growing alphabets. Define Σn :=
{1, 2, ..., n} and define Pn := {w ∈ Σ∗ : for all i, 1 ≤ i ≤ n, i occurs exactly once
in w}. In other words, Pn is the language of all strings representing permutations of
{1, 2, . . . , n}. For example, P3 = {123, 132, 213, 231, 312, 321}.

Theorem 29 No NFA with < 2n states can accept Pn. No regular expression with
< 2n−1 symbols can specify Pn. However, there is a regular expression of length O(n2)
that can specify Pn.

Proof. To see this, use Birget’s theorem (Theorem 7). Let the set of pairs be
{(w,w′) : w is a word formed by concatenating the symbols of any subset S of Σn,
and w′ is a word formed by concatenating the symbols of Σn − S}. For example,
for n = 3 we can take {(ε, 123), (1, 23), (2, 13), (3, 12), (12, 3), (13, 2), (23, 1), (123, ε)}.
Then by the theorem in that paper any NFA accepting Pn must have as many states
as there are pairs, so at least 2n.

Now we claim no regular expression with < 2n−1 symbols can generate Pn. For if
so, by the usual method of converting a regular expression to an NFA there would be
an NFA with < 2n symbols accepting Pn, a contradiction.

However, there is a regular expression for Pn with O(n2) symbols. We just give it
by example for n = 4:

(1 + 2 + 3)∗ + (1 + 2 + 4)∗ + (1 + 3 + 4)∗ + (2 + 3 + 4)∗+

(1+2+3+4)∗(1(1+2+3+4)∗1+2(1+2+3+4)∗2+3(1+2+3+4)∗3+4(1+2+3+4)∗4)(1+2+3+4)∗

2

This example is particularly interesting because we can prove a similar result for
context-free representations of Pn.

Theorem 30 Let G = (V,Σ, P, S) be a grammar in Chomsky normal form generating
Pn. Then |V | = Ω(n−3/2dn), where d = 3/22/3

.
= 1.89.

First, we need the following lemma:
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Lemma 31 If S =⇒∗ w is a derivation of a word in some CNF grammar G, and
|w| > 1, then there exists a variable A participating in the derivation,

S =⇒∗ αAβ =⇒∗ w

such that if y represents the yield of A, then |w|/3 ≤ |y| < 2|w|/3.

Proof. Consider the derivation tree T corresponding to the derivation. The yield
of S is of length |w|. Now trace a path from S down to a leaf, at each point choosing
the variable with the larger yield. Eventually we reach a variable with yield 1; since
|w| > 1 the yield y of this variable satisfies |y| < 2|w|/3. Thus there must be a
variable, call it A, for which its yield y satisfies |y| < 2|w|/3, but for which its parent
variable B has yield z satisfying |z| ≥ 2|w|/3. We claim A is the desired variable. For
since we always chose the variable with the larger yield, we must have |y| ≥ |w|/3. 2

Now we can prove Theorem 30.

Proof. Now let Pn be the language of all permutations of {1, 2, . . . , n}, n > 1, and
let G be a Chomsky normal form grammar generating Pn. Without loss of generality
assume all variables are useful (participate in some derivation of some word in Pn).

First we note that if C is a variable of G, then

(i) all strings generated by C are of the same length

(ii) every string generated by C is a permutation of all the other strings generated
by C.

For if (i) were not true then G would generate a string of length other than n, and
if (ii) were not true then G would generate some string that is not a permutation of
{1, 2, . . . , an}.

Choose any word w ∈ Pn. We show how to associate with w a pair (A, k) where
A is a variable in G and k is an integer from 0 to n− 1 representing a position in w.
From the Lemma there exists a variable A such that A generates a subword y of w
with |w|/3 ≤ |y| < 2|w|/3. (There may be as many as 3 such; just pick one.) This
subword y occurs at a uniquely defined position k within w. Associate w with the
pair (A, k).

Now consider all the pairs (A, k) so assigned. How many words can be associated
with a fixed pair (A, k)? Now A generates words of a fixed length r, and by the
argument above n/3 ≤ r < 2n/3. So there are r! different possibilities for the words
generated by A. Furthermore, there are n − r remaining letters once the word gen-
erated by A is removed. So there are at most r!(n − r)! possible words associated.
with (A, k). But there are n! words in all, so there are at least n!/(r!(n − r)!) =

(

n
r

)

distinct pairs (A, k). But k can take n different values, so the grammar must contain
are at least (n− 1)!/(r!(n− r)!) different variables A. Since the binomial coefficients
(

n
k

)

increase monotonically from k = 0 to k = bn2 c, this bound is minimized in the

range n/3 ≤ r < 2n/3 at the extreme points, which gives us the bound 1
n

(

n
bn/3c

)

.

Asymptotically, this bound is equal to Ω(n−3/2dn), where d = 3/22/3, using Stirling’s
formula. 2
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We now turn to intersection. Given RE’s E1, E2, withm and n alphabetic symbols,
respectively, what is the shortest regular expression for L(E1)∩L(E2)? By converting
to an NFA, forming the direct product, and converting back to an RE, we get an upper
bound of the form c(m+1)(n+1). However, we do not currently know an example where
the blow-up exceeds cmn.

Open Problem 5: What is the maximum achievable blow-up in going from regular
expressions for L1, L2 to a shortest regular expression for L1 ∩ L2?

In the unary case we can get an upper bound of O((mn)2) using Chrobak normal
form. Can this be achieved?

There are some interesting variations on these problems. Zhivko Nedev of Wilfrid
Laurier University (personal communication, June 2001), asked, what is the worst-
case in going from a regular expression R to a regular expression for L(R)∩Σn? From
Theorem 20, we know that we can find a regular expression E for L(R) ∩ Σn with
|alph(E)| ≤ k(r + 1)(r + 2)nlog2(r+1)+1, where k = |Σ| and r = |alph(R)|. A similar
bound holds for L(R) ∩ Σ≤n.

5. Shortest string not specified by a regular expression

Suppose we have a regular expression E with |alph(E)| = n over a finite alphabet Σ
with L(E) 6= Σ∗. How long can the shortest string not specified by E be?

An upper bound of 2n can be obtained as follows: first, convert E to a DFA of at
most 2n + 1 states. Next, interchange accepting and non-accepting states, and look
for the shortest string accepted. This is of length at most 2n. Can this bound be
achieved?

We can get 2cn as follows: we create a regular expression that represents all strings
except the numbers 1, 2, . . . , 2n − 1 (suitably encoded) listed in increasing order, sep-
arated by a special delimiter symbol #. To verify that a string is not of this form, we
only need verify either that it is syntactically incorrect, or that it contains a substring
of the form #x#w# where w does not denote a binary number that is 1 more than
that denoted by x. (For a similar construction, see Kumar [30].)

To make life even easier, we will assume that the representations for n also include
those for n− 1. We do this by treating the base-2 representations of both numbers in
parallel, writing one expansion above the other and using the alphabet {0, 1}×{0, 1}.
Thus for n = 3 the only string not specified will be

#
0 0 0

0 0 1
#
0 0 1

0 1 0
#
0 1 0

0 1 1
#
0 1 1

1 0 0
#
1 0 0

1 0 1
#
1 0 1

1 1 0
#
1 1 0

1 1 1
#.

Note that the strings in the top row encode the integers from 0 to 23 − 2, inclusive,
while the strings in the bottom row encode the integers from 1 to 23 − 1, inclusive.
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We now recode this over the alphabet {a, b, c, d, e}, as follows:

0

0
→ a;

0

1
→ b;

1

0
→ c;

1

1
→ d;

#→ e.

Thus, for n = 3 the only string not specified will be

eaabeabceadbebccedabedbceddbe.

Now we construct the necessary regular expressions. We use the abbreviation
Σ = {a, b, c, d, e}.

1. E1: the first n+ 2 symbols are not ean−1be. For n = 4 this is

ε+ e(ε+ a(ε+ a(ε+ a(ε+ b))))+

((ε+ eaaab)(a+ b+ c+ d) + e(ε+ a(ε+ a))(b+ c+ d+ e)eaaa(a+ c+ d+ e))Σ∗.

We have |alph(E1)| = 4n+ 18.

2. E2: the last n+ 2 symbols are not edn−1be. For n = 4 this is

ε+ (ε+ (ε+ (ε+ (ε+ d)d)d)b)e+

Σ∗((a+ b+ c+ d)(ε+ dddbe) + (a+ c+ d+ e)e+ (a+ b+ c+ e)(ε+ (ε+ d)d)be).

We have |alph(E2)| = 3n+ 20.

3. E3: the string has two consecutive e’s: Σ∗eeΣ∗. We have |alph(E3)| = 12.

4. E4: the string has a block of more than n consecutive digits:
Σ∗(a+ b+ c+ d)n+1Σ∗. We have |alph(E4)| = 4n+ 14.

5. E5: the string has a block of length < n between two e’s:
Σ∗e(a+ b+ c+ d+ ε)n−1eΣ∗. We have |alph(E5)| = 4n+ 8.

6. E6: the string has a block of the form ex
y e where [y]2 6= [x]2 + 1:

Σ∗e(a+ d) ∗ (c+ e+ bc∗(a+ b+ d))Σ∗.

We have |alph(E6)| = 20.

7. E7: the string has a block of the form ex
y e

y′

z e where y 6= y′:

Σ∗( (a+ c)Σn(c+ d) + (b+ d)Σn(a+ b) )Σ∗.

We have |alph(E7)| = 10n+ 18.

Our regular expression E1 + E2 + E3 +E4 + E5 + E6 + E7 proves
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Theorem 32 For each n ≥ 3 there is a regular expression E over the alphabet
{a, b, c, d, e} with |alph(E)| = 25n + 110 such that the shortest string not specified
is of length (2n − 1)(n+ 1) + 1.

We can convert this example to an example over the alphabet {0, 1}, as follows.
First, we apply the morphism sending a → 000, b → 001, c → 010, d → 011, and
e → 111 to each of the regular expressions E1, E2, . . . , E7. Next, we supplement the
resulting regular expression with two additional ones:

8. E8: strings of length divisible by three, containing one of the three excluded
triples:

((0 + 1)(0 + 1)(0 + 1))∗(100 + 101 + 110)((0 + 1)(0 + 1)(0 + 1))∗.

We have |alph(E8)| = 21.

9. E9: strings of length not divisible by three: ((0+1)(0+1)(0+1))∗(0+1)(0+1+ε).
We have |alph(E9)| = 10.

This gives

Theorem 33 For each n ≥ 3 there is a regular expression E over the alphabet {0, 1}
with |alph(E)| = 75n + 361 such that the shortest string not specified is of length
3(2n − 1)(n+ 1) + 3.

Open Problem 6. For a regular expression E over {0, 1}, define

lssns(E) =

{

min{|x| : x ∈ Σ∗ − L(E)}, if L(E) 6= Σ∗ ;

0, if L(E) = Σ∗.

Define h(n) = max|alph(E)|=n lssns(E). By Theorem 33 we know h(n) > 2n/75 for all
n sufficiently large, and as above h(n) ≤ 2n. Find a closed form for h(n) or better
upper and lower bounds.
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