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Expected Length of the Longest Probe Sequence
hm Code Searching

GASTON H. GONNET

University of Waterloo, Waterloo, Ontario, Canada.

ABSTRACT. We investigate the expected value of the maximum number of accesses needed to locate
any element in a hashing file under various collision resolution schemes. This differs from usual worst
case considerations which, for hashing, would be the largest sequence of accesses for the worst possible
file. We find asymptotic expressions of these expected values for full and partly full tables. For the
open addressing scheme with a clustering-free model we find these values to be 0.6315...Xn for a full
table and ® —logn for a partly full table, where 1 is the number of records, M is the size of the
table, and @=n /m. For the open addressing scheme which reorders the insertions to minimize the
worst case under a random probing model, we find the tight lower bounds In n+1.077... and
[—a‘l In(1—a)] for full and partly full tables respectively. Finally for the separate chaining (or
direct chaining) method, we find both expected values to be R’I‘"l(n). These results show that for
these schemes, the actual behaviour of the worst case in hash tables is quite good on the average.

KEY WORDS AND PHRASES: table search, hashing, analysis of algorithms, worst case, open
addressing, separate chaining, direct chaining, asymptotic analysis, optimal hashing, minimax hashing,

expected value, average case.
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1. Introduction

It is well known that a hash table with n keys inserted may have a worst case of n
accesses to insert (or locate) an element; that is, the last key inserted may require
up to n probes. This, however, is the worst case for the worst possible table. For
some hashing schemes, this worst case occurs with a ridiculously small probabil-
ity. This result, besides being discouraging, does not contribute any information
about the ordinary behaviour of the length of the longest probe sequence (/lps for
short) in a random file. In other words, the /lps of a table is a random variable;
we know that this random variable has a maximum value of », but its average
value, i.e. the average llps, is also of interest.

In this paper we find asymptotic expressions of the average /ips for full and
partly full tables under three hashing schemes: open-addressing with a clustering-
free hash function (uniform probing), a reordering scheme for open-addressing
which minimizes the /lps, and separate (or direct) chaining.

Sections 2, 3 and 4 are mathematically oriented and give the derivation of
the new results for each of the hashing schemes analyzed. Finally the last section
presents a comparative table of results, along with some conclusions.

We use the following standard notation to describe asymptotic performance.

f(m) = O(g(m)) when | f(m)| <k|g(m)| for m>my,

fim) = o(g(m) when lim f(m)/g(m) = 0,

f(m) = 0(g(m)) when k 1g(m)f(m)<k g(m) for m>mg and k ,k #0
and

f(m) = g(m) when Ji_lpmf(m)/g(m) = L

Furthermore, we will always use m to denote the size of the table, and n to
denote the number of elements inserted in the table.
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2. Average Length of the Longest Probe Sequence for Open-Addressing
In this section we use a clustering-free model for a ha<' 'ng function. To insert a

key using this scheme, we probe the table following a ence of positions which
is a random permutation of all table locations. Thi ¢l is usually called uni-
form probing {14]. The work by Guibas and < 1 1,10} shows that, up to a
certain load factor, second or higher order < ng is asymptotically equivalent

to uniform probing.

2.1. Full tables

It is well known that the average length of the longest probe sequence (/lps) of a
full table organized with uniform probing is ©(n) (the last key requires (n+1)/2
probes on the average). We are interested in finding the factor which multiplies n
for the average /lps.

Inserting elements into a table of size m we ..ud

I—M .1

Prij™ last key requires < k probes} = 4
m

where x% indicates the descending factorial x*=x(x-1)..(x =k +1), and the
15 Jast is the last, the 2 ast is the next to last, and so on.

In the uniform probing hashing scheme, ali probe paths are independent;
consequently the /[ps among the last j keys has a probability distribution given by

1—1’—";’&} (2.2)

Prilips among last j keys < k} = H

i=1

mk

We next compute the expected value of the /lps among the last j keys based on
this probability distribution. If we express the expected value as

E[X] = i2>li[Pr[X>i—ll—Pr{X>i}] = 2>0Pr{x>i},

we find that the expected value can be given by
E{llps among last j keys] = f {I—H [I—Lm—_li-zlf} } (2.3)
k=0 i=1 m
For any fixed j, when m—>o we may use the transformation
(m —JJL')L _ m=m=j=1).(m—k+D).(m—j=k+l) _ (m=k)
m

mm=—1)...(m—j)..(m—-k+1) m*+
(m—ky— ; (m—k) ~1+..
mI— é mJ 74
L 3 T R PP
m 2 lm-k m

Computing uniform asymptotics [4] with respect to k (the maximum value occurs
for k =m /j) we obtain
) J
e _i)k = [m k1 v om, (2.4)
m m

Using (2.4) in (2.3) gives us

E[llps among last j keys] = m []——Lilﬁ {1- [mn:k
=0 =1
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We can simplify this using the substitution y = (m —k)/m and by changing the
sum to an integral (since m—). This yields '

T
E[llps among last j keys] = m {l—fn (1- Ndy} + 0(1). (2.9)
0

i=1

For the latter step we bound the differcnce b: tween the sum and the integral
using the fact that the integrand has total variation . For each j, when m-—>mo,
our expected value has the form

Elllps among j last keys] = c¢;m+0(1).

The sequence of constants c; is bounded above by 1 and is monotonically increas-
ing; thus converges, and has a limiting value which is given by

| o
lime; = 1 =TT =y’ dy. (2.6)

jre “0Ti=1
To compute this integral we use Euler’s identity related to partitions, also a spe-
cial case of Jacobi’s identity [1,12]

ﬁ (]__Xi) - Em (‘l)ix(3i2+i)/2.
i=1 i=—o
We substitute this into (2.6) and evaluate the integral to obtain

Elllps] = m{l—z‘ 3%:—%}+ o), Q.7)

Thus we have the following.

THEOREM The expected length of the longest probe sequence using uniform
probing in a full hash table of size m is given by (2.7). This can be evaluated by
standard summation techniques [11] to give

%
y sinh(w %—Z—} )
Elllps] = <1- 12 7 Xm+0(1),
2 sinh 4w 23 )+——l—
) 36 4

= 0.631587464..X m + O(1).

Table I shows the exact expected llps for some table sizes as computed
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using (2.3) (numbers have been rounded to four decimal places).

TABLE I
I [llps

E [lp.
m Uips] -
5 3.3696 0.67392
10 6.5226 0.65226
40 25.4676 0.63669
100 63.3624 0.63362
© © 0.631587464...

2.2. Partly Filled Tables
When a hash table of size m is partly filled with n entries, the probability of tak-
ing k of fewer accesses to insert a new key is

Pritaking < k accesses} = 1— —'lj—‘_ (2.8)
m

The probability that the /Ips is less than or equal to k when inserting the
first n keys is

=1
Prillps < k} = f‘[ (1—-i%/mb, (2.9)
i=0
and the expected value of the lips is

Ellips] = . —ho l————]
>0 i

k
This summation involving products and descending factorials seems very difficult
to solve for fixed a=n/m and m—>o. Consequently we will try a different
approach based on finding the median of the distribution of the /ips when m—>w
and then showing that the expected value asymptotically coincides with the
median. Taking logarithms in (2.9) we have

In(Prillps < k}) = Elln(l—il‘fml‘). (2.10)
i=0

Let «=n/m be the occupation factor of the table as n,m—»o. Using the
Maclaurin series for In{(1—x) to expand the right side of (2 10) we find

—1 .1L
In(Pr{llps <k}) = —[ IE [

We can simplify this using the summation formula

@2.11)

;5&_ ,g g AP Ll IR (.
oLk k+1 k+1
to obtain
In(Prillps <k}) = —= L e 2+
n(Prilips < = (k+l)ml" 14, L

which reduces asymptotically to
2k

k
~In(Pr{llps <k 1) = 5-+0 (25,
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Let j denote the median of the above probability distribution for fixed a.
Thus Prillps <j} = % and

: j 2
n2 = 2% 4 o225, (2.12)
Jt+1 J

With « fixed, 0<a<1 and n,m—>o we conclude that

o

= = om™.
J
This leads to
Jj = ©(log m) (2.13)
and thus (2.12) becomes
j+1
log2 = 2/ 4 ologm, (2.14)
j+1
Simple algebraic manipulations of this equation yield
—m Ina In m
2 = AL + . 2.1
" T (T Dinae 07 O ) @1

Let w(x) be the solution of the trascendental equation w(x)e W) = x. We
know that w(x) = Inx —In(ln x) + o(1) [4, ch 2.4] when x—=>o. If we let
w(y) = —(j +1)lna, equation (2.15) becomes

I = —mlna+0(lnm)
y m
or equivalently,
y = -m logza(l+0(]nmm ).
Thus, w(y) = —(j +1)Ina tells us
w(—mlo
j o= o) oy pdnm,y (2.16)
-In & m

To complete our work, we wish to show that the expected value of the lips
is asymptotically equivalent to its median j, i.e.

lim ﬂljkﬂl = |
n-—»>wx

This expected value is defined by

-3

Elllps]1 = 2 (1 — Prillps < k}). (2.17)
k=0

To prove the equivalence between the median j and the expected value, we
proceed to bound the E [/I[ps]. To obtain a lower bound we begin by noting that

Ellips] > jgnoj(l—Pr {Ips < k) (2.18)
> (j—In ))X[1=Prillps <j—In j}]
> (j=In j)X[I—e nPrlilps <j=in jly
Substituting j —In j for k in (2.12) we have

ma—nj+1

—_——— - O —I)
Elllps] > (—Inj)X[l—e J=Inj+l "



Using (2.14) this becomes
_In z.ggl+1).a’|ﬂj+0(m—1) _
Elllps] > (—In j)X[l—e J=Inj+1 ]
_([:+l)a._ln/+0(m_|)
> (j=Inj)x[1=2 J-lnj+l 1

Since
g!..+]2‘){—l|]'i > a” I = i —lna
j=In j+1 ’
we derive
Ellips] > (j—=In j)x[1—2~/""a+0(m~hy (2.19)
But (2.13) tells us that j—»o as n,m—+>® and therefore
lim ﬂjﬂl > 1. (2.20)
m-—»m i

To obtain an upper bound on the E [llps] we derive from (2.7)
Elllps] < j+2, 1—enPrilps<k} (2.21)
k>j
using the inequality 1 —e ~*<-—x we obtain
Elllps] < j—=2, InPrilips <k}
k>j
substituting (2.12)

|- Elllps] < j+2X%
k>j

k+1 j+1
mao . mao
<

k+1 TG +n

and finally using (2.14)
m

Elllps] < j+—'—"—3-+0(£‘-n;—

l—a )

We conclude that
lim £
and this in connection with (2.20) gives us

im  Elesl _

m-»>x /

Therefore we have the following.

THEOREM The expected llps under uniform probing for hash tables of size
m, partly filled with n entries is given by

w(—mlogyr) ) 2.22)

Elllps] = T ine

& —logyn — logy(~logyn) + O(1).

Table 11 shows some exact values of E [llps ] calculated using formulas (2.9)
and (2.17) rounded to four decimal places. The bracketed values in the table give
the value of the average /lps calculated from (2.22) and rounded to two decimal
places. Note that for the values shown in the table, « is close to 1; thus the log-
log term in (2.22) makes a signigicant contribution.
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TABLE 11
m

a 20 100 1000 10000 106
80% 5.4733 10.8611 19.4495

(5.61) (10.38) (18.33) (26.99) (45.36)
90% 7.6583 17.8671 35.7468

(9.03) (18.16) (34.23) (52.18) (90.72)
95% 9.5475 26.7479 62.2090

(13.04) (29.38) (60.51) (96.43) (174.72)
999 (N/A) 48.2629 187.6690

(69.81) (196.74) (364.67) (751.13)

3. Lower Bounds on the Average Length of the Longest Probe Sequence

The minimax hash coding problem can be stated as follows: given a set of keys,
find the insertion order which minimizes the maximum number of accesses to
locate any single element. This minimum maximum number of accesses will be
called the minimax value. A lower bound on the minimax is also a lower bound
on the average length of the longest probe sequence (/[ps) of any other open-
addressing scheme.

3.1. Full Tables

We first consider the case of a full table, i.e., a=1. We will require that for any
key the hashing function of this model produces an independent random sequence
of probes from a discrete rectangular distribution in (1,m ). This model is called
random probing, and differs slightly from the usual hashing schemes in that we
allow probe positions to be repeated.

A necessary, though not sufficient, condition to generate a full hashing table
requiring at most k accesses is that for each location i from 1 to m, there must be
some key for which i is among the key’s first k probe positions. For each table,
the smallest k satisfying this condition is a lower bound on the corresponding
minimax value. Consequently

E [minimax] > E[smallest k].

Given k, the probability of all the table positions (1,m) appearing among
k Xm probe position is an occupancy distribution, also known as Arfwedson’s dis-
tribution [2,16,13,5] denoted by A4,,(k Xm). The distribution is given by

2 0il7Jazimyn 3.

- —km ] km
= m!m "’{m}

where the brace brackets denote Stirling numbers of the second kind [1]. Feller
[5, Ch 1V.2] gives the approximation

Ak Xm) = e _me_k.

Ak Xm)

The expected value of the smallest &, i.e. the average lower bound for the
distribution above, is

E [smallest k] = E kA (kXm) — A,((k—1)Xm)], 3.2)

=1
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- 7(3_)_0(1—A,,,(kxm)) ~ 2°° (1—e —meH,

Let
Qm)=3 (1—e~mh,
k=0
By inspection, we find the functional equation
Q(m) = Q(me)—1+e™"™ (3.3)
The general solution of this functional equation [8, 14 Ch.5.2.2] is
O(m) = Inm +7+%+P(lnm)+0(e"m), (3.4)

where y=0.57721... is Euler’s constant, and P(x) is a periodic function with
period 1 and magnitude

lP(x), < 0.0001035.

Changing the constant so that it includes the periodic factor we have

THEOREM The average llps of a full table under random probing hashing is
bounded below by

Eflips] »In m+1.077+0(1).

Recently Rivest [15] proved that it is possible to construct a table having a
minimax value that is O(/n m). Consequently both upper and lower bounds are
optimal within a constant factor. Simulation results reported by Gonnet and
Munro [7] indicate that the lower bound is tight.

Table I1I shows the exact lower bounds computed from (3.2) (rounded to
four decimal places); bracketed number indicate the asymptotic value computed
with (3.5).

TABLE II1
m lower bound
5 2.6956 (2.6867)
10 3.3761 (3.3798)
20 4.0737 (4.0729)
50 4.9893 (4.9892)
1000 (7.9850)

3.2. Partially Filled Tables.

When a table is not full, we define the random variable T} to be the number of
different table positions which are accesible in k or fewer probes based on the n
keys. If Tp<n we cannot construct the table with at most k accesses for any
given key; construction of such a table requires Ty>n (and even this condition is
not sufficient). Using the same reasoning as in the previous section, we conclude

Prinot succeeding with k accesses} > Pr{Ty<n}. (3.6)

The distribution of Ty is also an occupancy distribution [16,13]; its expected
value is given by
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E[T] = m[1-(1=1/m)™) = m(1—e k®+0(1), 3.7
and its variance is
var(Ty) = m(1=1/m)*+m(m—=1)1=2/m)*—m¥1=1/m)>*

= mle ko—(1+ade ~2k9+0(1), (3.8)
For fixed a and &, when n,m—;m we can apply Chebyshev’s inequality [5]
Pril X —=x] >t} < ';—; (t>0)
to obtain
PriTi2n} < Pri| Ty—E[Ty]| >(n —E[T¢])}
var(T
T —E([Tkk)l)2

Using (3.7) and (3.8) we find
m(e *e—(1+a%e "*9+0(1) _ o
(n—m(1—e ~k04+0(1))?
if and only if E[T;]<n. Finally then
Wfi_rller{Tk>n} = 0 iff E[T})<n.

m

PriTy>n} <

Similarly, we have
PriTy<n} = 1+0(m ™Y iff E[T]>n
(Note that E{T,] cannot equal » in realistic cases, since (3.6) shows E[T] can-
not be an integer for nk >1.) The expected value of the lower bound on the

" minimax is the smallest integer k for which E[T]>n. According to (3.6), this
means

m(l—e ko) > p
and a little algebra yields the equivalent condition
k > —a ln(l-a).

Thus we have the following.

THEOREM The expected value of the lower bound on the minimax for partly
filled hash tables with occupation factor a is

k = [—a ln(l-a))].

Note that the distribution is single valued when n,m—>o.

Table IV shows the ranges of the occupation factor & which correspond to
an expected lower bound %.

TABLE IV

Range of o Lower Bound

0<a<0.7968
0.7968<<0.94048
0.94048 < <0.98017 .
0.98017<a<0.993023.

VDA wN
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4. Separate Chaining

Separate chaining hashing (also called direct chaining or separate overflow chain-
ing) forms a linked list with all keys that hash to each location. The length of
each linked list is the number of keys that hash to a particular location. This
length follows a simple binomial distribution: the probability of a key hashing to
a particular location is 1/m and so the probability of k of the n keys hashing to
the location is

n —a k
kJm"’(m—-l)”—k~ — (4.1)
where a=n/m is the load factor. The final expression in (4.1) is the Poisson
approximation to the binomial distribution [5], which for fixed « is very accurate.
We will therefore consider our model of separate chaining as one which produces
linked lists with independent Poisson-distributed lengths.

Let e;(a) be the cumulative distribution of (4.1) i.e.

Prilist of length k} =

( —a, k
efa) = 3 £ 42)
k=0 K-
and define d (@) = |—e (a). Since we are assuming each linked list is indepen-
dent of the rest, we have that
Prillps < i} = ej(a)™ (4.3)
hence
Elllps] = 2 (1—ed{a)™. (4.4)
i=0

This expression for the expected value does not seem to have a simple solution.
Therefore we will use the same kind of approach we used in section 2.2. If jis
the median of the distribution of the /lps, we have from (4.3) that

Prilps<jl = 5 = ef@" = (1=dja)" (4.5)

Taking logarithms gives us
—In2 = min(l1-d(a))

and expanding with the Maclaurin series for In(1—x) yields
—In2 = —m[dja) + di@)¥/2 + ..].

Clearly then
di@) = 8(m™),

and

In 2
m

Since (4.2) tells us

= dia) + O(m ™).

e "%k S e
:

di@) = 1= -
k=0

equation (4.6) becomes
In 2 e "9/ t! a

_ a
m G+ (H-j+2+(j+2)(j+3)
which we can write as
e—aaj+]
In2 = m———+ 0(1/j) + O(1/m). 4.7

+.)+0(m 7)),
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Thus for =1 we have

i+~ 2
U+D eln 2
or
. -1 m = = -1 4
J r [eln2] 2 F“im)+ 0() (4.8)
where T'~! is the inverse of the usual gamma function which satisfies

I'tk +1) = kT'(k). For a1 we have
-1
L)~y oam ),

J
but as the O term indicates, this asymptotic form is approached much more
slowly in files of a4 reasonable size than in the case a=1.

To summarize, we have the following.

THEOREM In a separate chaining model whose linked lists have lengths dis-
tributed independently according to a Poisson distribution, the median llps is
given by (4.8) for a full table, and by (4.9} for a partly full table.

Following the same approach we used in Section 2.2, we can prove that this
median asymptotically coincides with the expected value; that is,

lim Ejillp_‘j_ = 1.
m—>o

Consequently
Elllps] = T \(m) (4.10)
In m
Inlnm’

~
~

Table V shows some values of the expected /lps calculated using (4.4); the
bracketed numbers give values for the median j calculated using (4.8). All
numbers are rounded off to four decimal places.

TABLEV
m a=l a=1 a=2
24 2.2360 3.3347 (3.5650) 5.1688
120 3.0363 4.3359 (4.6209) 6.4423
720 3.8444 5.3432 (5.6568) 7.7055
5040 4.6541 6.3493 (6.6823) 8.9519

5. Conclusions

Table VI summarizes the new results concerning the average length of longest
probe sequence, together with known results for the average number of accesses.
For completeness we present various hashing schemes.
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TAan Vi
S T Average Average Length of
Algorithm Number of accesses the Longest Probe Sequence
Full Table a=n/m Full Table a=n/m
Open Addressing Inm —1+ _In(l=-a) 0.63158...Xm + —logm+
(uniform probing) y+o(l) a o O (log —log gn))
[14 6.4.D]
Optimal reordering | >1.668... [6] |—e —0 6(In m) (e) ?
to minimize ~ 1.83 (e) >2-
a
average [7]
Optimal reordering | ~ 1.83 (e) , >Inm+0() | (- lngl—ozz1
to minimize worst ~ 1.83 (e) o(In m)[15] a
case [7,15]
Separate chaining 1.5 ~T ~(m) T~ (m)
(direct chaining) 1+a/2
[14 6.4]

The results marked by (e) are experimental results found by simulation.

The first row deals with results for open-addressing hashing [14 Ch.6.4].
Schemes of this type resolve collisions by computing new probe positions until all
the table has been searched.

The next row shows results obtained from the optimal reordering during
insertion which minimizes the average number of accesses. These results are
interesting since they provide lower bounds for all possible reordering schemes
which use open-addressing.

Similarly, the optimal reordering of insertions to minimize the length of the
longest probe sequence (/lps) provides lower bounds on the average llps for any
open-addressing scheme. The results for full tables show that we may do even
better than binary search for the /ps, since we have a length In n rather than
logyn, while the O (1) for the average number of accesses is preserved. For partly
filled tables we find an integer (depending only on a) coming from a very familiar
formula, i.e. the average number of accesses for open-addressing.

The last row shows the results for the separate (or direct) chaining tech-
nique, described in Section 4. As we showed there, the average llps for any a
depends on the inverse of the gamma function. This function grows very slowly
(O(In m /In In m)) and hence displays a desirable property of separate chaining
hashing.

Except for full tables in simple open addressing, these expected llps are very
slow growing functions (logarithm and inverse factorial). For some critical appli-
cations we may use minimax reordering schemes, and thereby obtain an O(1)
behaviour in general for the average, and a worst case which is better than binary
search. If we can afford the use of pointers in the table, these results show an
advantageous property of separate chaining hashing.

All the results presented are asymptotic with respect to the size of the table.
However the calculated values we give in Tables I-V show that these asymptotic
results are close approximations when we consider more reasonably sized tables.



13-

ACKNOWLEDGMENTS. The author wishes to acknowledge the anonymous referees
for many helpful suggestions that improved this manuscript substantially.

REFERENCES

[1] Abramovitz, M., and Stegun, LA, Handhook of Mathematical Functions. Dover Publications, New
York, 1964,

[2] Arfwedson, G., A Probability Distribution Connected with Stirling’s Second Class Numbers. Skan-
dinavisk Aktuarietidskrift, 34-3 (1951), pp. 121-132.

[3] Brent, R.P., Reducing the Retrieval Time of Scatter Storage Techniques, CACM 16, 2 (Feb. 1973),
pp. 105-109.

[4] De Bruijn, N.G., Asympiotic Methods in Analysis, North Holland, Amsterdam, 1970.

[5} Feller, W., An Introduction to Probability Theory and its Applications, John Wiley, New York,
1957, Vot I. 3rd Edition.

[6] Gonnet, G.H. Average Lower Bounds for Open-Addressing Hash Coding, Proceedings of the
Conference on Theoretical Computer Science, University of Waterloo, Waterloo, Ontario, Canada,
(Aug. 1977), pp. 159-162.

(7] Gonnet, G.H., and Munro, J.I., Efficient Ordering of Hash Tables, to appear in SIAM Journal on
Computing.

[8] Gonnet, G.H., Notes on the Derivation of Asymptotic Expressions from Summations, Information
Processing Letters, Vol. 7-4 (June 1978), pp. 165-169.

[9] Guibus, L.J., The Analysis of Hashing Techniques that Exhibit k-ary Clustering, J.ACM, Vol. 25-4,
(Oct. 1978), pp. 544-555.

[10] Guibas, L.J., and E. Szemeredi, The Analysis of Double Hashing, Journal of Computer and Sys-
tem Sciences, Vol. 16-2, (April 1978), pp. 226-274.

[t1] Hansen, E.R. 4 Table of Series and Products, Prentice Hall, Englewood Cliffs, NJ, 1975.

{12] Hardy, G.H., and Wright, EM. An Introduction to the Theory of Numbers, Oxford at the
Clarendon Press, 1959,

[13] Johnson, N.L., and Kotz, S., Distributions in Statistics, Houghton Mifflin, Boston, 1969, Vol. |
(Discrete Distributions).

[14] Knuth, D.E., The Art of Computer Programming, Addison-Wesley, Don Mills, (1973), Vol. 111
(Sorting and Searching).

{I5] Rivest, R.L., Optimal Arrangement of Keys in a Hash Table, JACM, Vol, 25-2, (April 1978), pp.
200-209.

[16] Stevens, W.L., Significance Grouping, Annals of Eugenics, Vol. 8 (1937), pp.57-69.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

