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Abstract

A pebbling game on a simple graph consists of moves that remove two pebbles
from a vertex of the graph and add one pebble to an adjacent vertex. We consider an
impartial two-player pebbling game, where the winner of the game is the last player to
make an allowable pebbling move. In this paper, we characterize the winning positions
when this game is played on a complete graph Kn with at least n+ 2 pebbles if n ≥ 5
is odd and at least n+7 pebbles if n ≥ 6 is even. This characterization is independent
of how the pebbles are initially distributed on the vertices and depends only on the
parity of the total number of pebbles used in the game.

1 Introduction

In a classical graph pebbling game played on a simple graph (i.e., an undirected graph with
no loops or multiple edges) with a target vertex, a pebbling move consists of removing two
pebbles from a vertex and adding one pebble to an adjacent vertex. The goal is to conduct a
sequence of pebbling moves so that eventually the target vertex has at least one pebble. In
a classical two-player graph pebbling game, considered for example by Isaak and Prudente
[3], two players alternate pebbling moves on the graph, where one player aims to move a
pebble to the target while the other player aims to prevent this.

In this paper, we consider the impartial two-player pebbling game, where the graph peb-
bling moves are the same, but the objective of the game has changed: instead of identifying
a target vertex, the first player having no available pebbling move loses the game. By an
impartial game, we refer to a combinatorial game with complete information in which allow-
able moves from any position are identical for both players. One of the classical examples
of an impartial game is Nim. Readers may refer to Winning Ways for Your Mathematical

Plays, Volume 1 [1, p. 15] for more information on impartial games.
In any impartial game, every game is either first-player winning, denoted as an N -game

(N for the next player), or second-player winning, denoted as a P -game (P for the previous
player). It is clear that a game is an N -game if and only if there exists at least one available
move to a P -game, whereas a game is a P -game if and only if there are no available moves
(game over) or every available move results in an N -game.

LetG be a simple graph on n vertices. Following the notation by Lind et al. [2], we define a
pebble assignment on G to be an n-tuple (SG) = (a1, a2, . . . , an), where ai denotes the number
of pebbles on vertex vi of G for 1 ≤ i ≤ n. Our focus in this paper will be restricted to
complete graphs Kn, thus ordering of the vertices is inconsequential. Hence, we consistently
relabel the vertices such that the pebble assignment satisfies a1 ≥ a2 ≥ · · · ≥ an ≥ 0. We
observe that every pebbling game on Kn is equivalent to one of this type.

Let m = a1 + a2 + · · ·+ an denote the total number of pebbles in an assignment on Kn.
Throughout, we call a two-player pebbling game on Kn with m pebbles an (n,m)-game and
we denote a general such game by Γn,m. When a particular assignment (a1, a2, . . . , an) is
specified, we indicate the corresponding pebble game by Γ(a1, a2, . . . , an).

The main result of our paper provides conditions for winning positions as follows.
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Theorem 1.

(a) Every (2,m)-game Γ(a1, a2) is an N -game if and only if a1 6≡ a2 (mod 3) when m is

even or a1 ≡ a2 (mod 3) when m is odd.

(b) For m ≥ 7, Γ3,m is an N-game if and only if m is odd.

(c) For m ≥ 23, Γ4,m is an N-game if and only if m is odd.

(d) For odd n ≥ 5 and m ≥ n+ 2, Γn,m is an N-game if and only if m is odd.

(e) For even n ≥ 6 and m ≥ n+ 7, Γn,m is an N-game if and only if m is odd.

Theorem 1 is obviously formulated from the perspective of Player 1 (i.e., N -games).
However, since every (n,m)-game must have an eventual winner, one need only switch the
parity of m to reveal the strategy from Player 2’s perspective (P -games).

For each n ≥ 3, let p(n) denote the smallest positive integer m such that every Γn,m is an
N -game. Observe that if every Γn,m is an N -game, then every Γn,m+1 is a P -game since all
available moves result in an N -game. In turn, every Γn,m+2 is an N -game, and this pattern
continues. Hence, the proof of parts (b)–(e) of Theorem 1 will rely on showing that p(3) = 7,
p(4) = 23, p(n) = n + 2 when n ≥ 5 is odd, and p(n) = n + 7 when n ≥ 6 is even. (This
sequence has been published as A340631 in the On-Line Encyclopedia of Integer Sequences

[4].)

2 Main results

Lemma 2. Let Γ(a′1, a
′

2) result from any sequence of allowable pebbling moves applied to

Γ(a1, a2). Then a′1 ≡ a′2 (mod 3) if and only if a1 ≡ a2 (mod 3).

Proof. If Γ(a′1, a
′

2) results from a single pebbling move, then there are three possibilities:
Γ(a′1, a

′

2) = Γ(a2 + 1, a1 − 2) (provided a2 + 1 ≥ a1 − 2), Γ(a′1, a
′

2) = Γ(a1 − 2, a2 + 1)
(provided a1 − 2 ≥ a2 + 1), and Γ(a′1, a

′

2) = Γ(a1 + 1, a2 − 2). In these respective cases, one
has a′1 − a′2 = a2 − a1 + 3, a′1 − a′2 = a1 − a2 − 3 and a′1 − a′2 = a1 − a2 + 3. Thus in all
cases, a′1 ≡ a′2 (mod 3) if and only if a1 ≡ a2 (mod 3). An easy induction on the number of
pebbling moves completes the proof.

Proof of Theorem 1(a). We proceed by induction on m. When m = 1, the only possibility
is Γ(1, 0) which is clearly a P -game. When m = 2, the only possibilities are Γ(1, 1) and
Γ(2, 0). Clearly Γ(1, 1) is a P -game. Since Γ(2, 0) transforms to the P -game Γ(1, 0) after a
single move, we conclude that Γ(2, 0) is an N -game. Hence, the statement of Theorem 1(a)
holds for m = 1 and m = 2.

Assume now that the statement is true for all ℓ < m and consider an arbitrary game
Γ2,m. Observe that every game Γ2,m−2 that arises from Γ2,m after two allowable moves must
be an N -game by induction if and only if either a1 6≡ a2 (mod 3) when m − 2 is even, or
a1 ≡ a2 (mod 3) when m − 2 is odd. Since m and m − 2 have the same parity, the result
follows immediately from Lemma 2.
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Γ(1, 0) P

Γ(2, 0) N Γ(1, 1) P

Γ(2, 1) P Γ(3, 0) N

Γ(3, 1) N Γ(4, 0) N Γ(2, 2) P

Γ(5, 0) P Γ(3, 2) P Γ(4, 1) N

Γ(4, 2) N Γ(5, 1) N Γ(3, 3) P Γ(6, 0) P

Γ(6, 1) P Γ(4, 3) P Γ(7, 0) P Γ(5, 2) N

Γ(8, 0) N Γ(5, 3) N Γ(6, 2) N Γ(4, 4) P Γ(7, 1) P

Figure 1: Diagram of pebbling moves for games Γ2,m with 1 ≤ m ≤ 8

Figure 1 contains all possible games Γ2,m with 1 ≤ m ≤ 8. An arrow indicates the
resultant game after a pebbling move, and the letter identifies if the game is an N -game or
a P -game.

We initially established p(3) = 7, p(4) = 23, and p(5) = 7 with the aid of a Mathematica
program (see Appendix A), but without much trouble, we were able to reproduce the cases
p(3) and p(5) by hand. The cases for p(3) and p(4) provide the proof of parts (b) and (c)
of Theorem 1, respectively, and the case for p(5) forms the base case for part (d) of the
theorem. Thus, for the balance of this section we focus on the case n ≥ 6.

Let Pn,m (resp., Nn,m) denote the set of all (n,m)-games Γ(a1, a2, . . . , an) that are P -
games (resp., N -games). For example, Pn,1 = {Γ(1, 0(n−1))} and Nn,2 = {Γ(2, 0(n−1))}, where
we use the notation 0(n−1) to indicate that there are n − 1 zero entries (i.e., n − 1 vertices
with zero pebbles). In what follows, we adopt a similar notation to indicate repeated ones
and zeros within a game or assignment.

Let us call Γn,m+1 a predecessor of Γn,m if Γn,m results from Γn,m+1 after a single pebbling
move. In such case, we refer to Γn,m as the resultant game.

Lemma 3. For all odd integers n ≥ 7, Pn,n = {Γ(1(n))} implies Pn,n+2 = ∅.

Proof. Assume that Pn,n = {Γ(1(n))} for n odd, n ≥ 7, and observe that Γ(3, 1(n−2), 0) is
the unique predecessor of Γ(1(n)). This implies that Nn,n+1 = {Γ(3, 1(n−2), 0)}. Continu-
ing in this manner, we see that the only predecessors of Γ(3, 1(n−2), 0) are Γ(5, 1(n−3), 0(2)),
Γ(3, 3, 1(n−4), 0(2)), Γ(3, 2, 1(n−3), 0) and Γ(2, 2, 1(n−2)). Accordingly, these four games are the
only candidates for inclusion in Pn,n+2.

However, each of Γ(5, 1(n−3), 0(2)), Γ(3, 3, 1(n−4), 0(2)) and Γ(3, 2, 1(n−3), 0) can lead to the
resultant game Γ(3, 2, 1(n−4), 0(2)) after one pebbling move, whereas Γ(2, 2, 1(n−2)) can lead
to the resultant game Γ(2, 2, 1(n−3), 0). Since Nn,n+1 = {Γ(3, 1(n−2), 0)}, we conclude that
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both Γ(3, 2, 1(n−4), 0(2)) and Γ(2, 2, 1(n−3), 0) are necessarily P -games. Thus each of the four
listed candidates must be N -games, which implies Pn,n+2 = ∅ as desired.

Lemma 4. Let Γ(a1, a2, . . . , an+2) be an (n+2,m)-game with at least m−n+2 zeros in its

assignment. Then Γ(a1, a2, . . . , an+2) and Γ(a1, a2, . . . , an) share the same winning positions.

Proof. If m ≤ n, then after any sequence of pebbling moves, the resultant game always has
at least 2 zeros. If m > n, then let i be a positive integer such that i ≤ m − n. It is easy
to see that after any sequence of i pebbling moves, the resultant (n + 2,m − i)-game has
at least (m − n + 2) − i ≥ 2 zeros. Notice that in both scenarios, for every sequence of
pebbling moves, there is a corresponding sequence that results in an equivalent assignment
for which there are no pebbles on vertices vn+1 and vn+2. As a result, Γ(a1, a2, . . . , an+2) and
Γ(a1, a2, . . . , an) share the same winning positions.

Lemma 5. For all odd integers n ≥ 7, Pn,n = {Γ(1(n))} implies Pn+2,n+2 = {Γ(1(n+2))}.

Proof. Note that every (n+2, n)-game is equivalent to an (n, n)-game played on a subgraph
Kn of Kn+2 since there are always at least two vertices with 0 pebbles. Hence, if Pn,n =
{Γ(1(n))} then Pn+2,n = {Γ(1(n), 0(2))}.

If an (n+ 2, n+ 2)-game has at least four zeros in its assignment, then by Lemma 4 this
game is equivalent to an (n, n+2)-game played on a subgraph Kn of Kn+2. Since Pn,n+2 = ∅
by Lemma 3, any (n + 2, n + 2)-game that has at least four zeros in its assignment is an
N -game. This implies that Pn+2,n+2 can only contain (n+2, n+2)-games that have at most
three zeros in its assignment, i.e.,

Pn+2,n+2 ⊆ {Γ(4, 1(n−2), 0(3)),Γ(3, 2, 1(n−3), 0(3)),Γ(2, 2, 2, 1(n−4), 0(3)),

Γ(3, 1(n−1), 0(2)),Γ(2, 2, 1(n−2), 0(2)),Γ(2, 1(n), 0),Γ(1(n+2))}.

Four of these games Γ(4, 1(n−2), 0(3)), Γ(3, 2, 1(n−3), 0(3)), Γ(2, 2, 2, 1(n−4), 0(3)), and
Γ(2, 2, 1(n−2), 0(2)) are predecessors of Γ(2, 2, 1(n−3), 0(3)). After another pebbling move,
Γ(2, 2, 1(n−3), 0(3)) can only result in Γ(3, 1(n−3), 0(4)), Γ(2, 2, 1(n−4), 0(4)), or Γ(2, 1(n−2), 0(3)).
Since Pn+2,n = {Γ(1(n), 0(2))}, the last three (n + 2, n)-games are all N -games. Hence,
Γ(2, 2, 1(n−3), 0(3)) is a P -game, and the four games Γ(4, 1(n−2), 0(3)), Γ(3, 2, 1(n−3), 0(3)),
Γ(2, 2, 2, 1(n−4), 0(3)), and Γ(2, 2, 1(n−2), 0(2)) are N -games. Furthermore, the two games
Γ(3, 1(n−1), 0(2)) and Γ(2, 1(n), 0) are predecessors of the P -game Γ(1(n+1), 0) after a pebbling
move, so they are also N -games. As a result, Pn+2,n+2 = {Γ(1(n+2))}.

Now we are prepared to prove Theorem 1(d).

Proof of Theorem 1(d). As previously mentioned, p(5) = 7 has been proved by hand. For
odd n ≥ 7, we induct on n. The case that P7,7 = {Γ(1(7))} has been verified both by hand
and by computer. Verification of the inductive step now follows from Lemmas 3 and 5.

Prefatory to proving Theorem 1(e), we will require a couple more lemmas.
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Lemma 6. For all even integers n ≥ 6, Pn,n+1 = {Γ(2, 1(n−1))} implies that each of the

following holds:

(i) Pn,n+3 = {Γ(5, 1(n−2), 0),Γ(3, 3, 1(n−3), 0)},

(ii) Pn,n+5 = {Γ(6, 1(n−1))}, and

(iii) Pn,n+7 = ∅.

Proof. (i) Let n ≥ 6 be an even integer for which Pn,n+1 = {Γ(2, 1(n−1))}. Observe that
Nn,n+2 = {Γ(4, 1(n−2), 0),Γ(3, 2, 1(n−3), 0),Γ(3, 1(n−1))} since Γ(4, 1(n−2), 0), Γ(3, 2, 1(n−3), 0),
and Γ(3, 1(n−1)) are the only possible predecessors of Γ(2, 1(n−1)). Continuing in this manner,
the only games Γn,n+3 that can be predecessors of some Γn,n+2 ∈ Nn,n+2 are the following:

Γ(6, 1(n−3), 0(2)), Γ(4, 3, 1(n−4), 0(2)), Γ(4, 2, 1(n−3), 0), Γ(3, 3, 1(n−3), 0), Γ(3, 2, 1(n−2)),

Γ(5, 2, 1(n−4), 0(2)), Γ(5, 1(n−2), 0), Γ(3, 3, 2, 1(n−5), 0(2)), Γ(3, 2, 2, 1(n−4), 0), Γ(2, 2, 2, 1(n−3)).

Clearly, these are the only possible candidates for inclusion in Pn,n+3. However, we observe
that

⋄ each of Γ(6, 1(n−3), 0(2)), Γ(4, 3, 1(n−4), 0(2)), Γ(4, 2, 1(n−3), 0), Γ(3, 3, 2, 1(n−5), 0(2)) and
Γ(3, 2, 2, 1(n−4), 0) is a predecessor of Γ(4, 2, 1(n−4), 0(2));

⋄ Γ(3, 2, 1(n−2)) is a predecessor of Γ(2, 2, 1(n−2));

⋄ Γ(5, 2, 1(n−4), 0(2)) is a predecessor of Γ(5, 2, 1(n−5), 0(3));

⋄ Γ(2, 2, 2, 1(n−3)) is a predecessor of Γ(2, 2, 2, 1(n−4), 0).

The four indicated resultant games are P -games since they are not in Nn,n+2. As a result,
each of the eight indicated predecessor games is in Nn,n+3. This leaves only two of the 10
aforementioned candidates, yielding Pn,n+3 = {Γ(5, 1(n−2), 0),Γ(3, 3, 1(n−3), 0)} as desired.

(ii) We next observe that Nn,n+4 is comprised of all games Γn,n+4 that can result in
some Γn,n+3 ∈ Pn,n+3 after a single pebbling move. It is straightforward to see that Nn,n+4

consists of the following eight games: Γ(7, 1(n−3), 0(2)), Γ(5, 3, 1(n−4), 0(2)), Γ(5, 2, 1(n−3), 0),
Γ(4, 3, 1(n−3), 0), Γ(4, 2, 1(n−2)), Γ(3, 3, 3, 1(n−5), 0(2)), Γ(3, 3, 2, 1(n−4), 0) and Γ(3, 2, 2, 1(n−3)).

Below we list all games Γn,n+5 that can result in some Γn,n+4 ∈ Nn,n+4 after a single
pebbling move:

Γ(9, 1(n−4), 0(3)), Γ(7, 3, 1(n−5), 0(3)), Γ(7, 2, 1(n−4), 0(2)), Γ(6, 3, 1(n−4), 0(2)), Γ(6, 2, 1(n−3), 0),

Γ(5, 5, 1(n−5), 0(3)), Γ(5, 4, 1(n−4), 0(2)), Γ(5, 3, 3, 1(n−6), 0(3)), Γ(5, 3, 2, 1(n−5), 0(2)),

Γ(5, 2, 2, 1(n−4), 0), Γ(4, 3, 3, 1(n−5), 0(2)), Γ(4, 3, 2, 1(n−4), 0), Γ(7, 1(n−2), 0), Γ(5, 3, 1(n−3), 0),

Γ(5, 2, 1(n−2)), Γ(4, 4, 1(n−3), 0), Γ(4, 2, 2, 1(n−3)), Γ(3, 3, 3, 1(n−4), 0), Γ(3, 3, 2, 1(n−3)), Γ(6, 1(n−1)),

Γ(4, 3, 1(n−2)), Γ(3, 3, 3, 3, 1(n−7), 0(3)), Γ(3, 3, 3, 2, 1(n−6), 0(2)), Γ(3, 3, 2, 2, 1(n−5), 0),

Γ(3, 2, 2, 2, 1(n−4)).

Note that these are the only candidates for inclusion in Pn,n+5. However, we see that
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⋄ each of Γ(9, 1(n−4), 0(3)), Γ(7, 3, 1(n−5), 0(3)) and Γ(7, 2, 1(n−4), 0(2)) is a predecessor of
Γ(7, 2, 1(n−5), 0(3));

⋄ each of Γ(6, 3, 1(n−4), 0(2)), Γ(6, 2, 1(n−3), 0), Γ(5, 4, 1(n−4), 0(2)), Γ(5, 3, 2, 1(n−5), 0(2))
and Γ(5, 2, 2, 1(n−4), 0) is a predecessor of Γ(6, 2, 1(n−4), 0(2));

⋄ each of Γ(5, 5, 1(n−5), 0(3)) and Γ(5, 3, 3, 1(n−6), 0(3)) is a predecessor of
Γ(5, 3, 2, 1(n−6), 0(3));

⋄ each of Γ(4, 3, 3, 1(n−5), 0(2)), Γ(4, 3, 2, 1(n−4), 0), Γ(3, 3, 3, 2, 1(n−6), 0(2)) and
Γ(3, 3, 2, 2, 1(n−5), 0) is a predecessor of Γ(4, 3, 2, 1(n−5), 0(2));

⋄ each of Γ(7, 1(n−2), 0), Γ(5, 3, 1(n−3), 0), and Γ(4, 3, 1(n−2)) is a predecessor of Γ(5, 1(n−1));

⋄ each of Γ(5, 2, 1(n−2)), Γ(3, 3, 3, 1(n−4), 0) and Γ(3, 3, 2, 1(n−3)) is a predecessor of
Γ(3, 3, 1(n−2));

⋄ each of Γ(4, 4, 1(n−3), 0), Γ(4, 2, 2, 1(n−3)) and Γ(3, 2, 2, 2, 1(n−4)) is a predecessor of
Γ(4, 2, 2, 1(n−4), 0);

⋄ Γ(3, 3, 3, 3, 1(n−7), 0(3)) is a predecessor of Γ(4, 3, 3, 1(n−6), 0(3)).

The eight indicated resultant games are P -games since they are not in Nn,n+4. Hence, the
24 indicated predecessors of these games must be in Nn,n+5. This leaves only Γ(6, 1(n−1)) as
the surviving candidate, i.e., Pn,n+5 = {Γ(6, 1(n−1))}.

(iii) Note that (ii) implies Nn,n+6 = {Γ(8, 1(n−2), 0),Γ(6, 3, 1(n−3), 0),Γ(5, 3, 1(n−2))}, since
Γ(8, 1(n−2), 0), Γ(6, 3, 1(n−3), 0) and Γ(5, 3, 1(n−2)) are the only predecessors of Γ(6, 1(n−1)). A
further computation now reveals that the only possible predecessors of a game in Nn,n+6 are
the following:

Γ(10, 1(n−3), 0(2)), Γ(8, 3, 1(n−4), 0(2)), Γ(8, 2, 1(n−3), 0), Γ(7, 2, 1(n−2)), Γ(6, 5, 1(n−4), 0(2)),

Γ(6, 3, 3, 1(n−5), 0(2)), Γ(6, 3, 2, 1(n−4), 0), Γ(6, 2, 2, 1(n−3)), Γ(5, 5, 1(n−3), 0), Γ(5, 3, 3, 1(n−4), 0),

Γ(5, 3, 2, 1(n−3)), Γ(7, 3, 1(n−3), 0), Γ(5, 4, 1(n−2)), Γ(4, 3, 3, 1(n−3)).

Once again, the games listed above are the only candidates for inclusion in Pn,n+7. However,

⋄ each of Γ(10, 1(n−3), 0(2)), Γ(8, 3, 1(n−4), 0(2)) and Γ(8, 2, 1(n−3), 0) is a predecessor of
Γ(8, 2, 1(n−4), 0(2));

⋄ each of Γ(7, 2, 1(n−2)) and Γ(6, 2, 2, 1(n−3)) is a predecessor of Γ(7, 2, 1(n−3), 0);

⋄ each of Γ(6, 5, 1(n−4), 0(2)), Γ(6, 3, 3, 1(n−5), 0(2)) and Γ(6, 3, 2, 1(n−4), 0) is a predecessor
of Γ(6, 3, 2, 1(n−5), 0(2));

⋄ each of Γ(5, 5, 1(n−3), 0), Γ(5, 3, 3, 1(n−4), 0), Γ(5, 3, 2, 1(n−3)) and Γ(7, 3, 1(n−3), 0) is a
predecessor of Γ(5, 3, 2, 1(n−4), 0);
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⋄ each of Γ(5, 4, 1(n−2)) and Γ(4, 3, 3, 1(n−3)) is a predecessor of Γ(4, 3, 2, 1(n−3)).

The five indicated resultant games are P -games since they are not in Nn,n+6. Thus the 14
indicated predecessors are all N -games, which means there are no surviving candidates for
inclusion in Pn,n+7. We conclude that Pn,n+7 = ∅ as claimed.

Lemma 7. For all even integers n ≥ 6, Pn,n+1 = {Γ(2, 1(n−1))} implies Pn+2,n+3 = {Γ(2, 1(n+1))}.

Proof. If Γn+2,n+1 has at least three zeros in its assignment, then by Lemma 4, this Γn+2,n+1

shares the same winning positions as a Γn,n+1 with at least one zero. Since Pn,n+1 =
{Γ(2, 1(n−1))}, it follows that any game Γn+2,n+1 with at least three zeros in its assignment
is an N -game. In other words, Γn+2,n+1 ∈ Pn+2,n+1 only if Γn+2,n+1 has at most two zeros in
its assignment, i.e.,

Pn+2,n+1 ⊆ {Γ(2, 1(n−1), 0(2)),Γ(1(n+1), 0)}.

However, Γ(2, 1(n−1), 0(2)) is an N -game since it is a predecessor of the P -game Γ(1(n), 0(2)),
thus Pn+2,n+1 = {Γ(1(n+1), 0)}. Moreover, Nn+2,n+2 = {Γ(3, 1(n−1), 0(2)),Γ(2, 1(n), 0)} since
Γ(3, 1(n−1), 0(2)) and Γ(2, 1(n), 0) are the only predecessors of Γ(1(n+1), 0).

We are up to the point of determining Pn+2,n+3. Here, the candidates are precisely those
Γn+2,n+3 that are predecessors of a game from Nn+2,n+2. We list all such candidates below:

Γ(5, 1(n−2), 0(3)), Γ(3, 3, 1(n−3), 0(3)), Γ(3, 2, 1(n−2), 0(2)), Γ(2, 2, 1(n−1), 0), Γ(4, 1(n−1), 0(2)),

Γ(3, 1(n), 0), Γ(2, 1(n+1)).

However, we observe that

⋄ each of Γ(5, 1(n−2), 0(3)), Γ(3, 3, 1(n−3), 0(3)) and Γ(3, 2, 1(n−2), 0(2)) is a predecessor of
Γ(3, 2, 1(n−3), 0(3));

⋄ each of Γ(2, 2, 1(n−1), 0) and Γ(4, 1(n−1), 0(2)) is a predecessor of Γ(2, 2, 1(n−2), 0(2));

⋄ Γ(3, 1(n), 0) is a predecessor of Γ(1(n+2)).

The three indicated resultant games are P -games since they are not in Nn+2,n+2. It follows
that the six indicated predecessors are all N -games. As a result, Γ(2, 1(n+1)) is the only
surviving candidate, whence Pn+2,n+3 = {Γ(2, 1(n+1))} as desired.

We are now prepared to prove Theorem 1(e).

Proof of Theorem 1(e). We leave verification that P6,7 = {Γ(2, 1(5))} as an exercise for the
reader. By Lemma 7, we have Pn,n+1 = {Γ(2, 1(n−1))} for all even n ≥ 6. It now follows
from Lemma 6 that Pn,n+7 = ∅ for all even n ≥ 6. Thus, every Γn,n+7 is an N -game, from
which it follows that every Γn,m is an N -game if and only if m is odd, m ≥ n+ 7.
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A Appendix: Mathematica Program

(*Given n and m, list all possible assignments.*)

alltuples[n_, m_] := IntegerPartitions[m + n, {n}] - 1;

(*Given an assignment, list all resultant assignments after one pebbling

move; only work for n>=3.*)

pebblemoves[config_] :=

Block[{n, temp}, n = Length[config];

temp = Table[config, {i, n (n - 1)}] +

Permutations[Join[{-2, 1}, Table[0, {i, n - 2}]]];

temp = Select[temp, Min[#] >= 0 &];

temp = ReverseSort[DeleteDuplicates[ReverseSort /@ temp]]];

(*Given n and m, list all assignments that are P-games.*)

Plist = {};

plist[n_, m_] :=

Block[{index, tuples},

While[Length[Plist] < n, index = Length[Plist];

AppendTo[Plist, {{Join[{1}, Table[0, {i, index}]]}}]];

Do[AppendTo[Plist[[n]], {}]; tuples = alltuples[n, i];

Do[If[Not[

IntersectingQ[pebblemoves[tuples[[j]]], Plist[[n, i - 1]]]],

AppendTo[Plist[[n, i]], tuples[[j]]]], {j, Length[tuples]}],

{i, Length[Plist[[n]]] + 1, m}]; Plist[[n, m]]];

(*Given n, print out the minimum m such that there are no P-games with m

pebbles*)

Do[m = 1; While[plist[n, m] != {}, m++];

Print["n=", n, " m=", m], {n, 3, 20}]
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