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Abstract

Let k > 2 be a prime such that 2k − 1 is a Mersenne prime. Let n = 2α−1p, where
α > 1 and p < 3 · 2α−1 − 1 is an odd prime. Define σk(n) to be the sum of the kth
powers of the positive divisors of n. Continuing the work of Cai et al. and Jiang, we
prove that n | σk(n) if and only if n is an even perfect number other than 2k−1(2k−1).
Furthermore, if n = 2α−1pβ−1 for some β > 1, then n | σ5(n) if and only if n is an even
perfect number other than 496.

1 Introduction and main results

For a positive integer n, let σ(n) be the sum of the positive divisors of n. We call n perfect
if σ(n) = 2n (sequence A000396 in the On-Line Encyclopedia of Integer Sequences (OEIS)
[11]). Due to the work of Euclid and Euler, it is well-known that an even integer n is perfect
if and only if n = 2p−1(2p − 1), where both p and 2p − 1 are primes. A prime of the form
2p − 1 is called a Mersenne prime. Up to now, fewer than 60 Mersenne primes are known.
Two questions are still open: whether there are infinitely many even perfect numbers and
whether there exists an odd perfect number, though various progress has been made. For
example, Pomerance [6] showed that an odd perfect number must have at least 7 distinct
prime factors. Nielsen improved the result by proving that an odd perfect number must have
at least 9 distinct prime factors. For related results, see [7, 8].
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Meanwhile, mathematicians have generalized the concept of perfect numbers. Pollack
and Shevelev [5] introduced k-near-perfect numbers. For k ≥ 1, a k-near-perfect number n
is the sum of all of its proper divisors with at most k exceptions. A positive integer n is
called near-perfect if n is the sum of all but exactly one of its proper divisors (A181595).
Pollack and Shevelev showed how to construct near-perfect numbers and established an
upper bound of x5/6+o(1) for the number of near-perfect numbers in [1, x] as x → ∞. Li and
Liao [4] gave two equivalent conditions of all even near-perfect numbers of the form 2αp1p2
and 2αp21p2, where α > 0 and p1, p2 are distinct primes. In 2013, Ren and Chen [10] found
all near-perfect numbers with two distinct prime factors. Continuing the work, Tang et al.
[14] showed that there is no odd near-perfect number with three distinct prime divisors.
For other beautiful results on near-perfect numbers and deficient-perfect numbers (A271816,
A341475), see [12, 13].

The present paper focuses on another generalization of perfect numbers by connecting
an even perfect number n with the divisibility of σk(n), where k ≥ 1 and

σk(n) :=
∑

d|n

dk.

In 2006, Luca and Ferdinands [3] proved that for k ≥ 2, there are infinitely many n such
that n | σk(n). In 2015, Cai et al. [1] proved the following theorem.

Theorem 1. Let n = 2α−1p, where α > 1 is an integer and p is an odd prime. If n | σ3(n),
then n is an even perfect number. The converse is also true for n 6= 28.

Three years later, Jiang [2] improved the theorem as follows.

Theorem 2. Let n = 2α−1pβ−1, where α, β > 1 are integers and p is an odd prime. Then
n | σ3(n) if and only if n is an even perfect number 6= 28.

These theorems show a beautiful relationship between an even perfect number n and
σ3(n). A natural extension is to consider σk(n) for some other values of k. Unfortunately,
Theorem 1 does not hold when k = 5 or 7, for example. A quick computer search gives
σ5(22) ≡ 0 (mod 22) and σ7(86) ≡ 0 (mod 86). However, if we add one more restriction on
p, the following theorem holds.

Theorem 3. Let k > 2 be a prime such that 2k − 1 is a Mersenne prime. If n = 2α−1p,
where α > 1 and p < 3 · 2α−1− 1 is an odd prime. Then n | σk(n) if and only if n is an even
perfect number 6= 2k−1(2k − 1).

Theorem 3 can be considered a generalization of Theorem 1 as we have a wider range
of k with the new restriction on p as a compensation. Interestingly, when k = 5, we can
generalize Theorem 3 the same way as Jiang generalized Theorem 1.

Theorem 4. If n = 2α−1pβ−1, where α, β > 1 and p < 3 · 2α−1 − 1 is an odd prime. Then
n | σ5(n) if and only if n is an even perfect number 6= 496.
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Unfortunately, our method is not applicable to other values of k even though computation
supports the following conjecture.

Conjecture 5. Let k > 2 be a prime such that 2k−1 is a Mersenne prime. If n = 2α−1pβ−1,
where α, β > 1 and p < 3 · 2α−1 − 1 is an odd prime. Then n | σk(n) if and only if n is an
even perfect number 6= 2k−1(2k − 1).

Our paper is structured as follows. Section 2 provides several preliminary results that
are used repeatedly throughout the paper, Section 3 proves Theorem 3 and Section 4 proves
Theorem 4. Since the proof of several claims made in Section 3 and Section 4 are quite
technical, we move them to the Appendix for the ease of reading.

2 Preliminaries

Let n = 2α−1pβ−1, where α, β > 1 are integers and p < 3 · 2α−1 − 1 is an odd prime. Let
k > 2 be a prime such that 2k − 1 is a Mersenne prime. We will stick with these notation
throughout the paper. If n | σk(n), then

2α−1pβ−1 | σk(2
α−1)σk(p

β−1) = (1 + 2k + · · ·+ 2(α−1)k)(1 + pk + · · ·+ p(β−1)k)

=
2αk − 1

2k − 1
·
pβk − 1

pk − 1
.

Because (2, 2αk − 1) = 1 and (p, pβk − 1) = 1, it follows that

2α−1 divides
pβk − 1

pk − 1
, so 2α divides pβk − 1, (1)

pβ−1 divides
2αk − 1

2k − 1
. (2)

Furthermore, rewrite (1) as

2α−1 |
pβk − 1

pk − 1
=

(pk − 1)(pk(β−1) + pk(β−2) + · · ·+ 1)

pk − 1
=

β−1
∑

i=0

pki.

Since each term is odd and the summation is divisible by 2, we know that 2 | β. The following
lemma is the key ingredient in the proof of Theorem 3.

Lemma 6. Let n = 2α−1(2k − 1)β−1, where α, β > 1 are integers. Then n ∤ σk(n).

Proof. We use proof by contradiction. Suppose n | σk(n). By (1) and (2), we have

2α | (2k − 1)βk − 1, (3)

(2k − 1)β | (2αk − 1) = (2k − 1)((2k)α−1 + · · ·+ 1). (4)
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Write α = (2k − 1)uα1 and β = 2vβ1, where u ≥ 0, v ≥ 1 and (2k − 1, α1) = (2, β1) = 1. By
Lemma 13, α ≤ v + k.

If u = 0, we get α = α1. From (4), β = 1, which contradicts the fact that 2 | β.
If u ≥ 1, Remark 15 implies that β ≤ u+ 2k − 1. We have

2(2
k−1)u−k ≤ 2α−kβ1 ≤ 2vβ1 = β ≤ u+ 2k − 1.

Since for all u ≥ 1 and k ≥ 3,

2(2
k−1)u−k > u+ 2k − 1

by Lemma 11, we have a contradiction. This finishes our proof.

3 Proof of Theorem 3

For the forward implication, we prove that if n = 2α−1p and n | σk(n), then α is prime and
p = 2α − 1. By Lemma 6, n 6= 2k−1(2k − 1). We have

σk(n) = σk(2
α−1p) = σk(2

α−1)σk(p)

= (1 + 2k + · · ·+ 2k(α−1))(1 + pk)

= (1 + 2k + · · ·+ 2k(α−1))(1 + p)
k
∑

i=1

pk−i(−1)i+1.

So, 2α−1p | σk(n) implies that 2α−1 | 1+p and p | 1+2k+ · · ·+2k(α−1). There exist k1, k2 ∈ N

such that p = k12
α−1 − 1 and 1 + 2k + · · ·+ 2k(α−1) = 2kα−1

2k−1
= k2p. So,

(2α − 1)
k−1
∑

i=0

2iα = 2kα − 1 = k3(k12
α−1 − 1), (5)

where k3 = (2k − 1)k2.
Suppose that k1 = 1. Then p = 2α−1 − 1 and (5) implies that either 2α−1 − 1 | (2α − 1)

or 2α−1 − 1 |
∑k−1

i=0 2
iα. If the former, we write

1 = 2α − 1− 2(2α−1 − 1) ≡ 0 (mod 2α−1 − 1),

which is impossible. Suppose the latter. Because 2α ≡ 2 (mod p), we have

k−1
∑

i=0

2iα ≡
k−1
∑

i=0

2i ≡ 2k − 1 (mod p),

which implies that p divides 2k − 1. Hence, p = 2k − 1. However, Lemma 6 implies that
n ∤ σk(n), which contradicts our assumption. So, k1 ≥ 2; however, k1 < 3 by assumption.
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So, k1 = 2; we have p = 2α − 1 and α is a prime. Therefore, n is an even perfect number
6= 2k−1(2k − 1).

For the backward implication, write n = 2q−1(2q − 1), where q 6= k and 2q − 1 are primes.
We have

σk(n) = (1 + 2k + 22k + · · ·+ 2(q−1)k)(1 + (2q − 1)k)

=
2qk − 1

2k − 1
(1 + (2q − 1)k).

Clearly, 2q−1 divides 1 + (2q − 1)k. It suffices to show that 2q − 1 divides 2qk−1
2k−1

. The fact

n 6= 2k−1(2k−1) implies that 2q−1 and 2k−1 are two distinct primes. So, (2q−1, 2k−1) = 1.

Because 2q − 1 | 2qk − 1, 2q − 1 divides 2qk−1
2k−1

. Therefore, n | σk(n).

4 Proof of Theorem 4

4.1 Preliminary results

We provide lemmas that give useful bounds used in the proof of Theorem 4.

Lemma 7. Let n = 2α−1p3, where α > 1, p ≡ 3 (mod 4) and p < 3 · 2α−1 − 1. Then
n ∤ σ5(n).

Proof. We prove by contradiction. Suppose that n | σ5(n). We have

σ5(2
α−1p3) = (1 + 25 + · · ·+ 25(α−1))(1 + p5 + p10 + p15)

= (1 + 25 + · · ·+ 25(α−1))(p10 + 1)(p+ 1)(p4 − p3 + p2 − p+ 1).

So,

2α−1 | (p10 + 1)(p+ 1) (6)

p3 | 1 + 25 + · · ·+ 25(α−1) =
25α − 1

25 − 1
. (7)

Because p10 + 1 ≡ 2 (mod 4), we know that 2α−2 | p + 1. Hence, p = k12
α−2 − 1 for some

k1 ∈ N. Combining with p < 3 · 2α−1 − 1, we get 1 ≤ k1 ≤ 5. By (7), write 25α − 1 = 31k2p
3

for some k2 ∈ N. Therefore,

31k2(k12
α−2 − 1)3 = (2α − 1)(24α + 23α + 22α + 2α + 1). (8)

Suppose that p divides both 2α − 1 and
∑4

i=0 2
iα. Then 2α ≡ 1 (mod p) and so,

∑4
i=0 2

iα ≡
5 (mod p). Hence, p = 5, which contradicts the congruence p ≡ 3 (mod 4). It must be that
either p3 |

∑4
i=0 2

iα or p3 | 2α − 1. We consider two corresponding cases.
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Case 1: (k12
α−2 − 1)3 | 2α − 1. So, (k12

α−2 − 1)3 ≤ 2α − 1. In order that the inequality is
true for some α ≥ 2, we must have 1 ≤ k1 ≤ 2. Otherwise,

(k12
α−2 − 1)3 ≥ (3 · 2α−2 − 1)3 > 2α − 1,

for all α ≥ 2. We consider two cases.

(i) k1 = 1. Then 2α−2 − 1 | 2α − 1. Because

3 = (2α − 1)− 4(2α−2 − 1) ≡ 0 (mod 2α−2 − 1),

p = 2α−2 − 1 = 3. So, α = 4 and n = 2333, a contradiction as 2333 6 | σ5(2
333).

(ii) k1 = 2. Then 2α−1 − 1 | 2α − 1. Because

1 = (2α − 1)− 2(2α−1 − 1) ≡ 0 (mod 2α−1 − 1),

p = 2α−1 − 1 = 1, a contradiction.

Case 2: (k12
α−2 − 1)3 |

∑4
i=0 2

iα. Let x0 = 2α. Let f(x) = x4 + x3 + x2 + x+ 1.

(i) If k1 = 1, we have 2α ≡ 4 (mod p). So, f(x0) ≡ 341 (mod p). Because p divides f(x0),
it follows that p divides 341 and so, p = 11 or 31. Since p = 2α−2 − 1, p = 31, and
α = 7. However, n = 26313 ∤ σ5(n).

(ii) If k1 = 2, we have 2α ≡ 2 (mod p). So, f(x0) ≡ 31 (mod p). Because p divides f(x0),
it follows that p = 31 and α = 6. However, n = 25313 ∤ σ5(n).

(iii) If k1 = 3, we have 3x0 ≡ 4 (mod p). So, 34f(x0) ≡ 781 (mod p). Because p divides
f(x0), it follows that p | 781 and so, p ∈ {11, 71}. Since p = 3 · 2α−2 − 1, we know
p = 11, α = 4, and n = 23113. However, n = 23113 ∤ σ5(n).

(iv) If k1 = 4, we have x0 ≡ 1 (mod p). So, f(x0) ≡ 5 (mod p). It follows that p = 5, which
contradicts the congruence p ≡ 3 (mod 4).

(v) If k1 = 5, we have 5x0 ≡ 4 (mod p). So, 54f(x0) ≡ 2101 (mod p). It follows that p
divides 2101, so p = 11 or 191. Both cases are impossible.

This completes our proof.

Lemma 8. Let n = 2α−1pβ−1, p ≡ 1 (mod 4) and n | σk(n). Write β = 2vβ1, where v ≥ 1
and (2, β1) = 1. Then

p2
v−1 ≤

2k(v+1) − 1

2k − 1
. (9)
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Proof. Let p− 1 = 2tp1, where t ≥ 2 and 2 ∤ p1. Because

pk − 1 = (p− 1)
k
∑

i=1

pk−i = 2tp1

k
∑

i=1

pk−i, (10)

we have 2t || (pk − 1). By Lemma 16, 2t+v || pkβ − 1. Hence,

2v ||
pkβ − 1

pk − 1
.

By (1),

α ≤ v + 1. (11)

Hence, we have

p2
v−1 ≤ pβ−1 ≤

2kα − 1

2k − 1
≤

2k(v+1) − 1

2k − 1
.

Lemma 9. Let n = 2α−1pβ−1, p ≡ 3 (mod 4) and n | σk(n). Write β = 2vβ1, where v ≥ 1
and (2, β1) = 1. Then

p2
v−2k−1 <

2k(v−1)

2k − 1
. (12)

Proof. Let p2 − 1 = 2sp2, where 2 ∤ p2. Then s ≥ 3. By (10), 2 || pk − 1 and by Lemma 17,
2v+s−1 || pkβ − 1. Hence,

2v+s−2 ||
pkβ − 1

pk − 1
.

By (1),

α ≤ v + s− 1. (13)

We have

p2
v−1 ≤ pβ−1 ≤

2kα − 1

2k − 1
≤

2k(v+s−1) − 1

2k − 1

=
2ks2k(v−1) − 1

2k − 1
<

p2k2k(v−1) − 1

2k − 1
because p2 > 2s.

Therefore,

p2
v−2k−1 <

2k(v−1) − 1/p2k

2k − 1
<

2k(v−1)

2k − 1
.
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Lemma 10. Let n = 2α−1pβ−1, p ≡ 3 (mod 4) and n | σk(n). Write β = 2vβ1 and
p+ 1 = 2λp1, where (2, β1) = (2, p1) = 1. Then one of the following must hold

(a)
p = k,

(b)
(2λ − 1)β−1 ≤ 2λ+v − 1,

(c)

(2λ − 1)β−1 ≤

k−1
∑

i=0

2i(λ+v).

Proof. From (1) and (2), we have

2α | pβ − 1 and pβ−1 | 2kα − 1 = (2α − 1)
k−1
∑

i=0

2iα.

By Lemma 18, 2λ+v || pβ − 1. So, α ≤ λ+ v.

Case 1: p | 2α − 1 and p |
∑k−1

i=0 2iα. The fact that 2α ≡ 1 (mod p) implies that
∑k−1

i=0 2iα ≡

k (mod p). Because p |
∑k−1

i=0 2iα and k is prime, it must be that p = k. We have scenario
(a).

Case 2: p | 2α − 1 and p ∤
∑k−1

i=0 2
iα. So,

2α | pβ − 1 and pβ−1 | 2α − 1.

We have
(2λ − 1)β−1 ≤ pβ−1 ≤ 2α − 1 ≤ 2λ+v − 1.

We have scenario (b).

Case 3: p 6 | 2α − 1 and p |
∑k−1

i=0 2
iα. So,

2α | pβ − 1 and pβ−1 |
k−1
∑

i=0

2iα.

We have

(2λ − 1)β−1 ≤ pβ−1 ≤
k−1
∑

i=0

2iα ≤
k−1
∑

i=0

2i(λ+v).

We have scenario (c).
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4.2 Proof of Theorem 4

We now bring together all preliminary results and prove Theorem 4 by case analysis.

Proof. The backward implication follows from Theorem 3. We prove the forward implication.
Let n = 2α−1pβ−1, where α, β > 1 and p < 3·2α−1−1 is an odd prime. Suppose that n | σ5(n).
Computation shows that n 6= 496.

Case 1: p ≡ 1 (mod 4). By (9),

52
v−1 ≤ p2

v−1 ≤
25(v+1) − 1

25 − 1
, (14)

which only holds if 1 ≤ v ≤ 2 by Lemma 19.

(i) v = 1. By (11), α = 2 then by (2), p | 33, which contradicts the congruence p ≡
1 (mod 4).

(ii) v = 2. By (14), p ≤ 10 and so p = 5. By (11), 2 ≤ α ≤ 3. However, neither value of α
satisfies (2).

Case 2: p ≡ 3 (mod 4). Note that because k = 5, we can ignore scenario (a) of Lemma 10.
By (12),

32
v−11 ≤ p2

v−11 <
25(v−1)

25 − 1
, (15)

which implies 1 ≤ v ≤ 4 by Lemma 20.

(i) v = 4. By (15), p = 3. So, in (13), s = 3 and 2 ≤ α ≤ 6. If α ≤ 5, (2) gives

315 | 316β1−1 ≤
225 − 1

31
, a contradiction.

If α = 6, (2) does not hold.

(ii) v = 3. Then β ≥ 8. By Lemma 10, either (2λ − 1)β−1 ≤ 2λ+3 − 1 or (2λ − 1)β−1 ≤
∑4

i=0 2
i(λ+3).

(a) If (2λ − 1)β−1 ≤ 2λ+3 − 1, then λ < 2 because β ≥ 8, a contradiction.

(b) If (2λ − 1)β−1 ≤
∑4

i=0 2
i(λ+3), then β ≤ 15 in order that λ ≥ 2. Since 8 | β, we

know β = 8. Plugging β = 8 into (2λ − 1)β−1 ≤
∑4

i=0 2
i(λ+3), we have 2 ≤ λ ≤ 4

and so 2 ≤ s ≤ 5. By (13), 2 ≤ α ≤ 7 and by (2), we acquire

p7 |
25α − 1

31
≤

235 − 1

31
.

Hence, p ∈ {3, 7, 11, 19}. Computation shows that for each pair (α, p), (2) does
not hold.
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(iii) v = 2. Then 4 |β. By Lemma 10, either (2λ − 1)β−1 ≤ 2λ+2 − 1 or (2λ − 1)β−1 ≤
∑4

i=0 2
i(λ+2). Since β ≥ 4 and λ ≥ 2, the former does not hold. If the later, since

λ ≥ 2, it must be that β < 12 and so β ∈ {4, 8}.

(a) β = 4. Lemma 7 rejects this case.

(b) β = 8. Plugging β = 8 into (2λ − 1)β−1 ≤
∑4

i=0 2
i(λ+2), we have 2 ≤ λ ≤ 3 and so

2 ≤ s ≤ 4. By (13), 2 ≤ α ≤ 5. We are back to item (ii) part (b).

(iv) v = 1. By Lemma 10, either (2λ − 1)β−1 ≤ 2λ+1 − 1 or (2λ − 1)β−1 ≤
∑4

i=0 2
i(λ+1). If

the former, β = 2 and n = 2α−1p. By Theorem 3, n is an even perfect number. If the
latter, since λ ≥ 2, it must be that β ≤ 9 and so β ∈ {2, 6}.

(a) If β = 2, Theorem 3 guarantees that n is an even perfect number.

(b) If β = 6, then 2 ≤ λ ≤ 4 and so 2 ≤ s ≤ 5. By (13), 2 ≤ α ≤ 5 and by (2), we
acquire

p5 |
25α − 1

31
≤

225 − 1

31
.

Hence, p ∈ {3, 7, 11}. Computation shows that for each pair (α, p), (2) does not
hold.

We have finished the proof.
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A Technical proofs used for Lemma 6

We provide proofs of claim(s) made in the proof of Lemma 6. Notation from Lemma 6 is
retained here.

Lemma 11. For all u ≥ 1 and k ≥ 3, we have

2(2
k−1)u−k > u+ 2k − 1.

Proof. We prove by induction on u. For u = 1, it is clear that 22
k−1−k > 2k for all k ≥ 3.

Assume that the inequality holds for u = n ≥ 1 and for all k ≥ 3. We want to show that
the inequality holds for u = n+ 1 and for all k ≥ 3. Fixing k ≥ 3, we have

2(2
k−1)n+1−k = 2−k(2(2

k−1)n)2
k−1 > 2−k(2k(n+ 2k − 1))2

k−1
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by the inductive hypothesis. Hence, it suffices to show that 2−k(2k(n+2k−1))2
k−1 ≥ n+2k;

equivalently, 2k(2
k−1)(n+2k − 1)2

k−1 ≥ 2k(n+2k). Because 2k(2
k−1) ≥ 2k, it remains to show

(n+ 2k − 1)2
k−1 ≥ n+ 2k.

Let ℓ = 2k − 1. The above inequality becomes

(n+ ℓ)ℓ − 1 ≥ n+ ℓ.

Equivalently,

(n+ ℓ)ℓ−1 −
1

n+ ℓ
≥ 1,

which is true because (n+ ℓ)ℓ−1 ≥ 2.

Lemma 12. For all odd k ≥ 3, we have 2k+1 || (2k − 1)2k − 1.

Proof. Write

(2k − 1)2k − 1 =
2k
∑

i=0

(

2k

i

)

(2k)2k−i(−1)i − 1 =
2k−1
∑

i=0

(

2k

i

)

(2k)2k−i(−1)i.

When i = 2k − 1, we have the term −2k · 2k = −k2k+1. Because k is odd, 2k+1 || k2k+1.
This finishes our proof.

Lemma 13. The following holds

2v+k || (2k − 1)βk − 1.

Proof. We prove by induction on v. When v = 1, write

(2k − 1)βk − 1 = (2k − 1)2kβ1 − 1 = ((2k − 1)2k − 1)

β1
∑

i=1

(2k − 1)2k(β1−i).

Because the summation is 1 mod 2 and by Lemma 12, 2k+1 || (2k − 1)2k − 1, our claim holds
for v = 1. Inductive hypothesis: suppose that there exists z ≥ 1 such that the claim holds
for all v ∈ [1, z]. We show that the claim holds for v = z + 1. We have

(2k − 1)2
z+1β1k − 1 = ((2k − 1)2

zβ1k − 1)((2k − 1)2
zβ1k + 1).

By the inductive hypothesis, 2z+k || (2k − 1)2
zβ1k − 1, so it suffices to show that 2 || (2k −

1)2
zβ1k + 1. Observe that

(2k − 1)2
zβ1k + 1 = (4k − 2k+1 + 1)2

z−1β1k + 1 ≡ 2 (mod 4).

Hence, 2 || (2k − 1)2
zβ1k + 1, as desired. This completes our proof.
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Lemma 14. Let m be chosen such that (2k − 1)m || 2(2
k−1)k − 1. Then for all u ≥ 0,

(2k − 1)u+m || 2(2
k−1)u+1kα1 − 1.

Proof. First, we claim that m ≥ 2. To prove this, write

2(2
k−1)k − 1 = (2k − 1)

2k
∑

i=2

(2k)(2
k−i).

Since each term in the summation is congruent to 1 mod 2k − 1 and there are 2k − 1 terms,
the summation is divisible by 2k − 1. Therefore, (2k − 1)2 | 2(2

k−1)k − 1.
We are ready to prove the lemma. We proceed by induction. Recall that in the proof of

Lemma 6, we define α1 := α/(2k − 1)u. For u = 0, write

2(2
k−1)kα1 − 1 = (2(2

k−1)k − 1)(2(2
k−1)k(α1−1) + 2(2

k−1)k(α1−2) + · · ·+ 1)

= (2(2
k−1)k − 1)

α1
∑

i=1

(2k)(2
k−1)(α1−i).

By assumption, (2k − 1)m || 2(2
k−1)k − 1. Each term in the summation

∑α1

i=1(2
k)(2

k−1)(α1−i)

is congruent to 1 mod 2k − 1, so the summation is congruent to α1 mod 2k − 1. Hence, our
lemma holds for u = 0. Inductive hypothesis: suppose that there exists z ≥ 0 such that our
lemma holds for all u ≤ z. We show that our lemma holds for u = z + 1. Write

2(2
k−1)z+2kα1 − 1 = (2(2

k−1)z+1kα1 − 1)·

(2(2
k−1)z+1kα1(2k−2) + 2(2

k−1)z+1kα1(2k−3) + · · ·+ 1)

= (2(2
k−1)z+1kα1 − 1)

2k
∑

i=2

2(2
k−1)z+1kα1(2k−i).

By the inductive hypothesis, (2k − 1)z+m || 2(2
k−1)z+1kα1 − 1. Each term in the summation is

congruent to 1 mod (2k − 1)m. Since there are 2k − 1 terms, the summation is congruent to
(2k − 1) mod (2k − 1)m. Because m ≥ 2, (2k − 1) exactly divides the summation. So,

(2k − 1)z+m+1 exactly divides 2(2
k−1)z+2kα1 − 1,

as desired. This completes our proof.

Remark 15. Note that for all k ≥ 3, in order that (2k − 1)m ≤ 2(2
k−1)k − 1, we must have

m < 2k. By Lemma 14, (2k − 1)u+2k does not divide 2(2
k−1)u+1kα1 − 1 for all u ≥ 0.
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B Technical proofs used for Lemma 8

We provide proofs of claim(s) made in the proof of Lemma 8. Notation from Lemma 8 is
retained here.

Lemma 16. With notation as in Lemma 8, the following holds

2t+v || p2
vβ1k − 1.

Proof. We prove by induction on v. When v = 1, write

p2kβ1 − 1 = (p2k − 1)(p2k(β1−1) + p2k(β1−2) + · · ·+ 1)

= (pk − 1)(pk + 1)

β1
∑

i=1

p2k(β1−i)

= (pk − 1)(p+ 1)

(

k
∑

i=1

pk−i(−1)i+1

)

β1
∑

i=1

p2k(β1−i). (16)

Since p+ 1 ≡ 2 (mod 4), 2 || (p+ 1). We showed that 2t||(pk − 1) in the proof of Lemma 8.
Also, the two summations are odd. Therefore, 2t+1 || p2kβ1 − 1.

Inductive hypothesis: suppose that there exists z ≥ 1 such that our claim holds for all
v ∈ [1, z]. We show that our claim holds for v = z + 1. We have

p2
z+1kβ1 − 1 = p(2

zkβ1)·2 − 1 = (p2
zkβ1 + 1)(p2

zkβ1 − 1).

By the inductive hypothesis, 2z+t || p2
zkβ1 − 1. Also, p ≡ 1 (mod 4) implies that p2

zkβ1 +1 ≡
2 (mod 4). So, 2 || p2

zkβ1+1. Therefore, 2z+t+1 || p2
z+1kβ1−1. We have finished our proof.

C Technical proofs used for Lemma 9

We provide proofs of claim(s) made in the proof of Lemma 9. Notation from Lemma 9 is
retained here.

Lemma 17. With notation as in Lemma 9, the following holds

2v+s−1 || pk2
vβ1 − 1.

Proof. We prove by induction on v. When v = 1, by (16), we only consider (p+ 1)(pk − 1).
We showed that 2 || pk − 1 in the proof of Lemma 9. Since 2s || (p− 1)(p+1) and 2 || p− 1,
it follows that 2s−1 || p+ 1. Therefore, 2s || pk2β1 − 1.

Inductive hypothesis: suppose that there exists z ≥ 1 such that for all v ∈ [1, z], our
claim holds. We show that our claim also holds for v = z + 1. We have

p2
z+1kβ1 − 1 = p(2

zkβ1)·2 − 1 = (p2
zkβ1 + 1)(p2

zkβ1 − 1).

By the inductive hypothesis, 2z+s−1 || p2
zkβ1−1. Also, p2 ≡ 1 (mod 4) implies that p2

zkβ1+1 ≡
2 (mod 4). So, 2 || p2

zkβ1 +1. Therefore, 2z+s || p2
z+1kβ1 − 1. We have finished our proof.
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D Technical proofs used for Lemma 10

We provide proofs of claim(s) made in the proof of Lemma 10. Notation from Lemma 10 is
retained here.

Lemma 18. With notation as in Lemma 10, the following holds

2λ+v || (2λp1 − 1)2
vβ1 − 1.

Proof. We prove by induction on v. Observe that

(2λp1 − 1)2β1 − 1 =

2β1
∑

i=0

(

2β1

i

)

(2λp1)
2β1−i(−1)i − 1

=

2β1−1
∑

i=0

(

2β1

i

)

(2λp1)
2β1−i(−1)i,

which clearly indicates that 2λ+1 || (2λp1−1)2β1 −1. So, the claim holds for v = 1. Inductive
hypothesis: suppose that there exists z ≥ 1 such that for all v ∈ [1, z], the claim holds. We
prove that the claim holds for v = z + 1. We have

(2λp1 − 1)2
z+1β1 − 1 = ((2λp1 − 1)2

zβ1 − 1)((2λp1 − 1)2
zβ1 + 1).

By the inductive hypothesis, 2λ+z || (2λp1 − 1)2
zβ1 − 1. Also, (2λp1 − 1)2

zβ1 + 1 ≡ 2 (mod 4)
since λ ≥ 2. Hence, 2λ+z+1 || (2λp1 − 1)2

z+1β1 − 1, as desired.

E Technical proofs used for Theorem 4

Lemma 19. If v ≥ 1 and 52
v−1

≤ 25(v+1)−1
31

, then 1 ≤ v ≤ 2.

Proof. The inequality 52
v−1

≤ 25(v+1)−1
31

implies that

52
v−1 ≤ 55(v+1),

which is equivalent to 2v−1 ≤ 5(v+1). Clearly, we have 1 ≤ v ≤ 4. However, the inequality

52
v−1

≤ 25(v+1)−1
31

does not hold when v ∈ {3, 4}. We conclude that 1 ≤ v ≤ 2.

Lemma 20. If v ≥ 1 and 32
v−11 < 25(v−1)

31
, then 1 ≤ v ≤ 4.

Proof. The inequality 32
v−11 < 25(v−1)

31
implies that 32

v−11 < 35(v−1). Hence, 2v < 5v + 6,
which holds only if 1 ≤ v ≤ 4.

14
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