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Abstract

. . USCIRTe] 2G 41 .
We present some infinite product formulas for e =2 , e= and e *2, where G is

Catalan’s constant. We relate these formulas to similar ones obtained by Guillera and
Sondow in the context of their systematic study of Lerch’s transcendent. Our proofs
are entirely elementary.

1 Introduction

This paper studies some infinite product formulas involving two classical constants, namely
¢ (3) and Catalan’s constant, whose definition we now recall:
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n=1
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and
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The following formulas are reminiscent of similar formulas obtained by Guillera and Sondow
in [5]:

Proposition 1. The following formulas hold:
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Proposition 2. The following formulas hold:
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We claim no novelty for the formulas themselves; our only purpose here is to present
completely elementary proofs of these formulas and to establish the not-so-obvious facts
below:

Fact 3. Formula (3) is equivalent to the following formula given by Guillera and Sondow [5,
Example 5.3]:
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Fact 4. Formula (4) follows from rearranging the factors of the following formula given by
Guillera and Sondow [5, Example 5.5]:
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which in turn is equivalent to formula (6).
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2 Proof of Proposition 2

We begin with the following formula which is a classically known Fourier expansion (see, for
example, Exercise 11.15(c) in [1, p. 338]):

Formula 5. Let o € [ — 1, 1]\ {0}. Then
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The following formula, which follows directly from Formula 5 by integrating both sides

m=0
is also well-known (see, for example, [2, p. 239)):

G = /@ :)4 log<cot9) .

By applying integration by parts to the latter integral, we obtain

over the interval [0, 31

Formula 6.

Corollary 7.
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The following formula is also well-known (see, for example, [8, p. 155]):

Formula 8. Let a« € R\ Z and s € <— %,%) Then

COS (27rozs) = M (é + 2« E % cos (27Tms)>.
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Setting s = 0 in Formula 8 gives:



Corollary 9. Let a € R\ Z. Then
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Lemma 10. Let m € Z, m > 1. Then
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Proof. This is straightforward:
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We now proceed with the proof of formula (4). By Corollary 9, we have
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Integrating both sides with respect to a over the interval [O, %] gives
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Consider the sequence of functions
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converges, it follows from the Weierstrass M-test that the series

i fu(a)

converges uniformly on I, and, by well-known principles, (see, for example, [1, Thm. 9.9, p.
226]), can therefore be integrated term by term. In other words, if we set

Ay = (—1)m (1 + m log

then (7) and Lemma 10 imply that
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The left-hand side of (8) is a definite integral of the continuous function — ”(2 = ) over the

interval [0, 1]. Hence the left-hand side of (8) is a real number which implies that

lim a,, = 0.
m—0o0
Keeping this in mind, define
n
A, = m
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Then, by (8), we have
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and this completes the proof of formula (4). Multiplying both sides of the latter formula by
e and using the fact that
2 —(2m+1)
e= lim (1 . )

gives formula (5). Finally, multiplying formulas (4) and (5) together and expanding gives
formula (6).

3 Proof of Proposition 1

We will first prove formula (1).

Lemma 11. Let m € N and J € <0, %) Then
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Proof. This is straightforward integration by parts:
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Corollary 12. Let m € N. Then
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Proof. In Lemma 11, let 6 — 0+. m
We now recall the following basic formula:
n;) 2m + )
We will establish the following:

Formula 13.

4 2 1/2 2
C3) = =7 G — = r? ‘WU do.
7 7
Proof. First, we may rewrite Formula 6 as
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G = /o':O 5 log (cot (50)) do. (10)

Second, by (9) and Corollary 12, we have
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Fix § € (O, %) For each n € N, define the function

cos (m(2m + 1)o
(o) = 2 (% - U) <2m+1 )

m=0
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on the interval I = [5, 5} . The sequence

n
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of functions is uniformly bounded on I by (2sin(7d))~" (see [1, Formula (15), p. 198] or [6,
Item 185.5, p. 316]), whereas the sequence

{(% - U) 2m1—|—1}meN

clearly tends monotonically to 0 uniformly on I. Hence by applying Dirichlet’s test for
uniform convergence (see [1, Thm. 9.15, p.  230] or or [6, p. 347]), it follows that the
sequence of functions F;, (0) converges uniformly on I. Therefore, the series
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can be integrated term by term on /. Hence, Lemma 11 establishes the following
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Formula 14.
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Now take the limits of both sides of the latter formula as é — 04. By the Weierstrass
M-test, both series on the right-hand side of Formula 14 are uniformly convergent series of
functions of ¢ on the interval I = [0, 1]. Therefore, we can interchange limits and infinite
sums on the right-hand side of Formula 14 (see [1, Thm. 9.7, p. 220]). By (11), it follows

that
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Combining (10), (12) and Formula 5 gives
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In short,
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Formula 13 now follows because
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The following statement is similar to Lemma 10.
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Lemma 15. Let m € Z, m > 1. Then
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Proof. This is straightforward:

1/2 3 1/2
/ % do :/ (O' —+ m2 %) do
o=0 o - m o=0 g —m

1/2
= 102 + m2l 10g<—02+m2>
2 2
o=0
1 m? m? — 1
= — 1 4
s T 2 BT

Lemma 16.
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Proof. By taking logarithms, it suffices to show that

1 1 1
lim (n — n? log<1 + —)) = — = lim (—n — n? 10g<1 — —))
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This follows by substituting x = i% in the Maclaurin series of the function log (1 + x)
and using continuity. O
We now proceed with the proof of formula (1). By Corollary 9, we have
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Integrating both sides with respect to o over the interval [0, %] and using formula (4) (and

its proof) and Lemma 15 gives
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Therefore, by Formula 13, it follows that
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Indeed, by Lemma 16, we have
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hence (15) follows. Combining (14) with (15) gives

(2l)(21+1)l (2l+2)(2l+2)(l+1)

647r2 = —e H \/E<2l+1>2l+1)2

Therefore,
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and this completes the proof of formula (1).
It remains to prove formulas (2) and (3). Note that

(2m+1)(m+1)
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Therefore, formula (2) will follow from formula (1) once we show that
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This follows by writing (2m + 2)(2m + 1) as (2m + 2)* — (2m + 2) and using Lemma 16.
Now multiplying formulas (1) and (2) together and squaring gives
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Formula (3) is now a consequence of the equality

1 . ( 2m +1 ) m+2
— im )
Ve o m—oo \2m + 2

4 Proof of Facts 3 and 4

By formula (3) and its proof, it suffices to show that the total exponent of £+1 in the infinite

product expansion given by Guillera and Sondow [5, Example 5.3] equals (— l)kJrl (k; + 1)2,
for all £ € N. The exponent in question equals
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We have the following lemma:

Lemma 17. For all k € N, we have

i (m+k+1) (m;n—lk:) (m+1) _ o) ((k:+1)!).

m=0

Proof. This follows by term-by-term (k + 1)—fold differentiation of the geometric series

" = (1—x)"

NE

I
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n

and subsequent evaluation at x = % O]

Therefore, by Lemma 17, the exponent in question equals

(_1)k+1
8 - (k)

(8- (k+2)) — 8- ((k+1)1) = (-1 (k+1)*

which completes the proof of Fact 3.

We will now show that, apart from the factor e~z on the left-hand side of formula (4), the
product expansion given by the latter formula and the product expansion given by Guillera
and Sondow [5, Example 5.5] are equivalent. In other words, we will show that the total
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exponent of 2k + 1 in the infinite product expansion of e given by Guillera and Sondow
5, Example 5.5] equals (—1)*™ (k + 1), for all k € N. Since the infinite series involved is
only conditionally convergent, the discrepancy involving e~2 can be explained by means of
Riemann’s theorem on rearrangements of conditionally convergent series. The exponent in
question equals

k1 o= (R n )Yt 2 (n=1) - (n—k+1
) - gt

n=~k

—1kZl > n+1)n - (n—k+1 “ nn-1) - (n—k+1
:_i‘()k!) (nZ:k( +1) 2n< +)_n22k ( ) 2n( +)>
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_%mZO(Jr) +2m) (+)>.

By Lemma 17, this equals
(~1)s+

N -7 A | . . | _ B k+1 L
S (G0 =2 ) = (<) (g
as required, and this completes the proof of Fact 4.

5 Concluding remarks

Remark 18. The identities

= /m\n?+n ) = /n\ n 1
Z(k) on+3 =(k+1)7, Z(k)2n+2:k+§

n==k n=k

which were used in the proofs of Facts 3 and 4 can also be very easily established by the
Wilf-Zeilberger method via the use of Zeilberger’s Maple package EKHAD (see [9]).

Remark 19. One way to account for the fact that the products discussed in this paper are
so closely tied to the ones studied by Guillera and Sondow in [5] is by noticing that they
are related via Euler transformations. For instance, using the latter formula in the previous
remark, one has

2m

. 1\k
JE%OZ( 1) k;log

—1 n\n—1

If we interchange the summation on the right-hand side (an Euler transformation) the rela-
tion between formula (4) and the formula given in Fact 4 becomes evident.
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Remark 20. The formulas in Propositions 2 and 1 are reminiscent of some powerful state-
ments that deserve to be more widely known. We refer the reader to Finch’s book [4] for a
wealth of information regarding such statements involving classical constants. For instance,
the following function (first introduced by Borwein and Dykshoorn in [3]):

. 2m+-1 T\ (1)1 . 2m T\ (1)1
D($):ril—l>réog(l+ﬁ) :6721_131001_‘[(14-—) :

n
n=1

Certain values of this function are related to some classical constants. Melzak proved in [7]
that D(2) = 7. In [3], Borwein and Dykshoorn generalized Melzak’s result and explicitly
determined the values of D(z) at all rational x having denominator 1, 2 or 3. Interestingly
enough, some of the resulting evaluations involve Catalan’s constant, the Glaisher-Kinkelin
constant and F(}l). We have not been able to show that any of the formulas in Propositions
2 or 1 is a direct consequence of the latter evaluations.
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