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Abstract

We investigate weighted gcd-sum functions, including the alternating gcd-sum func-
tion and those having as weights the binomial coefficients and values of the Gamma
function. We also consider the alternating lcm-sum function.

1 Introduction

The gcd-sum function, called also Pillai’s arithmetical function (OEIS A018804) is defined
by

P (n) :=
n
∑

k=1

gcd(k, n) (n ∈ N := {1, 2, . . .}). (1)

The function P is multiplicative and its arithmetical and analytical properties are deter-
mined by the representation

P (n) =
∑

d|n

d φ(n/d) (n ∈ N), (2)

1The author gratefully acknowledges support from the Austrian Science Fund (FWF) under the project
Nr. P20847-N18.
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where φ is Euler’s function. See the survey paper [5]. Note that for every prime power pa

(a ∈ N),
P (pa) = (a+ 1)pa − apa−1. (3)

Now let

Paltern(n) :=
n
∑

k=1

(−1)k−1 gcd(k, n) (n ∈ N) (4)

be the alternating gcd-sum function. As far as we know, the function (4) was not considered
before.

Furthermore, let

Pbinom(n) :=
n
∑

k=1

(

n

k

)

gcd(k, n) (n ∈ N) (5)

(OEIS A159068), where
(

n
k

)

are the binomial coefficients. Every term of the sum (5) is

a multiple of n, since gcd(k, n) = kx + ny with suitable integers x, y and k
(

n
k

)

= n
(

n−1
k−1

)

(1 ≤ k ≤ n). Note also the symmetry
(

n
k

)

gcd(k, n) =
(

n
n−k

)

gcd(n− k, n) (1 ≤ k ≤ n− 1).
More generally, consider the weighted gcd-sum functions defined by

Pw(n) :=
n
∑

k=1

w(k, n) gcd(k, n) (n ∈ N), (6)

where the weights are functions w : N2 → C.
In this paper we evaluate the alternating gcd-sum function Paltern(n), deduce a formula

for the function Pbinom(n) and investigate other special cases of (6). We also give a formula
for the alternating lcm-sum function defined by

Laltern(n) :=
n
∑

k=1

(−1)k−1 lcm[k, n] (n ∈ N). (7)

Similar results can be derived for the weighted versions of certain analogs and general-
izations of the gcd-sum function, see [5], but we confine ourselves to the function (6).

2 General results

We first give the following simple result.

Proposition 1. i) Let w : N2 → C be an arbitrary function. Then

Pw(n) =
∑

d|n

φ(d)

n/d
∑

j=1

w(dj, n) (n ∈ N). (8)

ii) Assume that there is a function g : (0, 1] → C such that w(k, n) = g(k/n) (1 ≤ k ≤ n)
and let G(n) =

∑n
k=1 g(k/n) (n ∈ N). Then

Pw(n) =
∑

d|n

φ(d)G(n/d) (n ∈ N). (9)
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Proof. i) Using Gauss’ formula m =
∑

d|m φ(d) for m = gcd(k, n), grouping the terms of (6)
and denoting k = dj we obtain at once

Pw(n) :=
n
∑

k=1

w(k, n)
∑

d|gcd(k,n)

φ(d) =
∑

d|n

φ(d)

n/d
∑

j=1

w(dj, n).

ii) Use (8) and that

n/d
∑

j=1

w(dj, n) =

n/d
∑

j=1

g(dj/n) =

n/d
∑

j=1

g(j/(n/d)) = G(n/d).

For w(k, n) = 1 we reobtain formula formula (2). In the next section we investigate other
special cases, including those already mentioned in the Introduction.

Remark 2. Consider the function

Rw(n) :=
n
∑

k=1
gcd(k,n)=1

w(k, n) (n ∈ N). (10)

Then, similar to the proof of i), now with the Möbius µ function instead of φ,

Rw(n) =
n
∑

k=1

w(k, n)
∑

d|gcd(k,n)

µ(d) =
∑

d|n

µ(d)

n/d
∑

j=1

w(dj, n). (11)

If condition ii) is satisfied, then we have

Rw(n) =
∑

d|n

µ(d)G(n/d) (n ∈ N). (12)

We will also point out some special cases of (11) and (12).

3 Special cases

3.1 Alternating gcd-sum function

Let w(k, n) = (−1)k−1 (k, n ∈ N). Then we have the function Paltern(n) defined by (4).

Proposition 3. Let n ∈ N and write n = 2am, where a ∈ N0 := {0, 1, 2, . . .} and m ∈ N is
odd. Then

Paltern(n) =

{

n, if n is odd (a = 0);

−2a−1aP (m) = − a
a+2

P (n), if n is even (a ≥ 1).
(13)
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Proof. Use formula (8). Here

Sd(n) :=

n/d
∑

j=1

w(dj, n) =

n/d
∑

j=1

(−1)dj−1 = −
n/d
∑

j=1

(−1)dj .

If n is odd, then every divisor d of n is also odd and obtain Sd(n) = −∑n/d
j=1(−1)j = 1,

where n/d is odd. Hence, Paltern(n) =
∑

d|n φ(d) = n.

Now let n be even and let d | n. For d odd, Sd(n) = −∑n/d
j=1(−1)j = 0, since n/d is even.

For d even, Sd(n) = −∑n/d
j=1 1 = −n/d. We obtain that

Paltern(n) = −
∑

d|n
d even

φ(d)
n

d
= −

∑

d|n

φ(d)
n

d
+
∑

d|n
d odd

φ(d)
n

d
,

where the first sum is P (n) (cf. (2)), and the second one is

∑

d|m

φ(d)
2am

d
= 2aP (m).

Using (3), P (n) = P (2a)P (m) = 2a−1(a+ 2)P (m) and deduce

Paltern(n) = −P (n) + 2aP (m) = P (m)(2a − 2a−1(a+ 2))

= −2a−1aP (m) = − a

a+ 2
P (n).

Remark 4. More generally, consider the polynomial

fn(x) :=
n
∑

k=1

gcd(k, n)xk−1, (14)

i.e., put w(k, n) = xk−1 (formally). Then fn(1) = P (n), fn(−1) = Paltern(n) and deduce
from Proposition 1,

fn(x) := (1− xn)
∑

d|n

φ(d)xd−1

1− xd
. (15)

3.2 Logarithms as weights

Let

Plog(n) :=
n
∑

k=1

(log k) gcd(k, n). (16)

Proposition 5. For every n ∈ N,

Plog(n) = P (n) log n+
∑

d|n

log(d!/dd)φ(n/d). (17)
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Proof. Apply formula (8). For w(k, n) = log k,

n/d
∑

j=1

w(dj, n) =

n/d
∑

j=1

log(dj) =
n

d
log d+ log

(n

d

)

!,

hence
Plog(n) =

∑

d|n

φ(d)
(n

d
log d+ log

(n

d

)

!
)

,

and a short computation leads to (17).

Remark 6. Writing the exponential form of (17),

n
∏

k=1

kgcd(k,n) = nP (n)
∏

d|n

(

d!

dd

)φ(n/d)

. (18)

Compare this to the known formula

n
∏

k=1
gcd(k,n)=1

k = nφ(n)
∏

d|n

(

d!

dd

)µ(n/d)

, (19)

cf. [2, p. 197, Ex. 24] (OEIS A001783).

3.3 Discrete Fourier transform of the gcd’s

Consider w(k, n) = exp(2πikr/n) (k, n ∈ N), where r ∈ Z, and denote

P
(r)
DFT(n) :=

n
∑

k=1

exp(2πikr/n) gcd(k, n), (20)

representing the discrete Fourier transform of the function f(k) = gcd(k, n) (k ∈ N).

Proposition 7. For every n ∈ N, r ∈ Z,

P
(r)
DFT(n) =

∑

d|gcd(n,r)

d φ(n/d). (21)

Proof. Here exp(2πikr/n) = g(k/n) with g(x) = exp(2πirx). Using formula (9) and that

n
∑

k=1

exp(2πirk/n) =

{

n, if n | r;
0, otherwise;

we obtain
P

(r)
DFT(n) =

∑

d|n,n/d|r

φ(d)
n

d
=
∑

d|n,d|r

dφ(n/d).
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Remark 8. Formula (21) can be written in the form

P
(r)
DFT(n) =

∑

d|n

dcn/d(r), (22)

where cn(k) are the Ramanujan sums. Furthermore, (22) can be extended for r-even func-
tions. See [4], [6, Prop. 2]. Note that in the present treatment we do not need properties of
the Ramanujan sums and of r-even functions.

For r = 0 (more generally, in case n | r) we reobtain from (21) formula (2). For r = 1 we
deduce

n
∑

k=1

exp(2πik/n) gcd(k, n) = φ(n) (n ∈ N), (23)

which gives by writing the real and the imaginary parts, respectively,

n
∑

k=1

cos(2πk/n) gcd(k, n) = φ(n) (n ∈ N), (24)

n
∑

k=1

sin(2πk/n) gcd(k, n) = 0 (n ∈ N), (25)

similar relations being valid for gcd(n, r) = 1.
Formulae (23), (24), (25) were pointed out in [4, Ex. 3].

3.4 Binomial coefficients as weights

Let w(k, n) =
(

n
k

)

(k, n ∈ N). Then we have the function Pbinom(n) defined by (5).

Proposition 9. For every n ∈ N,

Pbinom(n) = 2n
∑

d|n

φ(d)

d

d
∑

ℓ=1

(−1)ℓ cosn(ℓπ/d)− n. (26)

Proof. Let εjr = exp(2πij/r) (1 ≤ j ≤ r) denote the r-th roots of unity. Using the known
identity

⌊n/r⌋
∑

k=0

(

n

kr

)

=
1

r

r
∑

j=1

(1 + εjr)
n =

2n

r

r
∑

j=1

cosn(jπ/r) cos(njπ/r) (n, r ∈ N), (27)

cf. [1, p. 84], and applying (8) we deduce

Pbinom(n) =
∑

d|n

φ(d)

n/d
∑

j=1

(

n

dj

)

=
∑

d|n

φ(d)

(

2n

d

d
∑

ℓ=1

cosn(ℓπ/d) cos(nℓπ/d)− 1

)

= 2n
∑

d|n

φ(d)

d

d
∑

ℓ=1

(−1)ℓ cosn(ℓπ/d)−
∑

d|n

φ(d),

giving (26).
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Note that (11) and (27) lead to the following formula for the sequence OEIS A056188:

Rbinom(n) :=
n
∑

k=1
gcd(k,n)=1

(

n

k

)

= 2n
∑

d|n

µ(d)

d

d
∑

ℓ=1

(−1)ℓ cosn(ℓπ/d) (n > 1). (28)

3.5 Weights concerning the Gamma function

Now let

PGamma(n) :=
n
∑

k=1

log Γ

(

k

n

)

gcd(k, n), (29)

where Γ is the Gamma function.

Proposition 10. For every n ∈ N,

PGamma(n) =
log 2π

2
(P (n)− n)− 1

2
n log n+

1

2

∑

d|n

φ(d) log d. (30)

Proof. This follows by (9) and by

n
∏

k=1

Γ

(

k

n

)

= (2π)(n−1)/2n−1/2, (n ∈ N),

which is a consequence of Gauss’ multiplication formula.

Remark 11. (30) can be written also as

PGamma(n) =
log 2π

2
(P (n)− n)− 1

2
(φ ∗ log)(n), (31)

where ∗ deotes the Dirichlet convolution. Note that φ ∗ log = µ ∗ id ∗ log = Λ ∗ id, where
id(n) = n (n ∈ N) and Λ is the von Mangoldt function.

Writing the exponential form,

n
∏

k=1

(

Γ

(

k

n

))gcd(k,n)

= (2π)(P (n)−n)/2n−n/2
∏

d|n

dφ(d)/2. (32)

Compare this to the following formula given in [3]:

n
∏

k=1
gcd(k,n)=1

Γ

(

k

n

)

=
(2π)φ(n)/2

exp(Λ(n)/2)
=

{

(2π)φ(n)/2/
√
p, n = pa (a prime power);

(2π)φ(n)/2, otherwise.
(33)
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3.6 Further special cases

It is possible to investigate other special cases, too. As examples we give the next ones
with weights regarding, among others, the floor function ⌊.⌋, and the saw-tooth function ψ
defined as ψ(x) = x− ⌊x⌋ − 1/2 for x ∈ R \ Z and ψ(x) = 0 for x ∈ Z.

Proposition 12. For every n ∈ N,

Pid(n) :=
n
∑

k=1

k gcd(k, n) =
n

2
(P (n) + n). (34)

Proposition 13. For every n ∈ N and α ∈ R,

Pfloor(n) :=
n
∑

k=1

⌊

α +
k

n

⌋

gcd(k, n) =
∑

d|n

φ(d)
⌊nα

d

⌋

. (35)

Proposition 14. For every n, r ∈ N,

P
(r)
saw-tooth(n) :=

n
∑

k=1

ψ(kr/n) gcd(k, n) = 0. (36)

Proposition 15. For every n ∈ N, n > 1,

Psin(n) :=
n−1
∑

k=1

(log sin(kπ/n)) gcd(k, n) = (φ ∗ log)(n)− (log 2)(P (n)− n). (37)

Proposition 16. For every n ∈ N and α ∈ R with α + k/n /∈ Z (1 ≤ k ≤ n),

Pcot(n) :=
n
∑

k=1

cot π(α + k/n) gcd(k, n) = n
∑

d|n

φ(d)

d
cot(πnα/d). (38)

These follow from Proposition 1 using the following well-known formulae:

n
∑

k=1

⌊

α +
k

n

⌋

= ⌊nα⌋ , (n ∈ N), (39)

n
∑

k=1

ψ(kr/n) = 0 (n, r ∈ N), (40)

n−1
∏

k=1

sin(kπ/n) =
n

2n−1
(n ∈ N) (41)

(for n = 1 the empty product is 1),

n
∑

k=1

cot π(α + k/n) = n cot πnα (n ∈ N, α ∈ R, α + k/n /∈ Z, 1 ≤ k ≤ n). (42)
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4 The alternating lcm-sum function

Some of the previous results have counterparts for the lcm-sum function (OEIS A051193)

L(n) :=
n
∑

k=1

lcm[k, n] =
n

2



1 +
∑

d|n

dφ(d)



 (n ∈ N). (43)

We consider here the alternating lcm-sum function defined by (7) and then the analog of
(18).

Let F (n) := 1
n

∑

d|n dφ(d). Note that F (n) =
∑n

k=1(gcd(k, n))
−1 representing the arith-

metic mean of the orders of elements in the cyclic group of order n, cf. [5, p. 3]. Furthermore,
let β(n) := (1 ∗ µ id)(n) =

∏

d|n(1− p) and let h(n) :=
∏n

k=1 k
k be the sequence of hyperfac-

torials (OEIS A002109).

Proposition 17. Let n ∈ N. If n is odd, then

Laltern(n) =
n

2



1 +
∑

d|n

dµ(d)τ(n/d)



 =
n

2



1 +
∏

pa||n

(a(1− p) + 1)



 , (44)

where τ is the divisor function.
If n is even of the form n = 2am, where a ≥ 1 and m ∈ N is odd, then

Laltern(n) = 2a−1m

(

22a − 1

3
mF (m)− 1

)

=
n

2

(

22a − 1

22a+1 + 1
nF (n)− 1

)

. (45)

Proof. Let id−1(n) = n−1 and 1(n) = 1 (n ∈ N). We have

Laltern(n) = n

n
∑

k=1

(−1)k−1k
1

gcd(k, n)
= n

n
∑

k=1

(−1)k−1k
∑

d|gcd(k,n)

(id−1 ∗µ)(d)

= n
∑

d|n

β(d)

n/d
∑

j=1

(−1)dj−1j.

Now using that
∑n

k=1(−1)k−1k = (−1)n−1⌊(n + 1)/2⌋ (n ∈ N) the given formulae are
obtained along the same lines with the proof of Proposition 3.

Proposition 18. For every n ∈ N,

(

n
∏

k=1

klcm[k,n]

)1/n

=
∏

d|n

h(n/d)β(d)





∏

d|n

dβ(d)/d





n/2



∏

d|n

dβ(d)/d
2





n2/2

. (46)
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Proof. Similar to the proofs of above,

n
∑

k=1

(log k) lcm[k, n] = n
n
∑

k=1

(k log k)
1

gcd(k, n)

= n

n
∑

k=1

(k log k)
∑

d|gcd(k,n)

(id−1 ∗µ)(d) = n
∑

d|n

(id−1 ∗µ)(d)
n/d
∑

j=1

jd log(jd)

= n
∑

d|n

β(d) log h(n/d) +
n2

2

∑

d|n

β(d)
log d

d
+
n3

2

∑

d|n

β(d)
log d

d2
,

equivalent to (46).
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