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Abstract

In this paper, the author studies the multiple binomial transform and the Hankel
transform of shifted sequences of an integer sequence, particularly a linear homogeneous
recurrence sequence, and some of their properties.

1 Notation

In this paper, we generally use function symbols, like a(t), b(t), etc., to express integer
sequences, where t € Ny = {0,1,2,...}. However sometimes, to employ matrix tools in

deduction process, we also denote the integer sequences by using (infinite-dimensional) vector
symbols, like @ = (a(0), a(1),a(2), a(3), - - -+ )T, b= (b(0),b(1),b(2),b(3), -+ , - --)T, etc.

2 Multiple binomial transforms of shifted sequences

Definition 1 (Shifting integer sequences). Let a(t) be an integer sequence and o be the shift
operator. Then we define the pth-order shifted sequence agy(t)), (p = 0,1,2,...), of a(t), as
follows:

ap)(t) = of(a) = a(t + p), t=0,1,2,..., (1)

a(t).

Note that in the case p = 0, (o (t) = 0°(a)
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Definition 2 (Multiple binomial transforms). Let a(¢) be an integer sequence. Then ac-
cording to Pan [1]|, we define the n-fold binomial transform of a(t), and denote its image
sequence by B, (a) or a™(t), as follows:

n—fold
1) ~ (¢t () BB (B
aV(t) = Bi(a) =) i )alk),a™(t) = Bala) = By(Bi(-- - (Bi(a))), (2)
k=0
where n = 0,1,2,.... Note that in the case n = 0, By(a) = aO(t) = a(t), that is, the

transform By just is the identity transform.

Definition 3 (Inverse multiple binomial transform). Let a(t) be an integer sequence. Then
according to Pan [1], we define the m-fold inverse binomial transform of a(t), and denote its
image sequence by B_,,(a) or a{=™(t), as follows:

where m =1,2,....

Remark 4. We can express (2) in the matrix form: a) = Bja, where the transform matrix
By is an infinite-order lower-triangular matrix, as follows:

(o) |
?
(8) (i) ) 11

Bi=| G G &, =21 , (4)

0 0 G 6 133 1
and
a™ = (a(”)(()),a(")(l),a(”)(Q), - ,--)T = B,a = Bra, (5)

where n = 0,1,2,3,.... The transform matrix of the n-fold binomial transform B, (= B})

is always a lower-triangular transform matrix with each of the diagonal elements being one.

Remark 5. We can also express (3) in matrix form, as ™" = B_,a, where the transform
matrix B_; is an infinite-order lower-triangular matrix, as

f 1

0w PR
Bil* - = o ) (6)
-0 0 -0 0 13 3
and
a=™ (a(_m)(O),a(_m)(l),a(_m)(Q),--- )T—B_ma:BTla, (7)



where m = 1,2, 3,.... The transform matrix B_,, (= B™) is also always a lower-triangular
transform matrix with each of the diagonal elements being one. We see that BiB_; =
B_1By = E, where E is the infinite-order unit matrix. It is the matrix form of well-known

inversion relation: ZZ (=1 k( )( ) Zk (=1)k (Z) (]f) = 0y, where t,1 =0,1,2,....
Remark 6. We view the n-fold binomial or inverse binomial transform B, (n = 0, 1, £2, £3,...),

to be one simple transform of integer sequences, because such inversion relations as BoB_5 =
B 3B, = F, B3B_3 = B_3B3 = E hold, and so forth. For example, for 2-fold binomial and
inverse binomial transforms, the transform matrices are respectively

1 1
2 1 —2 1
B |t CBL—| 4 4 1 , ®)

12 6 1 -8 12 -6 1

Now, let us give the multiple binomial transforms of the shifting sequences a,(t), (p =
0,1,2,...), of an integer sequence a(t).

Theorem 7. Let a(t) be an integer sequence. Then

Bula) = (0 = 0P (Buf) = (0 = nPa®) = S (7 )Ha). )

where n = 0,+£1,+2, .. ..

Proof. Use the mathematical induction. When n = +1 and p = 1,

Bi(o(a)) = zt: (é)a(k 1) = ti (k ! 1) a(k) = ti (t Z 1) a(k) — ti (Z) a(k)

- Z ("7 )at a0 - [kto(,i)am 8] = o) = e = D)
and

Bi(o(a) = ]:0(—1)““ (1 Jath+1) = Z( (L aw
- Z( p [ (1) = ()] et - i(—l)tﬂ {@ECE kt0<—1>“f (1)

If for n = £k(k is some positive integer), Bik(o(a)) = (0 F k)(Bxr(a)) holds, then for
1),

n = +(k+1), Beern(o(a)) = Bei(o(Bir(a))) F kBxi(Bir(a)) = (0 F 1)(Brprsny(a) F
kBiir1y(a) = (0 F (k +1))(Bigs1)(a)) also holds. Hence, for any integer n, B,(c(a)) =
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(6 —n)(B,(a)) holds. On the other hand, if for p = m(m is some positive integer) that
B,(c™(a)) = (60 — n)™(B,(a)) holds, then when p = m + 1, we get that B,(c™"(a)) =
(6 — )" (Bu(0(a)) = (¢ — n)"((0 — m)(B,(@))) = (¢ — n)"*'(By(a)). Hence, for any
positive integer n and p, B,,(6?(a)) = (0 —n)?(B,(a)). Special cases that n = 0 and/or p=0
are trivial. O

Corollary 8. Let a(t) be an integer sequence, and P(o) be an integer-coefficient polynomial
i o. Then

B,(P(0)(a)) = P(0 = n)(Ba(a)) = P(o —n)(a™), (10)
where n =0,+£1,4+2,....

Proof. Let P(o) be a integer-coefficient polynomial of degree p (p =0,1,2,...)ino: P(0) =
>y cka®, where ¢;s are (p + 1) integers. From Theorem 7, we have that B,(P(c0)(a)) =
B30, 0t (@) = S0_oaBu(0*(@)) = 2_genlo — )*(Bal@)) = Plo — n)(Ba(a) =
P(o —n)(a™). O

Remark 9. By using Corollary 8, we can more succinctly prove the following known property
of recurrence sequences (see [1, Thm. 17]). Let a(t) be a linear homogeneous recurrence
sequence of order ¢ with the recurrence equation

a) = by *(a) =0, (11)

where by = 1, b1, o, ..., b, are g given integers. Then its ¢ complex characteristic values Ay,
k=1,2,...,q, are the roots of polynomial (algebraic) equation:

q
A=) b r =0 (12)
k=0

On the other hand, by taking transformation B,, of the two sides of (11), and then employing
Corollary 8, we find that sequences a™(t), (n = 0, %1, £2,...), satisfy recurrence equation:

P(o —n)(a™) =0. (13)

This implies that ¢ complex characteristic values )\,(C"), (k =1,2,...,q), of a™(t) are the
roots of the algebraic equation:

—n) = 2‘7: be(A™ —n)i7k = 0. (14)
k=0

Comparing (12) with (14), we find that )\Ecn) —n = M\, namely

A = No4+n, (k=1,2,....q). (15)



3 Shifted sequences and the Hankel transform

Layman proved the invariance of the Hankel transform under applications of the binomial
transform or its inverse transform (see [2]). For an integer sequence, the n-fold binomial (or
inverse binomial) transform is the same as the n times successive binomial (or inverse bino-
mial) transform operation, Pan [1] pointed out that the invariance of the Hankel transform
holds under applications of the n-fold binomial (or n-fold invert binomial) transform. Now
by using Theorem 7, we give a more direct and succinct proof of the invariance, as follows.

Remark 10. By using Definition 1, we express the Hankel matrix H, of sequence a(t) as

H, = ( a o(a) o*() o) --- ) = ( a aqy age) as) o )7 (16)
and Hankel matrix H, ) of integer sequence a™(t) as
H,o = ( a™ O.(a(n)) Uz(a(n)) O'S(Cl(n)> )’ (17)

According to Theorem 7, we have that

B,H, = ( Ba Bna(l) Bn@@) Bna(3) )
=(a™ (c—n)a™) (6 —-n)?*a") (c—n)@™) ---). (18)

Comparing (18) with (17), we see that the upper-left (t41)x (t41) (¢t = 0, 1,2, ...) sub-matrix
of B, H, has the same determinant to the upper-left sub-matrix of the Hankel matrix H )
of sequence a™(t). On the other hand, the determinant of the upper-left (¢t + 1) x (¢ + 1)
(t = 0,1,2,...) sub-matrix of matrix B,H, is equal to the determinant of the upper-left
(t+1)x (t+1) (t =0,1,2,...) sub-matrix of matrix H,, because the determinant of any
upper-left sub-matrices of matrix B, (n = +1,+2,+3,...) is always equal to one. In other
words, the sequences a and a™ both have the same Hankel transform, for any integer n.

Remark 11. This result gives an affirmative answer to one of Layman’s two questions raised
in [2]: Are there other interesting transforms, T, of an integer sequence S, in addition to
the Binomaial and Invert transforms, with the property that the Hankel transform of S is the
same as the Hankel transform of the T transform of S¢ For example, 7 = By or B_5, which
have transform matrices listed in (8).

Next, we investigate the Hankel transform of recurrence sequences. The following theorem
gives a basic property of the Hankel transform of recurrence sequences.

Theorem 12. Let a(t) be a linear homogeneous recurrence sequence of order q, with recur-
rence equation (11). Then the Hankel transform h,(t) of sequence a(t) is a finite sequence
with length q, that is, for t > q, ha(t) = 0.

Proof. We see from (16) and (11) that if multiplying the first, the second, . . ., the ¢-th column
vectors of the Hankel matrix H, by by, by_1, . . ., bi respectively, and then adding them to the
(¢ + 1)th column 09(a), we cause the (¢+ 1)-th column to be a zero-column. This operation
does not change the determinants of principal sub-matrices of H,. On the other hand, for
a infinite-order square matrix with its (¢ + 1)-th column being a zero-column, determinants
of the principal sub-matrices of order ¢+ 1, ¢+ 2, ¢+ 3, ..., namely h(q), h(¢+ 1), h(qg+2),
..., are always equal to zeros. That is, the Hankel transform h(t) is a finite integer sequence
with the length of q. O



Corollary 13. All of the n-fold binomial transforms a™(t) (n = 0,£1,42,43,...) of a
q-order recurrence sequence a(t) have identical Hankel transform with the length of q.

Remark 14. For example, as recurrence sequences of order 2 and 3, the Fibonacci sequence
F(t) (A000045 in [3]) and its multiple binomial transforms A001906, A093131, A039834, etc.
(see Pan [1]) all have the same Hankel transform with length 2: hp(0) = 1, hp(1) = 1, and
the Tribonacci sequence T'(¢) (A000073 in [3]) and its multiple binomial transforms A115390,
etc. (see Pan [1]) all have the same Hankel transform with length 3: hr(0) = 3, hp(1) = 8,
hr(2) = —44.

Finally, we give special relations of the Hankel transforms of a™(t), (n = 0, £1, £2,...),
and a)(t), (p = 0,1,2,...), with the general term formula of the recurrent sequences a(t),
respectively.

Theorem 15. Let a(t) be a linear homogeneous recurrence sequence of order q, with the
general-term formula: a(t) = > }_, AL, t € No. Then the Hankel transforms hym(t),
(n=0,£1,42,...), are such that

By (t) = Z H (X T =X, t=01,....¢-1, (19)
(41,42, ,it+1) 1<k<m<(t+1)
where the summation is over the q!/(q—t—1)! different (t+ 1)-permutations (i1, 19, ,i14+1)

of set {1,2,...,q}. Partz'cularly, the first term hom (0) = Y1 ¢; = a(0), and the qth (last)
term hgom (q - 1) = 1li=1 G H1<z<]<q(/\ - )‘j)2'

Proof. Denoting j-order vectors (1, \;, A7, - - ,)\g_l) by A(7,7), and (j x j) Vandermonde
square-matrices (A(il,j),)\(ig,j),.. )\(Z],j)) by V(iy,i9,--- ,1;) respectively, where i €
{1,2,...,q}, and (iy,42,--- ,i;) is a j-permutation of set {1,2,...,q}, (1 < j < gq), we find
that the ¢-th term of Hankel transform h,(t) of a(t), that is, the determinant of upper-left
(t+1) x (t+ 1) sub-matrix of Hankel matrix (16), is

ho(t) =det | 20 cA(i,t+1) DL A AAGE+1) -+ DL XAt +1) |
t+1
= Z (H(Clk)\f;;l)) det V(ih i27 e 7it+1)a
(insizyyigyn)) k=1
where the summation is over ¢! /(¢g—t—1)! different (¢4 1)-permutations (i, is, - - - ,4;+1) of set

{1,2,...,q}. The Vandermonde determinant det V (i, ia, - - - ,%;11) equals H1§k<m§(t+1)(>\ik_
Ai,, ). Because h,m(t) = ha(t), (19) holds. In case t = 0, we see that h,m)(0) = ha(0) =

7 ¢; =a(0); in the case t = ¢ — 1, we have that

ha(n) (q - 1) = ha(q - 1) = det [ 3 101)\(i7 q) 3 101)\ A(Zv Q) e ;] 1 Cz)\q_l)‘(i7 q) ] P
The matrix in the right side of the above equality just equals a product of three square
matrices: V(1,2,--- ,q) - diag{cy, ca,..., ¢} - VI(1,2,--- ,q). Hence, we have that

q

hoo (q—1) = det V(1,--- , q) xdet diag{c, ..., c,} xdet VI(1,--- q) = HC" H (A=)

i=1 1<i<j<q

O
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Theorem 16. Let a(t) be a linear homogeneous recurrence sequence of order q, with a
general-term formula: a(t) = 371 ¢\, t € No. Then the Hankel transform hy,, (t) of the
shifted sequence a(,), (p=0,1,2,...), of sequence a(t) are given by

t+1
k-1
hag, (t) = Z H A ) T =), t=019—1,  (20)
(41,82, it+1) 1<k<m<(t+1)

where summarizing is over q'/(q —t — 1)! different (t + 1)-permutations (1,9, - ,i441) of
set {1,2,...,q}. Particularly, the first term h,, (0) = I N, and the g-th (last) term
ha(p)(q - 1) — 1li= l(cl)‘p) H1<z<j<q<)\ - )‘j)z'
Proof. The general term of ay)(t) is ap(t) = YL, A = Y0 d\, t € Ny, where

di = ¢\ (i =1,2,...,q). We see from Theorem 15 that the Hankel transform ha, (t) of
sequence ap) (note that it is also a recurrence sequence of order ¢q) is

t+1
k
ha(p)(t> = Z H dlk>\lk 1 H (Alk - )\'Lm>7
(1,82, it41) 1<k<m<(t+1)
where summarizing is over ¢!/(¢ —t — 1)! different (¢ + 1)-permutations (i1, g, -+ ,i441) of

set {1,2,...,q}. Replacing dy,da, ..., d, by 1A, o)y, ..., c1 AP respectively, we obtain (20).

From Theorem 15, we obtain that A, 0)=>7 ,d=>"7, ch, and

q

a(p) — 1= H (A — )‘j)z = H(Ci)‘f) H (A — )‘j)z

i=1 1<z<]<q i=1 1<i<j<q

O

Remark 17. We take the generalized Lucas sequence s(t) = 3,1,3,7,11,21,39, ... (sequence
A001644 in [3]) as an example used for verification. The third order recurrent sequence has
a general term formula that s(t) = A, + X, + A} (Note that ¢; = ¢ = ¢3 = 1), where three
characteristic values \; (i = 1,2, 3) are the roots of algebraic equation \*> — A2 — X —1 = 0.
They are that

1 1 1
)\1:§<1+Oé+ﬁ), )\225(14—&)1064—&)2ﬁ), )\2:§<1+WQOC+LL115).
where two real numbers o = v/ 19 4+ /297, 3 = /19 — /297; and 1, w;, w, are three complex
cubic roots of 1. Hence, noting that w; + wy = —1 and wiws = 1, we get that the Hankel

transform of s(t) (and any of its multiple binomial transforms) has the three terms:
hs(0) =c1+co+c3=1+1+1=3,
hs(1) = crcada(Aa — A1) +caci A (A1 — A2) +c1e3A3( A3 — A1) +czer A (A1 — Az) + cacsAs(As — Az)
+ezeada(Xe — Ag) = (A1 — A2)? 4+ (A1 — A3)* + (M2 — A3)* = 2a3 = 8,
he(2) = creacs (M — Xo) (A1 = A3)* (Ao = A3)” = (A1 = A2)* (M — A3)° (A2 — Ag)?

— L B apa—-py =

1
5 ——(a®+ 3 +16)(a® + 3° — 16) = —44.
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