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Abstract

The set of permutations generated by cyclic shift is studied using a number system
coding for these permutations. The system allows to find the rank of a permutation
given how it has been generated, and to determine a permutation given its rank. It
defines a code describing structural and symmetry properties of the set of permuta-
tions ordered according to generation by cyclic shift. The code is associated with an
Hamiltonian cycle in a regular weighted digraph. This Hamiltonian cycle is conjec-
tured to be of minimal weight, leading to a combinatorial Gray code listing the set of
permutations.

1 Introduction

It is well known that any natural integer a can be written uniquely in the factorial number
system

n—1
a= Zaiz’!, a; € {0,...,i},
i=1
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where the uniqueness of the representation comes from the identity

n—1
D ivil=nl—1. (1)
=1

Charles-Ange Laisant showed in 1888 [2] that the factorial number system codes the
permutations generated in lexicographic order. More precisely, when the set of permutations
is ordered lexicographically, the rank of a permutation written in the factorial number system
provides a code determining the permutation. The code specifies which interchanges of the
symbols according to lexicographic order have to be performed to generate the permutation.

In this study, a lesser-known number system on the finite ring Z,, is used to describe
properties of the set S, of permutations on n symbols generated by cyclic shift. When S,
is ordered according to generation by cyclic shift, the rank of a permutation written in this
number system entirely specifies how the permutation is generated.

This number system is a special case of a large class of methods presented by Knuth [1,
§7.2.1.2] for generating S,,. Here, an explicit and self-contained description is given.

Example 1. As will be shown, any number « in Zs can be written uniquely
O = (\3Ws 3 + QW5 2 -+ 1 TWs1 + QW50

with the digits
a3z € Ly, «az €%z, a1 €Ly, g€ ZLs,

and the base elements
W5,3:3'4'5:60, ’W572:4'5:207 W571:5, ’W5’0:1.

For example,
84=1-60+1-20+0-5+4-1=1104.

We use the digits of 1104, to generate by cyclic shift a permutation on 5 symbols. The
generation scheme is

(1) 275 (21) 2275 (132) 275 (1324) 2% (51324),
and is established as follows. The orbit of the permutation (1) under cyclic shift is

0: (12)
1: (21).

We select the permutation (21) whose exponent of the cyclic shift is the leftmost digit a3 = 1.
Next, the orbit of (21) under cyclic shift is



The digit ap = 1 leads to (132). Next, the orbit of (132) under cyclic shift is

The digit oy = 0 leads to (1324). Finally, the last digit oy = 4 leads to (51324). This
permutation has rank 1104, = 84 in the set of permutations on 5 symbols generated by
cyclic shift, indexed from 0.

We shall describe properties of S,, generated by cyclic shift:

1. A decomposition into k-orbits;

2. The symmetries;

3. An infinite family of regular digraphs associated with {S,;;n > 1};

4. A conjectured combinatorial Gray code generating the permutations on n symbols. The
adjacency rule associated with this code is that the last symbols of each permutation
match the first symbols of the next optimally.

2 Number system

For any positive integer a, the ring (Z/aZ,+, x) of integers modulo a is denoted Z,. The
set Z, is identified with a subset of the set N of natural integers.

Proposition 2. Forn > 2, any element o € Z, can be uniquely represented as

n—2

o = Z Wi, O € Lip—y,
i=0
with the base elements

Wno = 1, Wy =nn—1)---(n—i+1), i=1,...,n—2.

The «;’s are the digits of o in this number system, which we call the w-system for short.
Any element of Z,, can be written uniquely

= Qp_2 " Q10Q.

Unless «a,,_» = 1, the leftmost digits are set to 0, so that the representation always involves
n — 1 elements, indexed 0,...,n — 2.



Proof. For simplicity, we momentarily denote w; = w, ;. For n = 2, there is a single base
element, wy = 1, and the result clearly holds. For n > 3, and a € Z,,, we set

a9 = q,
o =aD mod (n—1i), oY =a® div(n—i), i=0,...,n—2,
where div denotes integer division. These relations imply
oW =(n—i)a™V 4, i=0,...,n—2.
We multiply by w; on both sides. For i =0,...,n — 3, we use the identity
Wit = (n — 1), (2)
and for ¢ = n — 2, we use the identity 2w, o = 0 in Z,, to get

szZ(Z) — wi+1a(i+l) =
(n-2) _

Q;T0;, 1=0,...,n—3,
Op2Wn—2.

Wp_o(
Adding these relations together, and accounting for telescoping cancellation on the left side,
woa(o) = Qp—2TWnp_2 + -+ + Qp.

As and o9 = o, we obtain the representation

O = Qp_2Wy_o + -+ + Q.

By construction, «; € Z,_; for : = 0,...,n — 2. The existence of the decomposition also
holds in N.

We now prove the uniqueness of the decomposition in N, and momentarily introduce the
element w,_; = n!. In N, the identities

o
—_

m—i—Dw;,=w,—1, ke{l,...n—1} (3)

Il
o

i
are easily shown using induction and (2) (such identities are general to mixed radix num-

ber systems). Assume that o € N has two different decompositions. Then, with obvious

notations,
n—2

> (i — )@ =0. (4)
i=0
Let k be the largest index such that «; # of. If k =0, then o # af and «o; = o for i > 0.
From (4) we deduce oy = ), a contradiction. If & > 0, then

e
—

(@i — af)w; = (), — ar) . (5)

Il
=)

i
We may assume o > ag with no loss of generality, so that the right hand term in (5) is

larger than wy. As «; and o are less than n — ¢ — 1, the left hand term is less than wy — 1
by (3), a contradiction. The uniqueness of the decomposition also holds in Z,,. O

4



Arithmetics can be performed in the ring (Z,, +, X) endowed with the w-system. The
computation of the sum and product works in the usual way of positional number systems,
using the ring structure of Z,_; for the operations on the digits of the operands. There is
no carry to propagate after the leftmost digit.

Lemma 3. The base elements verify

Wnitk — Wn—k,iWn k, (6)
k—1
(n—i—Dw,,, =wur—1, ke{l,...n—2}, (7)
=0
n—2
Y (n—i-1)w@,,; =-1. (8)
i=0

Proof. The verification of the first relation is straightforward. The identities (3) written in
Zyy give (7) and (8). For (8), we use the fact that n! — 1= —1 in Z,,. O

Corollary 4. For o, € Zy, with digits o;, o, € Ly,

at+ad =-1 << a+a,=-1, i=0,...,n—2.

Proof. We write

n—2

a+a = Z(Ozi + af) ..

i=0
InZ,_;, a;+a) = —1if and only if o;+a); = n—i—1. By the uniqueness of the decomposition
in the w-system, the result follows from (8). O
3 Code
The set of permutations on n symbols z1,...,z, is denoted §,,. From a permutation ¢ on
the n — 1 symbols x4, ...,z,_1, n permutations on n symbols are generated by inserting x,

to the right and permuting the symbols cyclically. The insertion of x,, to the right defines
an injection
Snfl L) Sn
q= (Gl T Gn—l) — ((l1 T an—lxn) =q.

We define the cyclic shift S : S,-.1 — S, by S = Ct, where C : §, — §,, is the circular
permutation, so that

Soq = (CL16L2 e an—lxn) = Coq‘ = qv

Stq = (az-+-ap1maar) = C'q,

S" g = (wpaiag--- A1) = c" 1.

The set O(q) = {S%,...,S" q} is the orbit of q. As S? = 57 is equivalent to i = j mod n,
the exponents of the cyclic shift are elements of Z,.



Lemma 5. The set of permutations S,, is the disjoint union of the orbits O(q) for q € S, 1.

Proof. If q,r € S,,_1, their orbits are disjoint subsets of S,,. Indeed, if S'q = S7r, there exists
k € Z, such that S*q = S% = 7. The only possibility is k¥ = 0, implying S% = ¢ = 7, and
q = r. There are (n — 1)! disjoint orbits, each of size n, so that they span S,,. m

According to Lemma 5, the set S,, can be generated by cyclic shift. The generation by
cyclic shift defines an order on the set of permutations, S,, = {po,...,pu_1}, a cyclic order
in fact. For this order, the rank « of a permutation p, € S, is an element of Z,,.

The generation by cyclic shift of p € S,, from (1) € §; can be schematized:

p(l) — (1) OB p(2) — %y e . ﬂ) p(n72) ﬂ) p(nfl) ﬂ) p(n) — p’

Pl = §o_pn—i=1)

where p"~" € S,_; is generated from p"~~Y € S,_;_; by the cyclic shift
Sn—i t Sp—ic1 — Spi
with the exponent a; € Z,_; (Example 1).

Definition 6. The sequence of exponents «; € Z,_; associated with successive cyclic
shifts leading from (1) € §; to p € S, is the code of p in the w-system:

= Qp_g 0y € Ly

Theorem 7. The rank of a permutation on n symbols generated by cyclic shift is given by
its code. A permutation on n symbols generated by cyclic shift is determined by writing its
rank in the w-system.

Proof. We use induction on n. For n =2, in & = {(12), (21)}, the rank of the permutation
(12) is 0 = 0, and the rank of the permutation (21) is 1 = 1. For n > 2, let p =p, € S,
of rank o, generated by cyclic shift from ¢ = ¢g € §,,—; of rank 3. Then p = 5;°¢ for some
oy € Zy, g being the rank of p within the orbit of q. As the orbits contain n elements and
as [ is the rank of ¢ in §,,_1, the rank of p in §,, is

a = fn+ ay = B, + -

By induction hypothesis, the rank 3 of ¢ is given by the code

n—3
B = Zﬁiwnq,i, Bi € Lip—1-;.
i=0

Eq. (6) gives, for k =1,

Wn,i+1 = Wn—1,iWn,1,

so that
n—3 n—3 n—2
ﬁwn,l = E ﬁiwnfl,iwn,l = E @wn,iﬂ = E ﬁiflwn,i-
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Let oy = i1 fori=1,....n—2. As 5; € Zy,_1_;, o; € Z,,_;. We obtain that
n—2

a = By + aywn = E Oy O € Ly,
i=0

is the code of p,. Conversely, let p, € S,. We write the rank « in the w-system, o =
Qg+~ ap, and use scheme (9) with the exponents a,,_s, ..., ap to determine p,. O

Da

1234
2341
3412
4123
2314
3142
1423
4231
3124
1243
10 2431
11 4312

12 2134
13 1342
14 3421
15 4213
16 1324
17 3241
18 2413
19 4132
20 3214
21 2143
22 1432
23 4321

Q
N
Q
i
Q
S
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e i B e e e I e i Y | e i e i e B en] Hen i an B en B en) s i e B e B an)
NN = RO OOONNDNDNNEFE = FROOOO

W R OWNRFF O WNRFFOINWNRFE O WND R OWND - O

Table 1: The codes of the permutations of {1,2,3,4} generated by cyclic shift.

Algorithm C in Knuth [1, §7.2.1.2] generates S,, by cyclic shift in a simple version of the
scheme described in this section.
In the sequel, we assume that S,, is ordered according to generation by cyclic shift.

4 k-orbits

The w-system is a family of number systems indexed by n, which are compatible in a sense
precised in the next proposition. The compatibility relies on relation (6).

Proposition 8. Let k € {0,...,n — 2} and p, € S, with code o € Z,. There exists a
permutation qz € Sy with code 3 € Zn—ky such that

a:ﬁwn,k_‘_’% v E {07'-'7wn,k_ 1} (10)
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The code 3 is made of the n — k — 1 leftmost digits of a, and ~v is made of the k rightmost
digits of a.

Proof. We have the decomposition
= Qp_9- Qg :an—?"'ako"'ow+0"'0ak—1"'a0w :6{—’—’}/

Let B; = ayyp for e =0,...,n — k — 2, so that the (’s are the n — k — 1 leftmost digits of «.
As «; € Zy_i, Bi = i € Zyy_—;. Hence

n—k—2

k
= Z BiTn—kis Bi € Lp—k—is

1=0

is an element of Z,_x); which is the code of a permutation g3 € S,,—. Using relation (6),
we obtain

n—2 n—k—2 n—k—2 n—k—2
= QW § Qi Wn i+ = E Qi W —k i Wn k= E 6iwn—k,i Wn,k-

i=k =0
The term
k-1
Y= E Q;Tn 4
i=0

is made of the k rightmost digits of . It is an element of Z, ;.1 X - -+ X Z,, ranging from 0
to Zi:ol (n — i — 1)w,,, which equals @, — 1 by (7). We obtain
a=a+7y=fwni+7.
O

Definition 9. For k € {0,...,n — 2} and g3 € S,,—, the k-orbit of g is the following
subset of S,,:

On,k(q,@) - {pa S S’m azﬁwn,k—i—f}/? 7207"‘)wn,k_ ]-}

For k = 0, the 0-orbit of ¢ € S, is {¢}. Indeed, for k =0, w,o =1, v =0, and g = p,.
For k > 1, a k-orbit O,, (¢) can be described as the subset of S,, generated from ¢ € S,,_j by
k successive cyclic shifts. Indeed, by Proposition 8, the code of p, € O, x(gp) is obtained by
appending a1 - - - o to the code B,_p—2 - - - By of gg. By scheme (9), the digits ay_1,..., a0
describe the generation of p, from ¢s. In particular, for & = 1, the 1-orbit O, 1(q) of g € S,,—1
is the orbit O(q). We may further define the (n — 1)-orbit O,,,,—1(q) as the whole set S,,,
with ¢ = (1) € S;.

We have the following generalization of Lemma 5:

Proposition 10. For k € {0,...,n— 2}, the set of permutations S, is the disjoint union of
the k-orbits O, x(q) for q € Sp—k.



Proof. The k-orbits are disjoint by the uniqueness of the decomposition (10). They are
(n — k)! in number, and contain w,, j, elements each. As (n — k)!w, ; = n! in N, the k-orbits
span S,,. m

In decomposition (10), 3 specifies to which k-orbit p, belongs and  specifies the rank of
Po within the k-orbit. The first element of the k-orbit has rank o' = B, (i.e., v =0).
The last element has rank a/*t = B+ wnr — 1 (e, ¥ = @y — 1). The element next to
the last has rank o'®!' + 1 = Bw, . + @wux = (B + 1)@y It is the first element of the next
k-orbit O,, x(qs+1), where gg1q is the element next to gg in S,,—.

Lemma 11. Let p, € S,,. There exists a largest k € {0,...,n—2} and q3 € S,—j, such that
Do s the last element of the k-orbit O, ;(qg), and not the last element of the (k + 1)-orbit
containing this k-orbit.

Proof. 1f p, is not the last element of the 1-orbit it belongs to, it is the last element of the
0-orbit {p,}. In this trivial case, k = 0 and p, = gg. Otherwise the rightmost digit of « is
ag = n — 1. There exists a largest £ > 1 such that ; =n—i—1fori=0,...,k— 1, and
ar #n — k — 1. This means that p, is the last element of nested j-orbits, 7 =1,...,k, and
not the last element of the (k + 1)-orbit containing these nested j-orbits. O

5 Symmetries

For compatibility with the cyclic shift, we adopt the convention that the positions of the
symbols in a permutation are computed from the right, and are considered as elements of
Z,, (the position of the last symbol is 0 and the position of the first symbol is n — 1).
According to scheme (9), the symbol z,,_; (i > 2) appears at step n — i with the digit «;
as exponent of the cyclic shift. Its position in the generated permutation p~% is therefore

pos,,_;(Tn—i p"7) = ai.

In particular,
POSn(xn»p(n)) = Qp- (11)
For a permutation p = (ajas---a,_1a,) € S,, we introduce the mirror image of p,
D= (apap_1 -+~ agay).

Proposition 12. The permutations p, and p. are the mirror image of one another if and
only if their ranks o and o verify in Z,,

a+a =—1.

For example, in Zs we have 84 4+ 35 = —1, and in S5, psq = (51324) is the mirror image

Proof. The proof is by induction on n. For n =2, py = (12), py = (21),and 0+1=1= —1
in Zy. Let n > 2. By Proposition &,

/ / / /
Q= ﬁwn,l + QoWno, Q@ = ﬁ Wn,1 + QyWn0, 43,98 € Sn—l; Qp, O € Zn
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By Corollary 4, the condition a + o' = —1 is equivalent to 5+ ' = —1 and ap + oy = —1.
By induction hypothesis, ¢ is the mirror image of ¢ in S, if and only if g+ ' = —1.
The condition a4 o, = —1 is equivalent to o, = n — 1 — a, i.e., the ranks of o and af are
symmetrical in Z,. By (11), these ranks are the positions of symbol z,, when p, and p, are
generated by cyclic shift from ¢z and gg respectively. This gives the result. m

Corollary 13. The word constructed by concatenating the symbols of the permutations gen-
erated by cyclic shift is a palindrome.

Proof. Let p, € S,. The rank symmetrical to o in Z, is (n! = 1) —a = —(a+ 1). By
Proposition 12, p_ (41 is the mirror image of p,. O]

The set S, has in fact deeper symmetries, coming from the recursive structure of the
k-orbits.

According to Theorem 7, the generation of S,, by cyclic shift is obtained by performing
a — a+ 1 for a € Z,, and writing « in the w-system. This determines each permutation
Po- For a fixed k, as a runs through Z,,, p, runs through the k-orbits of S,, and leaves a
k-orbit to enter the next when, in the computation of v + 1, the carry propagates up to the
digit oy, incrementing the rank 3 of the k-orbit.

Proposition 14. Any two successive permutations of S, are written as
Pa =AB,  pay1 = BA,
with an integer k € {0,...,n — 2} such that
|Al =k + 1.
For example, in S5, psg = (54231) and pyy = (31245).
Proof. 1f p, and p,1 are in the same 1-orbit then
Pa = (m1az - ay), Pat1 = (ag -+ aya).

The result holds with A = (a;), B = (az---a,), and this corresponds to k = 0. Otherwise,
by Lemma 11, there exists a largest £ > 1 such that p, is the last element of a k-orbit, and
not the last element of a (k+1)-orbit. The elements of a k-orbit are generated by successively
inserting the symbols x,_j11,..., 2, from a permutation gz € S,,—. The last element is

(xn e mn—k-{-lbl T bn—k);

where gg = (by - - b,—x) is a permutation of the symbols z1,...,z,_,. The first element of
the next k-orbit is
(€1 Cp—kTn—k1 -+ Tp),
where ggy1 = (¢1--- k). As S,y is generated by cyclic shift, gs11 = Cp—xqs, with C,_j
the circular permutation in S,,_r. We obtain
Pa - (xn e xn—k—i—lble T bn—k) - ZB
Pa+1 = (bZ Tt bn—kblzn—k+1 T $n) - BA,

where A = (byx, 41 2,) contains k + 1 symbols. O
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According to Proposition 14, k + 1 symbols (the symbols of A) have to be erased to the
left of p, so that the last symbols of p, (the symbols of B) match the first symbols of p,y1.

Definition 15.  The weight e, (a) of the transition & — « + 1 is the number of symbols
that have to be erased to the left of p, so that the last symbols of p, match the first symbols
of pat1. The w-ruler sequence is the sequence of weights:

E,={e.(a); a=0,...,nl =2}
Proposition 16. The w-ruler sequence is a palindrome.

Proof. 1f the ranks a and o are symmetrical in Z,;, « + o/ = —1. Then «a; + o, = —1 for
i=0,...,n—2 by Corollary 4. By the definition of e, (a) (the weight associated with the
transition & — « + 1), we want to show that e, (a) = e,(a/ — 1). If p, is the last element of
a k-orbit, k > 1, then a; = =1 fori =0,...,k —1,so that o, =0 fori =0,...,k — 1 puy
is the first element of a k-orbit, and p,_1 is the last element of the previous k-orbit. Hence
en(a) =e,(a/ —1) =k + 1. If p, is not the last element of a k-orbit, then oy # —1. Hence
af # 0, and p, is not the first element of a 1-orbit. In this case e,(a) =e,(a/ —1)=1. O

Proposition 17. The number of terms of the w-ruler sequence such that e, () = k is
(n—Fk)(n—k).
The sum of its n! — 1 terms is
W, =142+ ... +nl—n.

Proof. We have e,(«) = k if and only if p, is the last element of a (k — 1)-orbit, and not
the last element of a k-orbit. The number of (k — 1)-orbits within a k-orbit is n — k + 1.
We exclude the last (k — 1)-orbit within the k-orbit (otherwise p, would be the last element
of the k-orbit). This gives n — k possibilities for e, («) = k in a k-orbit. As the number of
k-orbits is (n — k)!, there are (n — k)(n — k)! possibilities for e, (a) = k.

The formula for the sum is shown by induction. We have Wy =1 = 1! + 2! — 2, and for
n> 2,

W, = nz:k:(n—k:)(n—k:)!:n (k+1D(n—1—k)(n—1—k)!
= nz:k:(n—1—1{:)(71—1—k)!+nz:(n—1—k‘)(n—1—k)!

n—1
= Woa+ Y i-il=U+. +n-D=(n-1)+nl—1=1+. . +nl—n
=1

In the last line, the induction hypothesis and identity (1) have been used. O

The w-ruler sequence is analogous to the binary ruler function (A001511 in Sloane [3]).
The terms of the ruler function give the position of the bit to flip when the binary numbers
are listed according to the binary reflected Gray code. They represent the binary division
of an inch. The w-ruler sequence differs in that the number of intermediate ticks increases

with n (Table 2).

11


http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A001511

n E,

2 1

3 12212

4 13213213313213213
5

14214214214314214214214314214214214414214214214314214214214314214214214

Table 2: The w-ruler sequence for n = 2,3,4,5 (17 denotes 1 repeated j times).

6 Combinatorial Gray code

A combinatorial Gray code is a method for generating combinatorial objects so that suc-
cessive objects differ by some pre-specified adjacency rule involving a minimality criterion
(Savage [4]). Such a code can be formulated as an Hamiltonian path or cycle in a graph
whose vertices are the combinatorial objects to be generated. Two vertices are joined by an
edge if they differ from each other in the pre-specified way.

The code associated with the w-system corresponds to an Hamiltonian path in a weighted
directed graph G,,.

Definition 18. The vertices of the digraph G,, are the elements of S,,. For two permuta-
tions (vertices) p, and py/, there is an arc from p,, to p, if and only if the last symbols of p,
match the first symbols of p, (there is no arc when there is no match). Let p,, po € S, be
two connected vertices in G,,. The weight f,(a,a') € {1,...,n — 1} associated with the arc
(Pas Par) 1s the number of symbols that have to be erased to the left of p, so that the last
symbols of p, match the first symbols of p,.

By Proposition 14, for each «, there is an arc of weight e, () = f,(a,a + 1) joining p,
t0 par1. This allows to define the Hamiltonian path

Wn = {(powpa—f—l); a=0,...,n — 2}

joining successive permutations. This path has total weight W, = 1! 4+ --- +n! —n by
Proposition 17. The path w, can be closed into an Hamiltonian cycle by joining the last
permutation p,_; to the first py by an arc of weight n — 1:

(@ -+ - wo1) N (129 -+ - Ty).

Hence, an oriented path exists from any vertex to any other, so that GG, is strongly connected.
Table 3 displays the adjacency matrix of the weighted digraph (G4 and the Hamiltonian
path wy.

Proposition 19. Fach vertex of G, has exactly j! in-arcs of weight j and j! out-arcs of
weight j for j = 1,...,n— 1. Hence the vertices of Gy, have L = 11+ --- 4+ (n — 1)! as in-
and out-degree, and G, is L-reqular. The total number of arcs is Ln!.

Proof. Let us consider the arcs of weight j € {1,...,n — 1} joining a vertex to another in
G ‘
(ay---ajby -+ by_j) L (by - bpjer ),

12



o 1 2 3|4 5 6 78 9 10 11 12 13 14 15|16 17 18 19 | 20 21 22 23
ofjo 1 2 3]0 0 0 3|0 0 O 3 0 0 2 3 0 0 0 3 0 0 0 3
r /3 o0 1 20 0 3 0|0 3 O 0 0 3 0 0 3 0 0 2 0 0 3 0
212 3 0 1|3 0 0 0|0 2 3 0 3 0 0 0 0 0 3 0 0 3 0 0
3 1 2 3 0 3 0 03 0 O 0 0 0 3 0 0 3 0 0 3 0 0 0
410 o0 O 3|0 1 2 3|0 0 O 3 0 0 0 3 0 0 0 3 0 0 2 3
510 3 0 o003 O I 2|0 0 3 0 3 0 0 2 0 0 3 0 0 3 0 0
6 |0 2 3 02 3 0 1|3 0 O 0 0 0 3 0 0 3 0 0 3 0 0 0
713 0 O o1 2 3 O 3 0 0 0 3 0 0 3 0 0 0 0 0 3 0
8|0 O O 3]0 O O 3|0 ! 2 3 0 0 0 3 0 0 2 3 0 0 0 3
910 0 3 0|0 3 0 0|3 O 1 2 0 0 3 0 0 3 0 0 3 0 0 2
|3 0o o 0|0 2 3 0|2 3 O 1 0 3 0 0 3 0 0 0 0 0 3 0
1mj2 3 0 0|3 0 O O|1 2 3 0 3 0 0 0 0 0 3 0 0 3 0 0
2|10 o0 2 3|0 0 O 3|0 0 O 3 0 1 2 3 0 0 0 3 0 0 0 3
310 3 0 0|3 O O 2|0 0 3 0 3 0 l 2 0 0 3 0 0 3 0 0
413 0 0 0|0 O 3 0|0 3 O 0 2 3 0 1 3 0 0 0 0 2 3 0
5/0 0 3 0|0 3 0O O[3 0 O 0 1 2 3 0 3 0 0 3 0 0 0
6|0 0 0 3|0 O O 3|0 0 2 3 0 0 0 3 0 1 2 3 0 0 0 3
7|3 o0 0 2|0 0 3 0|0 3 O 0 0 3 0 0 3 0 1 2 0 0 3 0
8|0 0o 3 0|0 3 0O O[3 0 O 0 0 2 3 0 2 3 0 1 3 0 0 0
9|10 3 0 O3 O O O[O0 O 3 0 3 0 0 0 1 2 3 0 3 0 0
20 0 0o 3|0 0 2 3|0 0 O 3 0 0 0 3 0 0 0 3 0 1 2 3
2000 0 3 0|0 3 O O3 0 O 2 0 0 3 0 0 3 0 0 3 0 1 2
210 3 0 0|3 0 0 0|0 0 3 0 3 0 0 0 0 2 3 0 2 3 0 1
233 0 0 OO0 O 3 O|0 3 O 0 2 3 0 0 3 0 0 0 1 2 3 0

Table 3: The adjacency matrix of the digraph G,. Lines delineate the 1-orbits. Double lines
delineate the 2-orbits. Entries on the upper diagonal (in color) indicate the Hamiltonian
path corresponding to the w-system code, and forming the w-ruler sequence.

where the ¢’s are a permutation of the a’s. There are j! possibilities for the ¢’s, the a’s
and the b’s being fixed. Hence j! arcs of weight j leave each vertex. Similarly, there are
j! possibilities for the a’s, the b’s and the ¢’s being fixed, so that j! arcs of weight j enter
each vertex. By the degree sum formula, the sum of the in- or out-degrees of the n! vertices,
n!(1!+--- 4 (n — 1)!), equals the total number of arcs. O

The set {G,; n > 1} is an infinite family of strongly connected regular digraphs.

We conjecture that the Hamiltonian path w,, joining successive permutations in the di-
graph G, is of minimal total weight. Assuming the conjecture, we may state:

The w-system is a combinatorial Gray code listing the permutations generated by cyclic
shift. The adjacency rule is that the minimal number of symbols is erased to the left of a
permutation so that the last symbols of the permutation match the first symbols of the next
permutation.
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