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Abstract

In this paper we examine permutations that avoid increasing or decreasing runs

and extend known results to the circular and modular cases, allowing us to calculate

sequence A078628 in Sloane’s On-Line Encyclopedia of Integer Sequences.

1 Introduction

The main purpose of this paper is to answer the following question: In how many ways can
n cards, numbered 0 to n − 1, be placed in a circle so that no three consecutive cards are
labeled consecutively? For example, if n = 8, then both of the following permutations have
consecutively labeled cards in positions 3, 4, and 5 (we use 0-origin): (5, 1, 0, 2, 3, 4, 6, 7) and
(5, 1, 0, 4, 3, 2, 6, 7). If we consider (n − 1, 0, 1) and (n − 2, n − 1, 0) as consecutively labeled
cards, then this sequence of numbers is sequence A078628 in Sloane’s Encyclopedia [14]
which previously had only thirteen terms calculated. We actually consider four sequences
and we begin with the following definition.

Definition 1. A permutation π = (a0, a1, . . . , an−1) has a run if there is an i such that
either ai+1 = ai + 1 and ai+2 = ai + 2 or ai+1 = ai − 1 and ai+2 = ai − 2. If the equalities
are replaced by congruences modulo n, then the runs are modular runs. The set of n-long
permutations without runs is denoted by S∗(n) and the set without modular runs is denoted
by S∗(n).

As is customary, we denote the size of S∗(n) by s∗(n) and likewise for the other sets in this
paper. A circular permutation π = (a0, . . . , an−1) is a permutation in which the indices are
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from the ring of integers modulo n and so there are (n−1)! circular permutations on n objects.
We let C∗(n) be the set of n-long circular permutations that have no runs and C∗(n) be the
set of circular permutations without a modular run. Note that c∗(n) is the sequence A078628
mentioned above and that for n = 8, neither (0, 1, 5, 4, 6, 2, 3, 7) = (7, 0, 1, 5, 4, 6, 2, 3) nor
(0, 7, 5, 4, 6, 2, 3, 1) = (1, 0, 7, 5, 4, 6, 2, 3) are in C∗(n) since both have modular runs (7, 0, 1)
and (1, 0, 7) respectively, but (1, 0, 6, 4, 5, 7, 2, 3) is in C∗(n).

In the following, we often need to create a regular permutation from a circular one. This
process we call flattening. If π = (a0, . . . , an−1) is a circular permutation, then πfa is π

flattened at a if i is the index for which ai = a and πfa = (ai, ai+1, . . . , an−1, a0, . . . , ai−1). If
we flatten at 0, then we denote this by πf . Changing a regular permutation into a circular
one is straightforward. If π = (a0, . . . , an−1) is a regular permutation, then π circularized is
the circular permutation πc = (a0, . . . , an−1).

Note that if π has no runs, then πfa has no runs but it is possible to flatten a circular
permutation in the middle of a run so that the run is not preserved in the flattened per-
mutation. Also, a regular permutation π may not have a run but πc might. For example,
π = (3, 5, 0, 6, 4, 1, 2) does not have a run but πc = (3, 5, 0, 6, 4, 1, 2) = (1, 2, 3, 5, 0, 6, 4) has
the run (1, 2, 3).

One other useful operation we call prepending. Given a straight permutation π =
(a1, . . . , an) of length n, prepending a0 gives us a straight permutation (a0, a1, . . . , an) of
length n + 1. We must take care when prepending a0 to π that we actually get a permuta-
tion. Likewise appending adds a digit to the end of a straight permutation.

If π = (a0, . . . , an−1) is a permutation (straight or circular), then −π = (n−1−a0, . . . , n−
1 − an−1) is also a permutation. Again, π has no runs if and only if −π has no runs.

The context for this paper is the study of arithmetic progressions in permutations.
There are at least two ways of defining an arithmetic progression in a permutation π =
(a0, a1, . . . , an−1). We follow Hegarty [5] in defining a progression of rise r and distance d

in π as a sequence (ai, ai+d, ai+2d) where r = ai+d − ai = ai+2d − ai+d. Note that a run is a
progression with distance d = 1 and rise r = ±1.

Riordan [11] computed the number of permutations with x progressions of rise r = 1
and d = 1 and called them 3-sequences. He noted that these were generalizations of a
topic Whitworth considered, see [16, pp. 103–107]. Charalambides [2, pp. 176–184] further
generalized Whitworth’s sequences. Jackson and Read [6] called progressions of distance 1
and rise ±1 increasing runs if r = 1 and decreasing runs if r = −1 and they gave generating
functions for the number of permutations without progressions with d = 1 and r = ±1 of
length ℓ. Jackson and Reilly [7] derived a generating function for the number of permutations
with exactly x increasing runs of length ℓ and showed that the computation of the number
of such permutations is O(n3). Myers [9] called a progression of rise 1 and distance 1 a block
and counted the number of permutations that contains m blocks. He also considered rigid
patterns and noticed that difficulties occur if patterns can be interweaved.

The definition of an arithmetic progression in the permutation π that we are not using
is a sequence (ai, aj, ak) with 0 ≤ i < j < k < n where aj − ai = ak − aj. Progressions of
this type were studied by several authors, [3, 4, 12] (see also [8, 10, 13, 15]).
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2 The Main Results

In Table 1 we list values for the sequences, s∗(n), s∗(n), c∗(n), and c∗(n). Jackson and
Read [6] computed the first column and Abramson and Moser [1] gave a formula for it
(see Theorem 2). We will relate the other three columns of Table 1 to the first column
giving a fairly easy way to compute each of these columns. Since there three summations in
Theorem 2 and the only multiplications are computing factorials and binomial coefficients,
s∗(n) can be computed with at most O(n4) operations. Also, as we will show, the other
columns can be computed from the first by O(n) additions and so all these sequences can be
computed in polynomial time. We believe that c∗(n), n ≥ 13, is computed here for the first
time and the first fifty values of c∗(n) are listed at the end of the paper. We first compute
c∗(n).

Theorem 2. (Abramson, Moser, Jackson, Read) For n ≥ 3,

s∗(n) =

(

n−2
∑

k=1

(−1)k

k−1
∑

i=0

(

k − 1

i

)

(n − k − i − 1)!
i
∑

j=0

(

i

j

)(

n − i − k − 1

j + 1

)

2j+1

)

+ n!.

n s∗(n) s∗(n) c∗(n) c∗(n)
3 4 0 0 0
4 18 16 4 4
5 92 80 16 12
6 570 516 86 76
7 4082 3794 542 494
8 33292 31456 3932 3662
9 304490 290970 32330 30574
10 3086890 2974380 297438 284398
11 34357812 33311520 3028320 2918924
12 416526730 405773448 33814454 32791604
13 5463479106 5342413414 410954878 400400062
14 77094352076 75612301688 5400878692 5281683678

Table 1: Values of s∗(n), s∗(n), c∗(n), and c∗(n)

Theorem 3. For n ≥ 4 and if s∗(1) = 0 and s∗(2) = 1, then

c∗(n) = s∗(n − 1) − 2

⌊(n−2)/3⌋
∑

i=1

(

s∗(n − 3i) − s∗(n − 1 − 3i)
)

.

Proof. Let π be in C∗(n). If we flatten π at n − 1, we get a permutation πfn−1 = (n −
1, a0, . . . , an−2). Note that (a0, . . . , an−2) is in S∗(n−1), but not all permutations in S∗(n−1)
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can have an n−1 prepended and then circularized to be in C∗(n). In fact, these are precisely
the permutations for which either a0 = n−2 and a1 = n−3 or an−3 = n−3 and an−2 = n−2.
In the first case, π had the run (n − 1, n − 2, n − 3) and in the second case, π had the run
(n − 3, n − 2, n − 1). Thus we need to exclude those permutations in S∗(n − 1) of the form
(n − 2, n − 3, a2, . . . , an−2) or (a0, . . . , an−4, n − 3, n − 2).

Since there are no runs in either (a2, . . . , an−2) or (a0, . . . , an−4), there are at most 2s∗(n−
3) permutations of the type we need to exclude and so c∗(n) ≥ s∗(n − 1) − 2s∗(n − 3). The
reason this inequality is not an equality is that if a2 = n−4 or an−4 = n−4 in a permutation
in S∗(n−3), then neither (n−2, n−3, n−4, a3 . . . , an−2) nor (a0, . . . , an−5, n−4, n−3, n−2)
would be in S∗(n − 1). Since both (a3, . . . , an−2) and (a0, . . . , an−5) must be in S∗(n − 4),
we have c∗(n) ≤ s∗(n − 1) − 2s∗(n − 3) + 2s∗(n − 4).

As in the first exclusion, (a0, . . . , an−7, n−6, n−5, n−4) and (n−4, n−5, n−6, a5, . . . , an−2)
are not in S∗(n − 3) but (a0, . . . , an−7, n − 6, n − 5) and (n − 5, n − 6, a5, . . . , an−2) are in
S∗(n−4). Hence we need to subtract the number of permutations of the form (a0, . . . , an−7)
and (a5, . . . , an−2) that are in S∗(n − 6). At this point, c∗(n) ≥ s∗(n − 1) − 2s∗(n − 3) +
2s∗(n − 4) − 2s∗(n − 6).

Continue in this manner. If n ≡ 1 (mod 3), then in the last step we add 2s∗(3) getting
the formula in the statement of the theorem. If n ≡ 0 (mod 3), then on the last step we
must add back permutations of length n = 3 which begin or end with the value of 2 which
have no runs. The only permutations with this property are (2, 0, 1) and (1, 0, 2) and so the
formula works with s∗(2) = 1. If n ≡ 2 (mod 3), then on the last step we must avoid a
permutation of length n = 4 which begins with (3, 2) or ends with (2, 3) and has no runs.
The only permutations with this property are (3, 2, 0, 1) and (1, 0, 2, 3). So again s∗(2) = 1
satisfies the equation.

Let B∗n
a...b be the set of straight permutations that do not have a run and which start with

the sequence a and end with the sequence b. For example, the permutation (0, 5, 1, 6, 4, 2, 3, 7, 8)
is in B∗9

0...7,8. While we include values for b∗n0...2,1 in Table 2, we only use this sequence in the
proofs of the following lemmas. We show that c∗(n) can be computed using c∗(n) and
these b∗na...b’s. Since c∗(n) can be computed from s∗(n), sequence A078628 can now be easily
computed.

n b∗n0,1...n−2,n−1 b∗n0...n−2,n−1 b∗n0...n−1 b∗n0...2,1

5 0 1 4 1
6 1 3 16 3
7 2 13 86 14
8 11 73 543 75
9 62 470 3934 481

Table 2: Straight permutations which begin and end with certain sequences

Theorem 4. For n ≥ 3, c∗(n) = c∗(n) − 2
(

b∗n0,1...n−1 + b∗n0...n−2,n−1 − b∗n0,1...n−2,n−1

)

.
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Proof. The permutations in C∗(n) that are not in C∗(n) are the ones containing the sequence
(n − 1, 0, 1) and its reverse (1, 0, n − 1) or the sequence (n − 2, n − 1, 0) and its reverse
(0, n − 1, n − 2). Since the number of permutations with one of these sequences is the
same as the number with the sequence’s reverse, we focus on the sequences (n− 1, 0, 1) and
(n − 2, n − 1, 0).

Flattening a permutation containing one of these sequences at 0, we need to subtract from
c∗(n), the following: b∗n0,1...n−1 +b∗n0...n−2,n−1. Since the permutations in B∗n

0,1...n−2,n−1 are in both

B∗n
0,1...n−1 and B∗n

0...n−2,n−1, we need to add b∗n0,1...n−2,n−1 to get c∗(n) = c∗(n) − 2
(

b∗n0,1...n−1 +

b∗n0...n−2,n−1

)

+ 2b∗n0,1...n−2,n−1.

The following two lemmas are used only for tidying-up results that we will need later.

Lemma 5. For n ≥ 3, b∗n0...2,1 = b∗n0...n−2,n−1 + b∗n−1
0,1...n−3,n−2.

Proof. Let π = (0, a1, . . . , an−3, 2, 1) be in B∗n
0...2,1 and so an−3 6= 3. If a1 6= n−1 or a2 6= n−2,

then multiplying π by −1 gives −π = (0,−a1, . . . ,−an−3,−2,−1) = (0,−a1, . . . ,−an−3, n−
2, n − 1). Since an−3 6= 3, −π is in B∗n

0...n−2,n−1.
If a1 = n − 1 and a2 = n − 2, then −π = (0, 1, 2,−a3, . . . ,−an−3, n − 2, n − 1). Note

that if −a3 = 3, then (n − 1, n − 2, n − 3) would have been a run in π. Removing 0
from −π and subtracting 1 from each entry gives a permutation in B∗n−1

0,1...n−3,n−2. Therefore,

b∗n0...2,1 = b∗n0...n−2,n−1 + b∗n−1
0,1...n−3,n−2.

Lemma 6. For n ≥ 3, b∗n+1
0,1...n−1,n = b∗n0,1...n−1 − b∗n0,1...n−2,n−1.

Proof. If π = (0, 1, a2, . . . , an−2, n − 1) is in B∗n
0,1...n−1, then an−2 = n − 2 if and only if π is

in B∗n
0,1...n−2,n−1. On the other hand, an−2 6= n − 2 if and only if appending n to π gives a

permutation in B∗n+1
0,1...n−1,n. Therefore, b∗n0,1...n−1 = b∗n0,1...n−2,n−1 + b∗n+1

0,1...n−1,n.

The next four results enable us to compute recursively any entry in Table 2 and hence
by Corollary 11 to compute c∗(n).

Lemma 7. For n ≥ 3, b∗n+1
0...n = c∗(n) + b∗n0...2,1 − b∗n0...n−2,n−1.

Proof. Let π = (0, a1, . . . , an−1, n) be in B∗n+1
0...n . If an−2 6= 2 or an−1 6= 1, then dropping the

n from π and circularizing (0, a1, . . . , an−1) gives a permutation in C∗(n). If an−2 = 2 and
an−1 = 1, then removing n gives a permutation in B∗n

0...2,1.
If, however, π = (0, b1, . . . , bn−3, n − 2, n − 1) is a circular permutation in C∗(n), then

appending an n to πf does not give a permutation in B∗n+1
0...n . The number of such permutations

is b∗n0...n−2,n−1 which must be subtracted from c∗(n) + b∗n0...2,1 to obtain b∗n+1
0...n .

Using Lemma 5 gives us the following corollary to Lemma 7.

Corollary 8. For n ≥ 3, b∗n+1
0...n = c∗(n) + b∗n−1

0,1...n−3,n−2.

Lemma 9. For n ≥ 3, b∗n+1
0...n−1,n = b∗n0...n−1 − b∗n0...n−2,n−1.
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Proof. The proof of this lemma is very similar to the proof of Lemma 6 and is omitted.

Lemma 10. For n ≥ 3, b∗n+1
0,1...n−1,n = b∗n0...n−2,n−1 − b∗n0,1...n−2,n−1.

Proof. Let π = (0, 1, a2, . . . , an−3, n − 1, n) be in Bn+1
0,1...n−1,n. Note that a2 6= 2. Hence

deleting 0 from π and subtracting 1 from each of the remaining entries gives the permutation
(0, a2 −1, . . . , an−3 −1, n−2, n−1) which is in Bn

0...n−2,n−1. But a permutation in Bn
0...n−2,n−1

could have a 1 in the second position in which case the permutation is in Bn
0,1...n−2,n−1.

Theorem 3 allows us to compute c∗(n) for any n. Next suppose that we have two rows,
say m− 1 and m, of known values in Table 2. By Corollary 8, we can compute row m + 1 of
Column 3 in Table 2 and by Lemma 9 we can compute row m + 1 of Column 2. Finally, by
Lemma 10, we can compute row m + 1 of Column 1. Therefore we can compute recursively
b∗n0,1...n−2,n−1, b∗n0...n−2,n−1, and b∗n0...n−1 for n > 6.

Using Theorem 4 and Lemma 6 and then Lemma 10, we can rewrite c∗(n) in terms of
just c∗(n) and b∗n0,1...n−2,n−1.

Corollary 11. For n ≥ 3, c∗(n) = c∗(n) − 2b∗n0,1...n−2,n−1 − 4b∗n+1
0,1...n−1,n.

For completeness, we now sketch the proof of the connection between the second and
third columns of Table 1. If π = (a0, . . . , an−1), then for j an integer we define π + j to be
the permutation (a0 + j, . . . , an−1 + j) where all additions are modulo n. Note that π and
π + j have the same number of modular runs.

Theorem 12. For n ≥ 3 and for x > 0, n · c∗(n, x) = s∗(n, x) where S∗(n, x) is the set of
permutations with exactly x modular runs and C∗(n, x) is the set of circular permutations
with exactly x runs.

Proof. First consider a permutation π = (0, a1, . . . , an−1) in C∗(n, x). The basic goal of
this proof is to flatten π at 0 to get πf and create a set of n straight permutations Π =
{πf , πf + 1, . . . , πf + (n− 1)}, each of which will have the same number of modular runs as
π has runs. But since flattening may remove a run from the original permutation, there are
four cases.

Case 1: Either a1 6= n − 1 or a2 6= n − 2 and either an−2 6= 2 or an−1 6= 1. In this case
we simply need to flatten the permutation at 0 and create the set Π as above.

Case 2: a1 = n − 1 and a2 = n − 2 and an−2 = 2 and an−1 = 1. In this case we
flatten the permutation at 0 and create the set Π as above. Note that (2, 1, 0) is a run in
the circular permutation and (0, n − 1, n − 2) is a modular run in the straight permutation
πf . Hence π and πf have the same number of runs.

Case 3: a1 = n − 1 and a2 = n − 2 and either an−2 6= 2 or an−1 6= 1. In this case we
consider γ = [−π′]f , where −π′ is −π reversed. Hence γ = (0,−an−1, . . . ,−a3, 2, 1) and has
the same number of modular runs as π has runs. We use γ to create the set of n modular
permutations that corresponds to π.

Case 4: Either a1 6= n−1 or a2 6= n−2 and an−2 = 2 and an−1 = 1. We again consider
γ = [−π′]f , where again −π′ is −π reversed. Hence γ = (0, n − 1, n−2,−an−3, . . . ,−a3) and
has the same number of modular runs as π has runs.
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It is not difficult to show that the n permutations produced by each of these cases are
unique. If π = (a0, a1, . . . , an−1) is in S∗(n, x), then π − a0 will fit one of the four cases
above. Circularize π − a0 and it will be the permutation that gives rise to the set of n

straight permutations {π + j : 0 ≤ j < n}.

Corollary 13. For n ≥ 3, n · c∗(n) = s∗(n).

Proof. By the above theorem, n · c∗(n) = n · [(n−1)!−
∑

x>0 c∗(n, x)] = n!−
∑

x>0 s∗(n, x) =
s∗(n), as desired.

3 Probability

It is not surprising that the probability that a permutation of length n does not have runs
is close to 1. In this section we verify this by showing that the probability that our deck of
cards from the introduction has no runs is essentially 1.

Since there are two ways to choose a modular run (increasing or decreasing), n− 2 ways
to choose the starting position of the run, n ways to choose the starting value of the run, and
(n − 3)! ways to place the remaining n − 3 numbers in the permutation, there are at most
2(n−2)n(n−3)! permutations that have a modular run. Hence s∗(n) ≥ n!−2(n−2)n(n−3)!
and so

s∗(n)

n!
≥ 1 −

2

n − 1
.

Hence we have the following:

Theorem 14. The probability that a permutation of length n does not have a modular run
approaches 1 as n approaches infinity.

Since s∗(n) > s∗(n), we also have

Corollary 15. The probability that a permutation of length n does not have a run approaches
1 as n approaches infinity.

For circular permutations, position does not matter so there are at most 2n(n − 3)!
circular permutations that contain a modular progression. Hence

c∗(n)

(n − 1)!
≥ 1 −

2n

(n − 1)(n − 2)
.

Again, since c∗(n) ≥ c∗(n), we have

Theorem 16. The probability that a circular permutation of length n does not have a modular
run approaches 1 as n approaches infinity and the probability that a circular permutation of
length n does not have a run approaches 1 as n approaches infinity.
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4 Sequences

This paper deals with sequences A002629, A078628, A095816, A165963, and A165964. The
first fifty terms of sequence A078628 are as follows:

c∗(1) = 0
c∗(2) = 0
c∗(3) = 0
c∗(4) = 4
c∗(5) = 12
c∗(6) = 76
c∗(7) = 494
c∗(8) = 3662
c∗(9) = 30574
c∗(10) = 284398
c∗(11) = 2918924
c∗(12) = 32791604
c∗(13) = 400400062
c∗(14) = 5281683678
c∗(15) = 74866857910
c∗(16) = 1135063409918
c∗(17) = 18330526475060
c∗(18) = 314169905117860
c∗(19) = 5695984717957246
c∗(20) = 108921059813769710
c∗(21) = 2190998123920252622
c∗(22) = 46250325111346491694
c∗(23) = 1022301429750398188716
c∗(24) = 23613740754886647958180
c∗(25) = 568950024006846904093598
c∗(26) = 14274866445575578119743438
c∗(27) = 372374376152806360290989110
c∗(28) = 10084828164172773195319256062
c∗(29) = 283174462307289209810184927092
c∗(30) = 8233653220849232427790328045876
c∗(31) = 247614562274689810303882719509278
c∗(32) = 7693604324191919134660311677872254
c∗(33) = 246722167225395915065853140640911086
c∗(34) = 8158170043027413464766703084133765486
c∗(35) = 277900813774915739274082551738004741004
c∗(36) = 9743794575197519961922090241025348596308
c∗(37) = 351363839903830230918432098902818922192894
c∗(38) = 13021021361761744809803587469208204799416830
c∗(39) = 495539146920588230240234245219779841743108086
c∗(40) = 19353425998749866625987965362312555548402003838
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c∗(41) = 775178453748407731849560920571080474371157593332
c∗(42) = 31822940480660363909632901120497416610409109814276
c∗(43) = 1338188780079916734821715054077664877231344980041022
c∗(44) = 57608766415416937793463862738387567270274014040964686
c∗(45) = 2537585460353397962654355343635847873682378459704820302
c∗(46) = 114311753947370344920005481482946829653263862575017508398
c∗(47) = 5263639446015081410706509916195602027644548310012924070828
c∗(48) = 247629532177056272405843061340997818641369089724829503112772
c∗(49) = 11897189001344425293916047304884946295425321612277069481144286
c∗(50) = 583477983942047048226466538472338140101669906331645943031808878
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