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91405 Orsay
France

Sylvie.Corteel@lri.fr

Pawe l Hitczenko2

LRI
CNRS Université Paris-Sud
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Abstract

We consider a class of generating functions that appear in the context of Carlitz

compositions. In order to combinatorially interpret them, we introduce a combinato-

rial structures that we name generalized compositions and p-Carlitz compositions of

integers. We explain their connection to Carlitz compositions, the relation to other

combinatorial structures, and we describe their basic properties.
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1 Introduction

The following function σ(z) defined by

σ(z) =
∞
∑

j=1

(−1)j−1 zj

1 − zj
. (1)

has been introduced by Carlitz in [3]. It is related to the generating function of all com-
positions of n whose any two consecutive parts are different (such compositions have been
subsequently called Carlitz compositions, and studied, e.g., in [9, 5, 10, 8]; see also A003242
in [11]). Specifically, if C(z) is the generating function of Carlitz compositions then

C(z) =
1

1 − σ(z)
. (2)

If σ(z) had all coefficients non–negative the same would be true of C(z). However, σ(z) does
not have that property. Yet, it is a generating function of a natural sequence. Namely, by
expanding 1/(1 − zj) into geometric series and rearranging the terms in (1), we see that

σ(z) =
∞
∑

j=1

(−1)j−1zj
∞
∑

k=0

zjk =
∑

j,k≥1

(−1)j−1zjk =
∑

n≥1

zn
∑

j≥1, j|n
(−1)j−1,

and so σ(z) is the generating function of a sequence φ(n) :=
∑

j≥1, j|n
(−1)j−1, which is just the

number of odd divisors of n minus the number of even divisors of n. Equivalently, φ(n) may
be defined as the number of divisors of n minus twice the number of even divisors of n. It is
then natural to further define for a positive integer p, σp(z) to be the generating function of
a sequence “the number of all divisors of n minus p times the number of divisors of n that
are divisible by p”. That is, let dq(m) be the number of divisors of m that are multiples of
q and let

φp(j) := d1(j) − pdp(j) = d1(j) − pd1(j/p).

We then define

σp(z) :=
∞
∑

j=1

φp(j)z
j,

and set

Cp(z) :=
1

1 − σp(z)
, (3)

(Thus, (2) is the special case of (3) corresponding to p = 2 .)
There does not seem to be a priori reason for Cp(z) to have non–negative coefficients.

But this is the case as we now show.

Lemma 1. Cp(z) defined by (3) has non-negative, increasing, integer coefficients for every
integer p ≥ 2.
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Proof. Let Cp(z) =
∑

n≥0 cp(n)zn and set ∆p(n) := −φp(n), n ≥ 1, with ∆p(0) = 1. Set

Ψq(x) =
∑

m≤x

φq(m) = D1(x) − qDq(x).

Then, (3) can be written as
(

∑

n≥0

cp(n)zn
)

·
(

∑

n≥0

∆p(n)zn
)

= 1,

which leads to an infinite system of linear equations

m
∑

k=0

cp(k)∆p(m− k) = 0, m = 1, 2, . . . .

Adding up the first m of them gives

cp(0)
m
∑

j=1

∆p(j) +
m
∑

ℓ=1

cp(ℓ)
m−ℓ
∑

j=0

∆p(j) = 0,

which, after extracting the last term and using ∆p(0) = 1 gives

cp(m) = −cp(0)
m
∑

j=1

∆p(j) −
m−1
∑

ℓ=1

cp(ℓ)
m−ℓ
∑

j=0

∆p(j)

= cp(0)Ψp(m) +
m−1
∑

ℓ=1

cp(ℓ)(−1 + Ψp(m− ℓ)).

Since this is to hold for all m ≥ 1, by an inductive argument it is enough to know that all
the Ψp(n)’s are positive. In order to show that let I(d,m) = 1 if d divides m, zero otherwise.
Then

D1(n) =
∑

m≤n

n
∑

d=1

I(d,m) =
n

∑

d=1

∑

m≤n

I(d,m)

=
n

∑

d=1

⌊n

d

⌋

.

Similarly,

pDp(n) = p
∑

m≤n

n
∑

d=1

I(dp,m) =
n

∑

d=1

p
⌊ n

pd

⌋

.

Since ⌊n/d⌋ ≥ p⌊n/pd⌋ (just consider n = mpd + ℓ with 0 ≤ ℓ < pd), each term in the sum

n
∑

d=1

(⌊n

d

⌋

− p
⌊ n

pd

⌋)

is nonnegative and for d = n the term is 1. Thus the whole sum is strictly positive.
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In order to give a combinatorial proof of this result, we define two new combinatorial
objects: the generalized compositions and the p-Carlitz compositions. In Section 2, we define
these objects and compute their generating functions. We show that the coefficient of zn

in Cp(z) is equal to the number of p-Carlitz compositions of n. Generalized compositions
appear in [11] as A129921, while p-Carlitz compositions (or more precisely, 3-Carlitz compo-
sitions) are given as A129922. In Section 3, we use simple asymptotic techniques to compute
the asymptotic behavior of the number of generalized compositions of n and p-Carlitz com-
positions of n. In Section 4, we present some concluding remarks and further properties that
can be deduced from known results.

2 Generalized and p-Carlitz compositions

We first recall some a few classical definitions for compositions. A composition of the integer
n is an ordered sequence of positive integers (a1, a2, . . .) such that

∑

i ai = n. A composition
of n can also be seen as a word bi11 b

i2
2 . . . bikk with

∑

j bjij = n, bj > 0, ij > 0 and bj 6= bj+1

for any j.

Definition 2. A generalized composition of n is a generalized word bi11 b
i2
2 . . . bikk with

∑

j bjij =
n, bj > 0, ij > 0 for any j. The number of parts of the generalized composition is

∑

j ij and
the length is k.

Remark. Generalized compositions are compositions where the condition bj 6= bj+1 was
taken off. Generalized compositions can be seen as weighted compositions where each part
is weighted by its number of divisors or weighted compositions where a part that is repeated
exactly i times is weighted by 2i−1.

There are 7 generalized compositions of 3: 31, 1121, 2111, 13, 1211, 1112 and 111111.
Let g(n, ℓ, k) the number of generalized compositions of n with ℓ parts and length k. Let

G(z, x, y) =
∑

n,ℓ,k

g(n, k, ℓ)znxℓyk.

Proposition 3. We have

G(z, x, y) =
1

1 −
∑

n
xyzn

1−xzn

. (4)

Proof. This is straightforward using basic decomposition. Each bi gives a contribution yxizbi

to the generating function. As b and i can have any non–negative values the generating
function of the generalized composition of length one is G1(z, x, y) =

∑

b≥0

∑

i≥0 yx
izbi =

y
∑

b
xzb

1−xzb
. As a generalized composition is an ordered sequence of generalized compositions

of length 1, we get that

G(x, y, z) =
1

1 −G1(z, x, y)
.

This completes the proof.
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Now we would like to link those generalized compositions to Carlitz compositions. A
Carlitz composition is a composition where any two consecutive entries must be different.
Therefore a Carlitz composition is a word bi11 b

i2
2 . . . with ij = 1 and bj 6= bj+1 for all j.

Let c(n) the number of Carlitz compositions of n. A classical result is the following:

Proposition 4. [3] The generating function of Carlitz compositions C(z) is

1

1 −∑

n
zn

1+zn

.

Proof. There are numerous proofs for this result. We give a new one that links Carlitz com-
positions to generalized compositions. When we compare the previous generating function
to the one presented in Proposition 3, we straight away get that C(z) = G(z,−1,−1). This
implies that there exists a signed bijection between Carlitz compositions and generalized
compositions weighted by −1 to the number of parts plus the length. Equivalently, as Car-
litz compositions are generalized compositions, there exists a sign reversing involution φ on
generalized compositions when the sign is 1 if the number of parts plus the length is even
and −1 otherwise and where the fixed points are indeed the Carlitz compositions. We note
that the sign of the Carlitz compositions is always one as their number of parts is equal to
their length.

This sign reversing involution is straightforward to define. Given a generalized composi-
tion B = bi11 b

i2
2 . . . bikk , let j be the first index such that ij > 1 or ij = 1 and bj = bj+1.

• If no such index exists then B is a Carlitz composition and φ(B) = B.

• If ij > 1 then φ(B) = bi11 b
i2
2 . . . b

ij−1

j−1 bjb
ij−1
j b

ij+1

j+1 . . . b
ik
k .

• If ij = 1 then φ(B) = bi11 b
i2
2 . . . b

ij−1

j−1 b
ij+1+1
j+1 b

ij+2

j+2 . . . b
ik
k .

The number of parts does not change but the parity of the length is always changed if B is
not a fixed point. Therefore the sign of φ(B) is minus the sign of B. It is straightforward to
check that φ is an involution. For example, if B = 51414212, then φ(B) = 514312.

Now we will generalize the previous idea to give a combinatorial characterization of
Lemma 1.

Definition 5. A p-Carlitz composition is a generalized composition bi11 b
i2
2 . . . bikk such that

ij < p for any j and if bj = bj+1 then ij + ij+1 6= p.

Note that Carlitz compositions are exactly 2-Carlitz compositions.
Let cp(n) be the number of p-Carlitz compositions of n. We will indeed prove the following

Proposition 6. The generating function of p-Carlitz compositions
∑

n cp(n)zn is equal to

Cp(z) =
1

1 −∑

n

(

zn

1−zn
− p znp

1−znp

) .
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Proof. We will generalize the ideas developed for Carlitz compositions. A p-generalized com-

position is two–rowed array

(

B
A

)

=

(

bi11 . . . bikk
a1 . . . ak

)

, where the first row is a generalized

composition and the second row a sequence of non–negative integers such that aj = 0 if ij
is not a multiple of p and 0 < aj < p otherwise.

Note that if

(

B
A

)

is a p-generalized compositions and B is a p-Carlitz composition

then A = (0, . . . , 0).
Let g(p)(n, ℓ, k, j) be the number of p-generalized compositions of n with ℓ parts and

length k and j positive entries in A. Let

G(p)(z, x, y, w) :=
∑

n,ℓ,k,j

g(p)(n, k, ℓ, j)znxℓykwj.

Then

G(p)(z, x, y, w) =
1

1 −∑

n

(

yxzn

1−xzn
− yxpznp

1−xpznp + (p− 1)ywxpznp

1−xpznp

) . (5)

The arguments are the same as in the proof of Proposition 3. Each bi gives a contribution
yxizbi to the generating function if i is not a multiple of p and wyxizbi otherwise. Therefore we
need to prove that Cp(z) = Gp(z, 1, 1,−1). To do that we define a sign reversing involution ξ
on the set of p-generalized compositions, where the fixed points are the p-Carlitz compositions
and the sign of a p-generalized composition (B,A) is 1 if the sequence A has an even number
of positive entries and −1 otherwise.

Given a p-generalized composition

(

B
A

)

=

(

bi11 . . . bikk
a1 . . . ak

)

, let j be the first index

such that:

• ij ≥ p or

• ij < p and bj = bj+1 and ij+1 is a multiple of p or

• ij < p and bj = bj+1 and ij + ij+1 is a multiple of p

If no such index exists then B is a p-Carlitz composition and ξ

(

B
A

)

=

(

B
A

)

.

The involution is defined as:

• If ij ≥ p then

– if ij is a multiple of p then

ξ

(

B
A

)

=

(

bi11 . . . bi
j−1

j−1 b
aj
j b

ij−aj
j bj+1 . . . bk

a1 . . . aj−1 0 0 aj+1 . . . ak

)

,

– otherwise

ξ(B,A) =

(

bi11 . . . b
ij−1

j−1 btj b
ij−t
j bj+1 . . . bk

a1 . . . aj−1 0 p− t aj+1 . . . ak

)

,

with t = ij − p ⌊ij/p⌋.
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• If ij < p and bj = bj+1 and ij+1 is a multiple of p then

– if ij + aj+1 = p then

ξ

(

B
A

)

=

(

bi11 . . . b
ij−1

j−1 b
ij+ij+1

j b
ik+2

j+2 . . . bk
a1 . . . aj−1 0 aj+2 . . . ak

)

,

– otherwise

ξ

(

B
A

)

=

(

bi11 . . . b
ij
j b

aj+1

j+1 b
ij+1−aj+1

j+1 b
ik+2

j+2 . . . bikk
a1 . . . aj 0 0 aj+2 . . . ak

)

.

• If ij < p and bj = bj+1 and ij + ij+1 is a multiple of p then

ξ

(

B
A

)

=

(

bi11 . . . bi
j−1

j−1 b
ij+ij+1

j bj+2 . . . bikk
a1 . . . aj−1 ij aj+2 . . . ak

)

.

It is straightforward to prove that ξ is a sign reversing involution. One can carefully check
that the involution ξ for p = 2 and φ are identical.

3 The number of generalized and p-Carlitz composi-

tions

We let G(z) = G(z, 1, 1) be the generating function of generalized compositions.

Proposition 7. The function G(z) has a dominant singularity which is a real root ρ of

σ(z) :=
∑

n≥1

zn

1 − zn
= 1.

This root is approximately ρ = 0.406148005001 . . .. Hence, it follows that the number of
generalized compositions of n is, asymptotically,

1

ρσ′(ρ)
ρ−n =

1

ρσ′(ρ)

(

1

ρ

)n

∼ (0.481225 . . . )(2.462156 . . . )n.

Proof. This follows from general principles since all the coefficients (except the zeroth) in
the power series of σ(z) are strictly positive (see, e.g., [2] for a discussion) but can be also
proved directly: the function σ(z) treated as a function of a real variable is strictly increasing
on the interval (0, 1). Since σ(0) = 0 and limz→1− σ(z) = ∞, it must have a unique real root
ρ on the interval (0, 1). It is also the unique root in the disk |z| ≤ ρ since

|σ(z)| ≤
∑

n≥1

|z|n
|1 − zn| ≤

∑

n≥1

|z|n
1 − |z|n ≤ 1

7



and for |z| < ρ the last inequality is strict while for z = ρeiθ, unless θ = 2kπ, |1−z| > 1−|z|
and the middle inequality is strict. Hence, by Cauchy integral formula and residue calculation

g(n) =
1

2πi

∮

|z|=r

dz

(1 − σ(z))zn+1
=

1

σ′(ρ)ρn+1
+ O

(

(ρ + ε)−n
)

,

for a suitably chosen ε > 0.

Proposition 8. Let p ≥ 2. The generating function of p-Carlitz compositions has a domi-
nant singularity which is the unique real root ρp of

σp(z) = 1,

where

σp(z) := σ(z) − pσ(zp) =
∑

n≥1

( zn

1 − zn
− p

zpn

1 − zpn

)

.

Thus, the number of p-Carlitz compositions of n is, asymptotically,

cp(n) ∼ 1

ρpσ′
p(ρp)

(

1

ρp

)n

.

Proof. Each of the functions Cp(z) has a singularity at ρp which is a real solution of σp(z) = 1
for 0 < z < 1. This follows from the positivity of the coefficients of Gp(z) established in
Lemma 1 (or by monotonicity of σp(z) on the positive half–line). To show its uniqueness
requires a bit more work since the coefficients of σp(z) are not generally non-negative. We
intend to apply Rouché’s theorem to show that ρp is the unique root of σp(z) = 1 in a disk
|z| ≤ r, for some 0 < r < 1. To this end, we first observe that the roots ρp monotonically
decrease to ρ as p ≥ 2 increases. For this, it is enough to show that σp(z) ≤ σp+1(z), i.e.
that pσ(zp) ≥ (p + 1)σ(zp+1) for which it is enough that for n ≥ 1

p
znp

1 − znp
≥ (p + 1)

zn(p+1)

1 − zn(p+1)
.

This last statement is equivalent to fp(z
n) ≤ p for 0 < z < 1, where fp(y) = y(p + 1 − yp),

which is true since fp(1) = p and fp is increasing on (0, 1).
In order to simplify calculations we will assume that p ≥ 3 (the case p = 2 corresponds

to Carlitz compositions and has been handled, by the same argument). Putting together the
terms of

∑

zn/(1 − zn) in groups of p, rewrite σp(z) as

∑

n≥1

(

p
∑

k=1

z(n−1)p+k

1 − z(n−1)p+k
− p

znp

1 − znp

)

=
∑

n≥1

p−1
∑

k=1

{

z(n−1)p+k

1 − z(n−1)p+k
− znp

1 − znp

}

.
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The absolute value of the term in curly brackets is

∣

∣

∣

p−1
∑

k=1

( z(n−1)p+k

1 − z(n−1)p+k
− znp

1 − znp

)∣

∣

∣
≤

p−1
∑

k=1

∣

∣

∣

z(n−1)p+k − znp

(1 − z(n−1)p+k)(1 − znp)

∣

∣

∣

≤ |z|(n−1)p

(1 − |z|np)(1 − |z|(n−1)p+1)

p−1
∑

k=1

|z|k(1 + |z|p−k)

≤ |z|(n−1)p

(1 − |z|np)(1 − |z|(n−1)p+1)

( |z|
1 − |z| + (p− 1)|z|p

)

≤ 2
|z|(n−1)p+1

(1 − |z|)(1 − |z|np)(1 − |z|(n−1)p+1)

Hence, the sum over n > n0 is bounded by

|hp(z)| ≤ 2|z|
(1 − |z|)(1 − |z|(n0+1)p)(1 − |z|n0p+1)

∑

n>n0

|z|(n−1)p

=
2|z|n0p+1

(1 − |z|)(1 − |z|p)(1 − |z|(n0+1)p)(1 − |z|n0p+1)

≤ 2|z|3n0+1

(1 − |z|)(1 − |z|3)(1 − |z|3(n0+1))(1 − |z|3n0+1)

where in the last step we used the fact that p ≥ 3. In particular, choosing n0 = 2, for
|z| = 0.55, the above expression is bounded by 0.083. The rest of σp(z) is

2p
∑

k=1

zk

1 − zk
− p

( zp

1 − zp
+

z2p

1 − z2p

)

=
6

∑

k=1

zk

1 − zk
+
∑

k≥7

zk

1 − zk
− p

( zp

1 − zp
+

z2p

1 − z2p

)

.

For |z| = 0.55 we have

∣

∣

∣

∑

k≥7

zk

1 − zk

∣

∣

∣
≤ |z|7

(1 − |z|)(1 − |z|7) ≤ 0.035,

and whenever p ≥ 3

p
∣

∣

∣

zp

1 − zp
+

z2p

1 − z2p

∣

∣

∣
≤ p

( |z|p
1 − |z|p +

|z|2p
1 − |z|2p

)

≤ 0.65

Also, on the circle |z| = 0.55,

∣

∣

∣

6
∑

k=1

zk

1 − zk
− 1

∣

∣

∣
≥ 0.98 > 0.083 + 0.65 + 0.035.
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Hence, by Rouché’s theorem the equations σp(z) = 1 and
∑6

k=1 z
k/(1 − zk) = 1 have the

same number of roots in the disc |z| ≤ 0.55. Since the latter equation has the unique root
in that disk, we conclude that ρp is the dominant singularity of Gp(z). Hence, by Cauchy,
we get

gp(n) =
1

2πi

∮

|z|=r

dz

(1 − σp(z))zn+1
=

1

σ′
p(ρp)ρ

n+1
p

+ O
(

(ρp + ε)−n
)

.

This completes the proof.

The approximate values of 1/ρp and the coefficients for the first few values of p are given
in Table 1.

p 1/(ρpσ
′
p(ρp)) 1/ρp

2 0.4563501674 1.750226659
3 0.5328099814 2.124758487
4 0.5325715914 2.303902594
5 0.5176390138 2.388474776
6 0.5039489021 2.428059753
7 0.4944459900 2.446480250
8 0.4885607176 2.455002608
9 0.4851499671 2.458917927

10 0.4832639100 2.460702209

Table 1: Approximate values of the coefficients and the bases

As p increases to infinity the condition in Definition 5 becomes less restrictive and thus
p-Carlitz compositions increasingly resemble of generalized compositions. This can be also
see from the form of the generating function in Proposition 6.

4 Further remarks

Remark 1. As far as we know generalized compositions (or p-Carlitz compositions) have
not appeared in a natural way before and may deserve further study. However, functions
of the form (4) and (5) and limiting distributions of random variables represented by them
are well understood thanks to work of Bender [1]. Bender’s work has been generalized by
Hwang [7] and is now referred to as a quasi-power theorem. We follow a presentation by
Flajolet and Sedgewick in their forthcoming book [4] (see Sections IX.5-6) and we refer there
for more detailed discussion. For example, the generating functions of the number of parts,
Mn, and the length, Ln, are, respectively,

G(z, u, 1) =
1

1 −
∑∞

j=1
zju

1−zju

, (6)
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and

G(z, 1, u) =
1

1 − u
∑∞

j=1
zj

1−zj

. (7)

According to a version of Bender’s theorem given by Flajolet and Sedgewick [4, Theorem
IX.8, Section IX.6] Mn and Ln are both asymptotically normal with means and variances
linear in n, that is for a real number t

Pr

(Mn − µmn

σm

√
n

≤ t
)

−→ Φ(t) and Pr

(Ln − µℓn

σℓ

√
n

≤ t
)

−→ Φ(t),

where Φ(t) = 1√
2π

∫ t

∞ e−s2/2ds is the distribution function of the standard normal random

variable. The values of µ’s, may be obtained by evaluating the derivative of ρ/ρ(u) at
u = 1 (which gives −ρ′(1)/ρ) where ρ(u) is the solution of H(ρ(u), u) = 0, ρ(1) = ρ, and
H(z, u) is the denominator on the right–hand side of (6) and (7), respectively. By implicit
differentiation ρ′(1) = −Hu(ρ, 1)/Hz(ρ, 1) which gives

µm =

∑∞
j=1 ρ

j/(1 − ρj)2

ρ
∑∞

j=1 jρ
j−1/(1 − ρj)2

∼ 0.728026753148681 . . .

and

µℓ =
1

∑∞
j=1 jρ

j/(1 − ρj)2
∼ 0.6610001082360630 . . .

Similarly, the coefficient in front of the variance is

(( ρ

ρ(u)

)′′

+
( ρ

ρ(u)

)′

−
(( ρ

ρ(u)

)′)2)

∣

∣u=1
=

(ρ′(1)

ρ

)2

− ρ′(1)

ρ
− ρ′′(1)

ρ
.

The value of ρ′′(1) is obtained from the second differentiation of H(ρ(u), u) = 0 and leads to

σ2
m ∼ 2.93020675623619 . . . σ2

ℓ ∼ 0.183409175142911 . . .

Similar arguments work for joint distributions and p-Carlitz compositions.
Remark 2. Alternatively, generalized compositions may be studied by observing that they
are weighted compositions; each part that is repeated i times in a row is weighted by 2i−1.
Hence, the (classical) composition is weighted by 2Mn−Rn , where Mn is the number of parts
and Rn is the number of runs. By a run we mean a succession (of a maximal length) of equal
parts; for example the composition (1, 2, 2, 4, 1, 1, 1, 3) of 15 has 5 runs of lengths 1, 2, 1, 3,
and 1. For compositions these quantities have been studied in the past. In particular, the
exact distribution of Mn is known to be 1 + Bin(n − 1), where Bin(m) denotes a binomial
random variable with parameters m and p = 1/2. We need some information about the joint
distribution of Mn and Rn. Write

Rn = 1 +
Mn
∑

j=2

Iκj 6=κj−1
. (8)
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The quantity, Wn := Mn − Rn =
∑n

j=2 Iκj=κj−1
, under the name the number of levels, has

been studied by various authors. In particular, Heubach and Mansour [6] showed that the
trivariate generating function of the number of compositions of n with k parts and ℓ levels
is

A(z, u, w) :=
∑

n,k,ℓ

a(n, k, ℓ)xnukwℓ =
1

1 −∑∞
j=1

zju
1−zju(w−1)

.

Since generalized compositions are compositions weighted by 2Wn , it follows, for exam-
ple, that the bivariate generating function of generalized compositions of n with k parts
is A(z, u, 2). This agrees with (6) as it should.

Likewise, if we were interested in the length Ln of a generalized composition then all
we need is to notice that given the values of Mn and Rn the length is distributed like
Rn + Bin(Mn −Rn). Thus for a given n its probability generating function is

EuLn2Wn = EEMn,Rn
uRn+Bin(Mn−Rn)2Wn = EuRn2WnEMn,Rn

uBin(Wn),

where E is the integration over the space of ordinary compositions of n and EMn,Rn
is the

conditional expectation given Mn and Rn. Since EMn,Rn
uBin(Wn) =

(

u+1
2

)Wn
we see that

EuLn2Wn = EuRn2Wn

(u + 1

2

)Wn

= EuMn−Ln(u + 1)Wn = EuMn(1 + u−1)Wn .

But that just means that the bivariate generating function of generalized compositions of n
whose length is k is given by A(z, u, 1 + u−1). Again, this agrees with (7).
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