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Abstract

In this thesis we prove intractability results for several well studied problems in

combinatorial optimization.

Closest Vector Problem with Pre-processing (CVPP): We show that

the pre-processing version of the well known Closest Vector Problem is hard

to approximate to an almost polynomial factor (2log1−ε n) unless NP is in quasi

polynomial time. The approximability of CVPP is closely related to the security

of lattice based cryptosystems.

Pricing Loss Leaders: We show hardness of approximation results for the

problem of maximizing profit from buyers with single minded valuations where

each buyer is interested in bundles of at most k items, and the items are allowed

to have negative prices (“Loss Leaders”). For k = 2, we show that assuming

the Unique Games Conjecture, it is hard to approximate the profit to any

constant factor. For k ≥ 2, we show the same result assuming P 6= NP .

Integrality gaps: We show Semi-Definite Programming (SDP) integrality

gaps for Unique Games and 2-to-1 Games. Inapproximability results for these

problems imply inapproximability results for many fundamental optimization prob-

lems. For the first problem, we show “approximate” integrality gaps for super

constant rounds of the powerful Lasserre hierarchy. For the second problem we

show integrality gaps for the basic SDP relaxation with perfect completeness.
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Chapter 1

Introduction

In this chapter, we describe the problems of interest to us, motivation for studying

them, related previous research and progress made in this thesis. The first few

sections below describe the various problems while the last section summarizes the

contributions of this thesis.

1.1 Closest Vector Problem with Pre-processing

An integer lattice B is a set of vectors {
∑n

i=1 αibi | αi ∈ Z}, where b1, b2, . . . , bn ∈

Zm are linearly independent vectors, called the basis of the lattice. Given (the

basis of) an integer lattice B and a target vector t in Zm, the Closest Vector

Problem (CVP) asks for the vector in B nearest to t under the `p norm. All

norms p ≥ 1 are interesting although the case p = 2 has received the most atten-

tion. An important variant of CVP is the pre-processing version of the problem

where the lattice B is known in advance and the algorithm is allowed arbitrary

pre-processing on B before the input t is revealed. This is known as the Closest

Vector Problem with Pre-processing (CVPP).
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A related problem is the Nearest Codeword Problem (NCP) where the

input is a generator matrix C of a linear code over F2 and a target vector t. The

goal is to find the codeword nearest to t in Hamming distance. Again, if C is known

in advance and arbitrary pre-processing is allowed on it, the problem is known as

the Nearest Codeword Problem with Pre-processing (NCPP).

The approximation version for all these problems with approximation factor

K asks for a lattice vector (or a codeword) whose distance from the target vec-

tor t is within factor K of the minimal distance. The approximation version is

interesting from both algorithmic and hardness perspective, namely designing an

efficient K-approximation algorithm as well as showing that K-approximation is

computationally infeasible under a reasonable complexity hypothesis, for specific

approximation factors K.

Pre-processing problems arise in cryptography and coding theory where, typi-

cally, a publicly known lattice (or a linear error-correcting code) is used to transmit

messages across a faulty channel. The decrypting or decoding of the received word

amounts to solving an instance of CVP for this lattice. The security of the cryp-

tosystem relies on the assumption that CVP is hard to solve even up to fairly

large approximation factors. Since the lattice is known publicly and an adversary

may carry out arbitrary pre-computation, it is important to understand whether

the pre-computation might compromise the security of the cryptographic protocol

(see [FM04, Reg04] for more details). From this perspective, it is desirable to have

an inapproximability result showing that CVP remains hard to approximate even

after revealing the lattice in advance.

Potentially, the pre-computed information could make CVPP much easier to

approximate than CVP. Indeed, using the so-called Korkine-Zolotarev basis, La-
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garias et al. [LLS90] designed an O(n1.5) approximation algorithm for CVPP,

which is significantly better than the best known almost-exponential

2O(n log logn/ logn) approximation known for CVP [MV10, Sch87]. This was fur-

ther improved to O(n) by Regev [Reg04] and subsequently to O(
√
n/ log n) by

Aharonov and Regev [AR05].

On the inapproximability side, CVP is known to be inapproximable within an

almost polynomial factor [ABSS97] (i.e. factor 2log1−εn for any constant ε > 0.

Dinur et al. [DKRS03] obtain an even stronger hardness factor nO(1/ log logn)).

Obtaining inapproximability results for CVPP has been a more challenging task.

Feige and Micciancio [FM04] proved a 5
3
− ε factor NP-hardness for NCPP for

any constant ε > 0. This was improved to 3− ε by Regev [Reg04]. These authors

observed that a factor K hardness for NCPP implies a factor K1/p hardness for

CVPP under the `p norm for any 1 ≤ p <∞. Also, a hardness result in the `2 case

implies essentially the same hardness result in the `p case for any p ≥ 1 as shown

by Regev and Rosen [RR06] via the norm-embedding technique.

The inapproximability results were improved in [AKKV05] who proved a fac-

tor K NP-hardness for CVPP and NCPP for any constant K and a hardness of

(log n)δ for some constant δ > 0 under the assumption that

NP 6⊆ DTIME(2poly(logn)). They also gave another reduction which achieves a

hardness factor of (log n)1−ε for NCPP for any constant ε > 0. The latter reduc-

tion was under a certain hypothesis about the pre-processing version of the PCP

Theorem.1 A similar hypothesis was later proved in [FJ12] who also initiated a

systematic study of various pre-processing problems. The hypothesis needed by

[AKKV05] can be deduced from the work of [FJ12].

1The authors claimed to have a proof, but did not include it in the paper.
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1.2 Pricing Loss Leaders

Consider the problem of pricing n items under an unlimited supply with m buyers.

Each buyer is interested in a bundle or subset of the n items. These buyers are

single minded, which means each of them has a budget and they will either buy

all the items if the total price is within their budget or they will buy none of the

items. The goal is to price each item with profit margin p1, p2, . . . , pn so as to

maximize the overall profit.

There is a flurry of work on understanding the approximability of this problem

(e.g., see [GHK+05, HK05, BB06, GVLSU06, BK06, DHFS06, ESZ07, BBCH07,

KKMS09, ERRS09, GvLU10, GS10, GR11, Wu11]). The best approximation algo-

rithm is an O(log n+logm)-approximation given by Guruswami, Hartline, Karlin,

Kempe, Kenyon and McSherry [GHK+05]. The best hardness of approximation

result is a factor of (log n)ε for some ε > 0 assuming NP * BPTIME(2n
δ
) for some

0 ≤ δ ≤ 1 given by Demaine, Feige, Hajiaghayi and Salavatipour [DHFS06].

We think of the items as vertices on a graph and buyers as hyper-edges, and

denote the problem described above as Vertex Pricing. The special case where

each buyer is interested in bundles of at most k items is denoted as Vertex

Pricingk. When k = 2, the problem is also known in the literature as the Graph

Vertex Pricing problem. Another special case is the Highway Pricing prob-

lem when the items (toll-booths) are arranged linearly on a line and each buyer

(as a driver) is interested in paying for a path that consists of consecutive items.

For Vertex Pricingk Balcan and Blum [BB06] give an algorithm with approx-

imation ratio O(k). In particular, for Graph Vertex Pricing, their algorithm

gives a 4-approximation. On the hardness side, it is known that even the simple

Graph Vertex Pricing problem is APX-hard [GHK+05] and Unique Games-
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hard to get better than 2-approximation by Khandekar, Kimbrel, Makarychev and

Sviridenko [KKMS09].2 This UG hardness result even holds when the underlying

graph is bipartite, which is tight since [BB06] give a 2-approximation for bipartite

graphs. Note that a factor c hardness for k = l also translates to a factor c hardness

for all k > l since we allow bundles with at most k items. The Highway Pricing

problem is known to be strongly NP-hard by Elbassioni, Raman, Ray and Sitters

[ERRS09] and very recently a PTAS is obtained by Grandoni and Rothvoß [GR11].

All of the above results assume the seller always prices each item with a positive

profit margin. Much less is known for the problem when the seller is allowed to price

some of the items below their margin cost. The motivation for pricing certain item

below cost is to stimulate the sales of other more profitable items. Such a pricing

strategy is also widely used in practice and these items sold at price below cost

are called “loss leaders”. For example, a printer company may sell the printer at a

low price (as the loss leader) to make more profits from selling the ink cartridges.

Consider the following concrete example: there are three items A,B,C and three

customers: one values {A} at $10 above the margin cost, one values {C} at $10

above the cost and one values {A,B,C} at $10 above the cost. By pricing A,C

at $10 above the cost and B at $10 below the cost, the seller makes a total profit

of $30. On the contrary, if no item is allowed to price below its cost, it is easy to

verify that the maximum profit of the seller is at most $20. .

To formally study the problem of pricing loss leaders, Balcan, Blum, Chan and

Hajiaghayi [BBCH07] proposed two reasonable theoretical models: the discount

model and the coupon model. The discount model is the most direct one: it assumes

that the profit the seller collects from a bundle of items is the sum of the profit

2Unique Games-hard or UG-hard means NP-hard assuming the Unique Games Conjec-
ture. We refer the reader to Section 1.3.1 for details about the Unique Games Conjecture
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margin on each item in the bundles. One drawback of the discount model is that

it does not make sense to assign a negative profit margin when the margin cost

of each item is 0 (e.g, for the Highway Pricing problem). To address this,

the authors also propose the coupon model which assumes that the profit on each

bundle is at least 0; i.e., if the sum of the profit margin on each item in the bundle is

negative, then the seller has profit 0 on that bundle. This model also assumes that

a customer is interested in a particular set of items and will not purchase a superset

even if it is cheaper, which is true for problems such as Highway Pricing where

the driver is only interested in travelling a particular path and would not like to

travel additional stretches to save tolls. It is shown in [BBCH07, BB06] that the

maximum profit under either the coupon model or discount model can be as large

as Ω(log n) times the maximum profit when only positive profit margin prices are

allowed. Such a gap of Ω(log n) holds even for the Highway Pricing problem

when all the drivers have the same valuation (budget). Given the possibility of

making more profit, understanding the approximability of pricing loss leaders for

Graph Vertex Pricing, Highway Pricing as well as the general item pricing

problem are formulated as open problems in [BB06,BBCH07]. It was shown in

[Wu11] that Vertex Pricing3 is UG-hard to approximate to any constant factor

when Loss Leaders are allowed.

1.3 Integrality gaps

Semi-definite Programming (SDP) has played a central role in designing approxi-

mation algorithms since it was first used in this context by [GW95]. The current

best approximation to many natural computational problems is achieved by solv-
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ing an SDP relaxation for the problem and rounding the vectors so obtained to

an integral solution. On the other hand, existence of an integrality gap instance

is taken as evidence that an algorithm based on LP/SDP relaxation is unlikely

to give a good approximation. An integrality gap instance is a specific instance

(or a family of instances) where the optimum of the LP/SDP relaxation differs

significantly from the integral (i.e. true) optimum. Hence, constructing integrality

gaps for optimization problems against a certain class of SDPs can serve as an

important indicator for the hardness of the problem.

In this thesis we consider the problem of constructing integrality gaps for two

variants of the well studied Label Cover problem which are significant for prov-

ing hardness of approximation results. We introduce the problems and review

related work in the next two subsections.

1.3.1 Unique Games Conjecture

Since its introduction in 2002, the Unique Games Conjecture (UGC) of Khot

[Kho02b] has proved highly influential and powerful in the study of probabilisti-

cally checkable proofs (PCPs) and approximation algorithms. Assuming the UGC

yields many strong — and often, optimal — hardness of approximation results

that we have been unable to obtain assuming only P 6= NP. Perhaps the acme of

this line of research so far is the work of Raghavendra [Rag08], who showed the

following result:

Theorem 1.3.1. ([Rag08], informally.) Let C be any bounded-arity constraint

satisfaction problem (CSP). Assume the Unique Games Conjecture. Then

for a certain semidefinite programming (SDP) relaxation of C, the SDP gap for

C is the same as the optimal polynomial-time approximability gap for C, up to an
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additive constant ε > 0 which can be arbitrarily small.

We first introduce a couple of definitions to state the UGC formally.

Definition 1.3.2. (Label Cover) An instance L (G(U, V,E), [L], [K], {πe}e∈E)

of Label Cover is given by a bipartite graph G = (U, V,E) and for each edge

e = (u, v) ∈ E, a projection πe : [L] 7→ [K]. A labeling to the graph consists of

an assignment A : U → L, V → [K]. An edge e = (u, v) is said to be satisfied by

an assignment A if πe(A(u)) = A(v). The value of an instance is the maximum

fraction of edges that can be satisfied by any assignment. We call L as the “label

size” of the Label Cover instance, and denote the value of L as Opt(L).

Definition 1.3.3. (Unique Label Cover) An instance of Label Cover is

called an instance of Unique Label Cover if every projection πe corresponding

to an edge e is a 1-to-1 mapping, i.e. a permutation. In this case, we can take

L = K.

Notice that given an instance of Unique Label Cover with value 1, it is

easy to find a labeling satisfying every edge in polynomial time. For historical

reasons, the Unique Label Cover problem is also known in the literature as

the Unique Games problem.

Conjecture 1.3.4. (Unique Games Conjecture) [Kho02b]

For every ε > 0 there is a K = K(ε) large enough such that given a Unique

Label Cover instance with label size K it is NP-hard to distinguish between the

cases,

• The value of the instance is at least 1− ε

• The value of the instance is at most ε
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Despite significant work, the status of the Unique Games Conjecture is un-

resolved. Several approximation algorithms for Unique Games have been de-

veloped in an attempt to refute the conjecture [Kho02b, Tre05, GT06, CMM06].

All these algorithms are based on LP or SDP relaxation and find a near satisfy-

ing assignment to a Unique Games instance if there exists one. However their

performance deteriorates as the number of labels and/or the size of the instance

grows, and therefore they fall short of disproving the UGC. On the other hand,

Khot and Vishnoi [KV05] give a strong integrality gap for a basic SDP relaxation

of the Unique Games problem (the algorithmic result of Charikar, Makarychev,

and Makarychev [CMM06] essentially matches this integrality gap).

In addition to providing evidence towards the validity of the UGC, SDP gaps for

Unique Games have served another important role: they are the starting points for

strong SDP gaps for other important optimization problems. A notable example

of this comes in the work of Khot and Vishnoi [KV05] who used the UG gap

instance to construct a super-constant integrality gap for the Sparsest Cut-SDP

with triangle inequalities, thereby refuting the Goemans-Linial conjecture that

the gap was bounded by O(1). They also used this approach to show that the

integrality gap of the Max-Cut SDP remains 0.878 when triangle inequalities are

added. Indeed the approach via Unique Games remains the only known way to

get such strong gaps for Max Cut. Recently, even stronger gaps for Max-Cut were

shown using this framework in [KS09, RS09]. Another example of a basic problem

for which a SDP gap construction is only known via the reduction from Unique

Games is Maximum Acyclic Subgraph [GMR08].

In view of these results, it is fair to say that SDP gaps for Unique Games

are significant unconditionally, regardless of the truth of the UGC. Thus, it is
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worthwhile to investigate whether stronger LP/SDP relaxations help for problems

like Unique Games, Maximum Cut or Sparsest Cut. One can obtain stronger

relaxations by adding (say polynomially many) natural constraints that an integral

solution must satisfy.

Natural families of constraints considered in literature include the Lovász-

Schrijver LP and SDP heirarchies, the Sherali-Adams LP heirarchy, and Lasserre

SDP heirarchy. Instead of attempting a complete survey of known results, we refer

the reader to the relevant papers [ABLT06, STT07b, STT07a, GMPT07, Sch08,

CMM09, RS09, KS09]. and focus on the results pertaining to the Sherali-Adams

and Lasserre heirarchies. The t-round Sherali-Adams LP hierarchy enforces the

existence of local distributions over integral solutions. Specifically, a solution to

such an LP gives a distribution over assignments to every set of at most t vari-

ables and the distributions over pairwise intersecting sets are consistent on the

intersection. Strong lower bounds have been obtained by Charikar, Makarychev,

and Makarychev [CMM09] for up to nδ rounds of Sherali-Adams relaxation for the

Maximum Cut problem. Their result shows 2 − ε gap for Maximum Cut, and

since the gap of the basic SDP relaxation is at most α−1
GW , their result shows that

even a large number of rounds of the Sherali-Adams hierarchy fail to capture the

power of the basic SDP. In recent work, Raghavendra and Steurer [RS09] have ob-

tained integrality gaps for a combination of a basic SDP and (log log n)Ω(1) rounds

of the Sherali-Adams LP: they obtain a strong gap for Unique Games, α−1
GW − ε

for Maximum Cut and (log log n)Ω(1) for Sparsest Cut. Simultaneously, Khot

and Saket [KS09] also obtained similar but quantitatively weaker results.

One may also consider the t-round Lasserre SDP hierarchy [Las01] which intro-

duces a SDP vector for every subset of variables of size at most t and each integral
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assignment to that subset. Appropriate consistency and orthogonality constraints

are also added. As it turns out, a vector solution to the t-round Lasserre SDP also

yields a solution to the t-round Sherali-Adams LP, and therefore the Lasserre SDP

is at least as powerful as the Sherali-Adams LP.

Currently, we know very few integrality gap results for the Lassere hierar-

chy. Schoenebeck [Sch08] obtained Lasserre integrality gap for Max-3-Lin and

Tulsiani extended it to Max-k-CSP, and also obtained a gap of 1.36 for Ver-

tex Cover. However, we already know corresponding NP-hardness results, e.g.

H̊astad’s [H̊as01] hardness result for Max-3-Lin and Dinur and Safra’s 1.36 hard-

ness result for Vertex Cover. Indeed Tulsiani’s integrality gap for Vertex

Cover follows by simulating the Dinur-Safra reduction. It would be very inter-

esting to have Lasserre gaps where we only know UGC-based hardness results, e.g.

2− ε for Vertex Cover, α−1
GW − ε for Maximum Cut, and a superconstant gap

for Sparsest Cut. Currently, such gaps are not known even for the fifth level of

Lassere hierarchy, leaving open the tantalizing possibility that a constant round

Lasserre SDP relaxation might give better approximations to these problems, and

consequently disprove the UGC.

1.3.2 2-to-1 Games Conjecture

As mentioned in Section 1.3.1, the Unique Games Conjecture has strong

implications for the approximability of many fundamental optimization problems.

Unfortunately, because of the additive ε term in Theorem 1.3.1, Raghavendra’s

work is not applicable (even granting the UGC or any related conjecture) for the

important case of completely satisfiable CSPs; equivalently, PCPs with perfect

completeness. A good example of this comes from coloring problems ; e.g., the very
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well known problem of coloring 3-colorable graphs. The UGC does not help in

deducing any hardness result for such problems. Indeed the first strong hardness

result for it, due to Dinur, Mossel, and Regev [DMR09], used instead certain

variants of UGC which have perfect completeness, namely, the “2-to-1 Conjecture”,

the “2-to-2 Conjecture”, and the “α-Constraint Conjecture”. An instance of Label-

Cover with α-constraints was also implicit in the result of Dinur and Safra [DS05]

on the hardness of approximating minimum vertex cover. Recently, several more

works have needed to use these alternate conjectures with perfect completeness:

e.g., O’Donnell and Wu [OW09] and Tang [Tan09] on Max-3CSP, Guruswami and

Sinop [GS09] on Max-k-Colorable-Subgraph.

We describe the 2-to-1 Games Conjecture below, the other two conjectures

will be described in Chapter 4.

Definition 1.3.5. (2-to-1 Label Cover) An instance of Label Cover is

called an instance of 2-to-1 Label Cover if every projections πe corresponding

to an edge e is a 2-to-1 mapping. In this case we can take L = 2K.

Similar to Unique Label Cover, the 2-to-1 Label Cover problem is also

known in the literature as the 2-to-1 Games problem.

Conjecture 1.3.6. (2-to-1 Games Conjecture) [Kho02b]

For every ε > 0 there is a K = K(ε) large enough such that given a 2-to-1

Label Cover instance with label size K it is NP-hard to distinguish between the

cases,

• The value of the instance is 1 i.e. there is a labeling satisfying all edges

• The value of the instance is at most ε
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Given the importance of 2-to-1 and related conjectures in reductions to satisfi-

able CSPs and other problems like coloring where perfect completeness is crucial,

SDP gaps for 2-to-1 Label Cover and variants are worthy of study even beyond

the motivation of garnering evidence towards the associated conjectures on their

inapproximability.

1.4 Contributions of this Thesis

1.4.1 Hardness of Approximating the Closest Vector Prob-

lem with Pre-processing

In this thesis we prove that unless NP is in quasi-polynomial time, the CVPP

problem is hard to approximate to an almost polynomial factor. This appears as

a joint work with Subhash Khot and Nisheeth Vishnoi [KPV12] and the proof is

given in Chapter 2.

Theorem 1.4.1. Unless

NP ⊆ DTIME(2logO(1/ε) n), NCPP and CVPP are hard to approximate to a

factor within 2log1−εn for an arbitrarily small constant ε > 0.

This improves on the previous hardness factor of (log n)δ for some δ > 0 due

to [AKKV05] and essentially matches the almost polynomial factor inapproxima-

bility of Dinur et al. [DKRS03] for CVP. We emphasize that unlike the case of

CVP where the best approximation algorithm achieves a factor of 2n log logn/ logn,

the best approximation algorithm for CVPP achieves an approximation factor of

O(
√
n/ log n).
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1.4.2 Hardness of pricing Loss Leaders

In this thesis we prove strong hardness of approximation results for Vertex

Pricingk and Highway Pricing problems. The results are stated in the next

few paragraphs. These appear as a joint work with Yi Wu [PW12] and the proofs

are given in Chapter 3.

For the Graph Vertex Pricing problem (aka Vertex Pricing2) we prove

the following theorem.

Theorem 1.4.2. Graph Vertex Pricing under the coupon model is UG-hard

to approximate to any constant factor, even when the graph is bipartite.

Next, we prove a simple lemma which relates the approximability of Highway

Pricing to the approximability of Graph Vertex Pricing on a bipartite graph.

lemma 1.4.3. If Graph Vertex Pricing on bipartite graphs is hard to approx-

imate to factor α under the coupon model, then Highway Pricing is also hard

to approximate to factor α under the coupon model.

Combining Theorem 1.4.2 and Lemma 1.4.3 we get the following hardness of

approximation result for the Highway Pricing problem.

Corollary 1.4.4. Highway Pricing under the coupon model is UG-hard to ap-

proximate to any constant factor.

For the Vertex Pricing3 problem we prove the following theorem.

Theorem 1.4.5. Vertex Pricing3 under the coupon or the discount model is

NP-hard to approximate to factor Ω(log log log n).
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It is instructive to compare our hardness results with the known approximation

algorithms for the corresponding problem using positive profit margin prices only.

For the general pricing problem, there is a 4-approximation algorithm when k = 2

and 1
3e

-approximation algorithm for k = 3 [BB06]. As for the highway problem,

there exists a PTAS [GR11]. All of the three problems have (at least) a constant

approximation algorithm for positive profit margin prices while our corresponding

hardness results for pricing loss leaders are (at least) super-constant. Conceptually,

our results indicate that the problem of pricing loss leaders is substantially harder.

1.4.3 Integrality gap for 2-to-1 Label Cover

In this thesis, we show the following theorem on the limitations of the basic semidef-

inite programming relaxation for 2-to-1 Label Cover.

Theorem 1.4.6. There are instances of 2-to-1 Label Cover with alphabet size

K and optimum value O(1/
√

logK) on which the SDP has value 1. The instances

have size 2Ω(K).

This appears as a joint work with Venkatesan Guruswami, Subhash Khot, Ryan

O’Donnell, Madhur Tulsiani and Yi Wu [GKO+10] and the theorem is proved in

Chapter 4. We also prove similar results for 2-to-2 Label Cover and α Label

Cover which are stated and proved in Chapter 4.

We note that if we only require the SDP value to be 1 − ε instead of 1, then

integrality gaps for all these problems easily follow from gaps for Unique Games

constructed by Khot and Vishnoi [KV05] (by duplicating labels appropriately to

modify the constraints). However, the motivation behind these conjectures is ap-

plications where it is important that the completeness is 1. Another difference
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between the 2-to-1 Label Cover and the Unique Label Cover is the fact

that for 2-to-1 Label Cover instances, it is consistent with known algorithmic

results of [CMM06] that OPT be as low as K−c for some c > 0 independent of

ε, when the SDP value is 1 − ε. It is an interesting question if OPT can indeed

be this low even when the SDP value is 1. Our constructions do not address this

question, as we only show OPT = O(1/
√

logK).

We also point out that our integrality gaps are for special cases of the Label

Cover problem where the constraints can be expressed as difference equations

over F2-vector spaces. For example, for 2-to-2 Label Cover, each constraint φe

is of the form x−y ∈ {α, α+γ} where α, γ ∈ Fk2 are constants. For such constraints,

the problem of deciding whether an instance is completely satisfiable (OPT = 1) or

not (OPT < 1) is in fact in P. To see this, one can treat the coordinates (x1, . . . , xk)

and (y1, . . . , yk) as separate boolean variables and introduce an auxiliary boolean

variable ze for each constraint. We can then rewrite the constraint as a conjunction

of linear equations over F2:
[∧k

i=1 (xi − yi − ze · γi = αi) .
]

Here xi, yi, αi, γi denote

the ith coordinates of the corresponding vectors. Deciding whether a system of

linear equations is completely satisfiable is of course in P. Alternatively, one can

note that constraints x − y ∈ {α, α + γ} mod Fk2 are Mal’tsev constraints, and

hence deciding satisfiability of CSPs based on them is in P by the work of Bulatov

and Dalmau [BD06].

Despite this tractability, the SDPs fail badly to decide satisfiability. This situ-

ation is similar to the very strong SDP gaps known for problems such as 3-XOR

(see [Sch08], [Tul09]) for which deciding complete satisfiability is easy.
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1.4.4 Approximate Lasserre integrality gap for Unique La-

bel Cover

In this thesis, we make partial progress towards constructing Lasserre integrality

gaps for Unique Label Cover. This appears as a joint work with Subhash

Khot and Rishi Saket [KPS10]. We describe our result informally in the next few

paragraphs and give a formal statement and proof in Chapter 5.

We show that if the constraints of a t-round Lasserre SDP are allowed to

have a tiny but non-zero error δ > 0, then a strong integrality gap exists for

the Unique Games problem. Using standard reductions from Unique Games,

similar integrality gaps can be obtained for Max-Cut, Vertex Cover etc. (we

omit the details in this thesis). In fact the error can be made as small as desired

independent of other parameters (except the size of the instance). All recent

integrality gap constructions involving Sherali-Adams LP (see [CMM09, RS09,

KS09]) first construct such approximate solutions followed by an error-correction

step. However correcting Lasserre vector solution seems challenging (due to a

global constraint of positive definiteness) and we leave this as an open problem.

On the other hand, our result does demonstrate that a Lasserre SDP relaxation

will not give good approximation if it is insensitive to a tiny perturbation of the

vector solution. At the time of publication of our work, all known algorithms fell

into this category. Subsequent to our work, an algorithm which uses the full power

of the Lasserre hierarchy was developed by [GS11].

Our integrality gap instance is based on the integrality gap instance of [KV05].

Subsequent to our work, it was shown in [BBH+12] that such instances cannot be

used to construct an exact integrality gap for super constant rounds of the Lasserre
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hierarchy.
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Chapter 2

Hardness of Approximating the

Closest Vector Problem with

Pre-processing

In this chapter we prove Theorem 1.4.1, restated below.

Theorem. (Theorem 1.4.1 Restated) Unless

NP ⊆ DTIME(2logO(1/ε) n), NCPP and CVPP are hard to approximate to a

factor within 2log1−εn for an arbitrarily small constant ε > 0.

In the next section, we provide a high level overview of our reduction.

2.1 Overview of the proof

We show a hardness factor of 2log1−ε n for NCPP. As mentioned in Section 1.1, a

factor C hardness for NCPP implies a factor
√
C hardness for CVPP under the

l2 norm hence this suffices to prove the theorem. For the sake of presentation, we
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find it more convenient to consider the Minimum Weight Solution Problem

with Pre-processing (MWSPP) which is simply a reformulation of NCPP.

The input to this problem consists of a set of fixed linear forms described by

Bf ∈ Fl×N2 , a set of variable linear forms Bv ∈ Fl′×N2 and a target vector t ∈ Fl2.

The goal is to find a solution x ∈ FN2 to the system Bfx = t, which minimizes

the Hamming weight of the vector Bvx. We allow arbitrary pre-processing on all

parts of the input except the vector t. The equivalence of MWSPP with NCPP is

shown in Section 2.2.1. We henceforth focus on the MWSPP problem.

The authors in [AKKV05] present two reductions to MWSPP. The first one

is a direct reduction from the hyper-graph vertex cover problem from [DGKR05]

whereas the second one is a reduction from the pre-processing version of the PCP

Theorem (proved later in [FJ12] as mentioned before). Our reduction builds on

the second one.

We first quickly elaborate on the PCP Theorem and its pre-processing version.

The PCP Theorem [FGL+96, AS98, ALM+98] is a fundamental result in the area

of inapproximability and serves as a starting point for almost all hardness reduc-

tions. The theorem may be stated from two equivalent viewpoints, a proof checking

viewpoint and a reduction viewpoint. The equivalence between the two viewpoints,

thought not difficult to see, has led to many illuminating insights and exciting

research over the last two decades. From the proof checking viewpoint, the PCP

Theorem states that there is a way to write a proof for an NP-statement such

that its correctness can be verified by a probabilistic verifier that uses logarithmic

randomness and a constant number of queries to the proof. The proof system is

complete in the sense that a correct proof of a correct statement is accepted with

probability 1 and is also sound in the sense that any proof of an incorrect state-
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ment is accepted with probability at most s for some constant s strictly less than

1 (this probability can be reduced to any small constant by running the verifier

O(1) times). From the reduction viewpoint, the PCP Theorem states that there

is a polynomial time reduction from any NP-complete language to GapCSP1,s, a

promise problem with a set of boolean variables and constraints such that every

constraint depends on O(1) variables and the instance is guaranteed to be either

satisfiable or no assignment satisfies more than a fraction s of the constraints.

When the PCP Theorem is stated as NP-hardness of GapCSP, the constraints

may be taken as 3SAT constraints or, as will be convenient for us, quadratic

equations over F2, with each equation involving exactly three variables. Let the

variables be z1, . . . , zn and the constraints be C1, . . . , Cm where the jth constraint

is of the form pj(zj1 , zj2 , zj3) = vj. Here p is a quadratic polynomial over F2 and

vj ∈ F2. In the pre-processing version of the CSP, arbitrary pre-processing is

allowed on the polynomials {pj}mj=1 and only the right hand sides of the equations,

namely {vj}mj=1 is the actual input. The pre-processing version of the PCP Theorem

then states that even the pre-processing version of GapCSP1,s is NP-hard. To be

more precise, there is a polynomial time reduction from any NP-complete language

L that maps input x to an instance {(pj, vj)}mj=1 of the GapCSP1,s such that the

set of polynomials {pj}mj=1 depends only on the size of x and not on x itself (the

right hand sides {vj}mj=1 of course depend on x).

As we said, the PCP Theorem serves as a starting point for almost all hardness

reductions. A vast majority of these reductions begin by reducing the GapCSP in-

stance given by the PCP Theorem to a problem called Label Cover (defined orig-

inally in [ABSS97]) and then amplifying the hardness of Label Cover via Raz’s

Parallel Repetition Theorem [Raz98]. An instance G = (V,W,E, [R], [S], {πe}e∈E)
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of Label Cover is given by a bipartite graph G(V,W,E) and for each edge

e = (v, w) ∈ E, a function πe : [R] → [S]. A labeling to the graph consists of an

assignment A : V → [R], W → [S]. An edge e = (v, w) is said to be satisfied by

an assignment A if πe(A(v)) = A(w). The value of an instance is the maximum

fraction of edges that can be satisfied by any labeling. The PCP Theorem and

the Parallel Repetition Theorem together imply that for every constant R, given

an instance of Label Cover it is NP-hard to distinguish whether the value of

the instance is 1 or at most R−γ (called the soundness) for some absolute constant

γ > 0.

When the pre-processing version of the PCP Theorem is used as a starting

point, one obtains the hardness of approximation for the Label Cover Problem

with Pre-processing (LCPP), defined in [AKKV05]. In the LCPP problem,

the label set [R] for each vertex v ∈ V comes with a designated partition, and an

allowable set from the partition. The vertices in V are required to receive labels

only from their respective allowable sets. Pre-processing is allowed on all parts

of the LCPP instance except for (the choice of) the allowable set for each vertex

v ∈ V .

The authors in [AKKV05] present a reduction from LCPP to MWSPP. The

reduction uses constructions of Label Cover with an additional property called

smoothness. An instance of Label Cover (with or without pre-processing) is

called δ-smooth if any two labels i 6= i′ of v ∈ V map to different labels of w ∈

W with probability at least 1 − δ over the choice of a neighbor w of v. The

smoothness property was introduced in [Kho02a] and has been used for several

hardness of approximation reductions [FGRW09, GRSW10, KS11]. The hardness

factor achieved by the reduction from LCPP to MWSPP is upper bounded by 1/δ
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and 1/s where δ is the smoothness parameter and s is the soundness of the LCPP

instance. The reduction of [AKKV05] fails to give a hardness factor better than

(log n)1−ε for MWSPP because they use construction of Label Cover which

requires size nΩ(1/δ) to ensure δ-smoothness.

To get a better hardness factor using this reduction, we require hardness of

LCPP with very good smoothness and soundness simultaneously (relative to the

size of the instance). This is exactly our main technical contribution, except that

we are able to show this only for a hyper-graph variant of label cover (the un-

derlying structure is a multi-layered hyper-graph instead of a two-layered, i.e. bi-

partite, graph). This is sufficient for our purpose since the reduction from LCPP

to MWSPP can easily be modified so as to start with the hyper-graph variant.

This new variant is named as the Hyper-graph Label Cover with Pre-

processing (HLCPP). It is a labeling problem just as LCPP but differs from

the latter in the following respects (see Definition 2.3.5 for a formal description).

• The vertex set is multi-layered instead of two-layered.

• The constraints are given by hyper-edges rather than edges. A hyper-edge

e in itself contains several edges between pairs of variables inside e and the

constraint associated with the hyper-edge e is a boolean AND of constraints

on all the edges inside it.

• The constraints associated to edges are more general many-to-many con-

straints instead of the many-to-one (projection) constraints as in LCPP.

Our reduction is a reworking of the (original algebraic) proof of the PCP The-

orem. More specifically, the proof of the PCP Theorem (see for instance Arora’s
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thesis [Aro94]) can be broken into three phases where the number of queries the ver-

ifier makes is successively reduced to poly(log n), poly(log log log n) and finally to

O(1). In the first phase, one rewrites an instance of an NP-complete language, say

3SAT, as an algebraic CSP (say quadratic equations over a finite field), the PCP

proof consists of a polynomial encoding (i.e. Reed-Muller encoding) of a supposed

satisfying assignment to the CSP, and then the verification procedure consists of

the Low Degree Test to check that the given proof is indeed a valid encoding of

some assignment and the Sum Check Protocol to check that the assignment indeed

satisfies the CSP.

Our reduction is a reworking of this first phase with two additional ingredients:

firstly, we need to work out each step in its pre-processing version, and in particular

start by proving the basic (i.e. without gap) NP-hardness for a pre-processing

version of an algebraic CSP (this was also proved in [AKKV05]). Secondly, the

quantitative setting of parameters is quite different from that in the proof of the

PCP Theorem. The proof of the PCP Theorem encodes an n-bit assignment by a

table of values of a function f : Fmq → Fq where |Fq| = poly(log n). On the other

hand, we use a much larger field size |Fq| = npoly(logn). Also, in a typical CSP

instance, the number of constraints is comparable (i.e. linear or polynomial) to

the number of variables. On the other hand, we in the very first step, blow up the

number of constraints to npoly(logn) so that the soundness is roughly the inverse of

the number of constraints and hence much lower than the inverse of the number

of variables.

Just like the (first phase of the) proof of the PCP Theorem, we end up with

a PCP with O(log n) queries (each query is a block of poly(log n) bits). It is

easily observed that the proof can be partitioned into O(log n) layers and that
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each PCP test reads one query from each of the layers except the last and two

queries from the last layer. This naturally leads to the hyper-graph variant of the

label cover problem. We would like to point out that in principle the last two

phases of the proof of the PCP Theorem can also be worked out similarly (along

with the appropriate quantitative setting of parameters), yielding a full proof of

the pre-processing version of the PCP Theorem. However we refrain from such an

attempt since we do not need it and more importantly, [FJ12] already give a full

(and much less tedious) proof via Dinur’s proof of the PCP Theorem [Din07]. We

now give a more detailed and technical outline of our reduction and its analysis

below.

We start with an instance of Fq-Quadratic Constraint Satisfaction

Problem (Fq-QCSP) for q = 2r. The instance consists of k homogeneous de-

gree 2 polynomial equations over Fq with n variables, where k = poly(n). Each

equation is of the form p(z1, . . . , zn) = v, and further, depends on at most 3 vari-

ables. It can be shown that deciding if there is an assignment which satisfies all the

equations is NP-hard (see Theorem 2.2.3), even when the left hand sides of these

equations (i.e. the polynomials p) are available for pre-processing. We denote the

pre-processing version by Fq-QCSPP. Our first step is to boost soundness, i.e., to

reduce the fraction of satisfied equations by any assignment, while keeping the

number of variables small. This is done by combining an instance of Fq-QCSPP

with an appropriate Reed-Muller code over q. We will eventually set q = nlogO(1/ε) n.

This allows us to construct an Fq-QCSPP instance where it is hard to distinguish

between perfectly satisfiable instances and those where any assignment satisfies

at most k/q fraction of the polynomial equations. An important feature of this

reduction is that the variable set remains the same, so the number of variables is
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n, number of equations is q and the soundness is k/q (which is essentially same

as 1/q). This (somewhat strange) quantitative setting of parameters is crucial for

our result as the number of variables becomes negligible compared to the number

of equations, and the reciprocal of the soundness. The details of this reduction

appear in Section 2.2.2.

Each equation can now depend on almost all of the n variables and the next

task is to deal with this. This is done by reducing checking an assignment for such

a system of polynomial equations to the task of constructing a PCP which makes

O(log n) queries and has soundness 1/qe for some small constant e > 0. This is

achieved by combining the low degree test and the sum check protocol and is the

technical heart of the PCP construction.

First, the variables are identified with {0, 1}logn and embedded as a sub-cube

of Fmq where m
def
= log n. With this mapping, any assignment can be thought of

as a function from {0, 1}m to Fq and can be encoded as a polynomial over Fmq

of degree at most m. In this setting, if the equation was
∑

i,j∈[n] c(i, j)zizj = v =∑
α,β∈{0,1}m c(α, β)z(α)z(β); z, c can be thought of as polynomials of degree at most

m and 2m respectively. The Arora-Sudan points-vs-lines low degree test can be

employed to ensure that z corresponds to a small list of degree m polynomials (as-

signments). This test is able to list-decode an assignment with success probability

as low as 1/qe for some small constant e > 0.

Once an assignment for the variables can be decoded, the task of verifying the

polynomial equations
∑

α,β∈{0,1}m c(α, β)z(α)z(β) = v is equivalent to performing

a weighted sum check over the sub-cube {0, 1}m. We use the sum-check protocol

of [LFKN92] to verify that the decoded assignment satisfies the equations. It can

be shown that the soundness of the combined low degree test and the sum check
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protocol is at most 1/qf for a small constant f > 0.

The result is a PCP with 2m + 2 = O(log n) layers where the first 2m layers

correspond to the sum check protocol while the last two layers correspond to the

lines and the points table (in the low degree test) respectively. Only the values

to be assigned to the first layer will depend on the right hand sides of the Fq-

QCSPP instance. Further, the use of low degree polynomials in encoding the

assignments implicitly gives our PCP smoothness properties which are used in the

final reduction. While the preliminaries of the low degree test and the sum check

protocol appear in Sections 2.2.3 and 2.2.4 respectively, the PCP construction

appears in Section 2.3.1.

This view of the PCP naturally leads to constructing an HLCPP instance

which is the starting point of the reduction to MWSPP and appears in Section

2.3.2. The reduction from HLCPP to MWSPP is similar to the reduction of

[AKKV05] from LCPP to MWSPP. This appears in Section 2.3.3. For the re-

duction to work, we define a notion of smoothness for HLCPP which is similar

to the one for LCPP and we also need that the hyper-edges of the hyper-graph

satisfy a uniformity condition which is inherited from the PCP construction.

The main differences in our reduction compared to the reduction of [AKKV05]

are the following:

• As mentioned earlier, the constraints in the HLCPP graph are many-to-

many constraints rather than many-to-one constraints. However, the earlier

reduction to MWSPP still goes through in a relatively straightforward man-

ner.

• We manage to construct an instance of HLCPP where the smoothness and
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soundness are both at most 1/qf for some absolute constant f > 0 and

the size of the instance is qO(m). Here m = log n where n is the number

of variables in the original Fq-QCSPP instance. It is not clear that such

constructions are possible if we stick to the LCPP problem. The hardness

factor can be made essentially as large as q1/m and we set q to be very large

compared to m to get a good hardness factor relative to the size of the

instance. Specifically, we set q = nlogO(1/ε) n.

We believe the PCP constructed in the course of our proof is of independent

interest and we state its properties in the theorem below. This theorem can be

inferred from the construction in Section 2.3.1.

Theorem 2.1.1. For any NP-complete language L there is a PCP with the fol-

lowing properties:

1. For an input of size n, the PCP verifier uses O(log n · log q) random bits

and makes O(log2 n) queries into the proof. The answer to each query is an

element of Fq. Here q can be chosen as any power of two such that q ≥ nd

for an absolute constant d > 0.

2. The acceptance predicate of the verifier involves O(log n) linear equations (of

the form
∑

i aixi = b where ai, b ∈ Fq), and one quadratic equation in the

symbols it reads. The verifier accepts if and only if all the equations are

satisfied. Furthermore, the equations depend only on n, except for the r.h.s.

in one linear equation which may depend on the input instance.

3. If the input instance is in L then there is a proof which the verifier accepts

with probability 1.
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4. If the input instance is not in L then, for every proof, the verifier accepts

with probability at most 1/qc for some absolute constant c > 0.

2.1.1 Organization

The rest of the chapter is organized as follows.

In Section 5.3, we formally define the problems and state existing tools and

results which will be useful in our reduction. In Section 2.2.1 we define the problems

considered and summarize known reductions about them. Section 2.2.2 states a

lemma about boosting the soundness of a particular CSP using codes. Sections

2.2.3 and 2.2.4 are devoted to introducing the tools of Low Degree Test and Sum

Check Protocol respectively.

In Section 5.4.2 we present our reduction. The beginning of Section 5.4.2

describes how that section is organized.

Finally, Section 2.4 contains proofs of certain lemmas and theorems omitted

from the main body of the chapter.

2.2 Preliminaries

In this section we state the problems we will consider and state basic results which

will be useful in the construction of our PCP and the reduction.

2.2.1 Problem Definitions and Basic Results

We first formalize the notion of computational problems which allow pre-processing

on a part of the input. A part of this formalism is taken from [AKKV12].
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Pre-processing problems. Consider a problem Π where the input is split into

two components (A,B) and the length of each component is polynomial in the size

parameter n. In the pre-processing version, denoted by ΠP (suffix of P to Π to

emphasize the pre-processing), we consider subproblems where the first component

A depends only on n and is called as the fixed input.

An algorithm which solves ΠP(A, ·) with pre-processing is a polynomial time

algorithm that solves the instance ΠP(A, ·) given a polynomial sized advice. The

advice captures arbitrary computation or pre-processing on the fixed input A and

polynomial amount of stored information. The pre-processing version ΠP(A, ·) is

called NP-hard if there is a polynomial time reduction from SAT to ΠP(A, ·) such

that the fixed input A depends only on the size of the SAT instance.

In the definitions that follow, we will not explicitly split the input as (A,B) but

we will indicate for each problem the part of the input on which pre-processing is

allowed. We first define the quadratic CSP problem and its pre-processing version

that will be a starting point of our reduction.

Definition 2.2.1. Fq-Quadratic CSP (Fq-QCSP): A Fq-QCSP instance Q
def
=(

{pj}mj=1, {cj}mj=1

)
consists of a set of polynomial constraints over variables

{z1, z2, . . . , zn}. Each equation is of the form

pj(z1, z2, . . . , zn) = cj,

where pj is a homogeneous polynomial of degree 2, and cj ∈ Fq. The goal is to

find an assignment to the variables {z1, z2, . . . , zn} each taking a value in Fq which

satisfies as many constraints as possible. Let OPT (Q) denote the maximum, over

assignments to the variables of Q, of the fraction of equations satisfied.
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Definition 2.2.2. Fq-Quadratic CSP with Pre-processing (Fq-QCSPP):

Given a Fq-QCSP instance

Q
def
=
(
{pj}mj=1, {cj}mj=1

)
over variables {z1, z2, . . . , zn} taking values in Fq, the Fq-QCSPP problem allows

arbitrary pre-processing on the polynomials {pj}mj=1 before the inputs {cj}mj=1 are

revealed.

The following theorem can be proved in a similar manner as Theorem 4.2 in

[AKKV05]. We include a proof in Section 2.4.1.

Theorem 2.2.3. For all q = 2r, there is a reduction from a 3-SAT instance of

size n to an Fq-QCSPP instance of size poly(n, q) which runs in time poly(n, q).

Next we define the problem that we prove is hard to approximate and show that

it is equivalent to the Nearest Codeword Problem with Pre-processing.

Definition 2.2.4. Minimum Weight Solution Problem with and with-

out Pre-processing: An instance of MWSP consists of a set of fixed linear

forms described by Bf ∈ Fl×N2 , a set of variable linear forms Bv ∈ Fl′×N2 and a

target vector t ∈ Fl2. The goal is to find a solution x ∈ FN2 to the system Bfx = t,

which minimizes the Hamming weight of the vector Bvx. In the pre-processing ver-

sion, MWSPP, we allow arbitrary pre-processing on all parts of the input except

the vector t.

Definition 2.2.5. Nearest Codeword Problem with and without Pre-

processing: An instance of NCP is denoted by (C, t) where C ∈ Fn×k2 , t ∈ Fn2 .

The goal is to find a solution x ∈ Fk2 which minimizes the Hamming distance
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between Cx and t. In the pre-processing version, NCPP, we allow arbitrary pre-

processing on all parts of the input except the vector t.

We note that MWSP is actually same as the NCP problem in disguise, though

we find it convenient to think of it as a separate problem. To see the equivalence

with NCP, let x0 be a fixed vector such that Bfx0 = t, let w = Bvx0 and consider

the code C
def
= {Bvx | x s.t. Bfx = 0}. Then

min
x:Bfx=0

δ(w,Bvx) = min
x:Bf (x+x0)=t

δ(Bvx0, Bvx) = min
x:Bfx=t

wt(Bvx).

Here δ(·, ·) measures the Hamming distance and wt(·) denotes the Hamming weight

of a string.

Finally we note that proving the hardness for NCPP implies the hardness for

CVPP.

Theorem 2.2.6. [FM04] Let 1 ≤ p < ∞. If NCPP (MWSPP) is hard to ap-

proximate to factor f then CVPP, under the `p norm, is hard to approximate to

factor f 1/p.

2.2.2 Boosting Soundness through Codes

The following lemma shows how to boost soundness of the Fq-QCSPP instance

although it increases the number of variables per equation. The proof of this lemma

employs Reed-Muller codes and appears in Section 2.4.2.

lemma 2.2.7. Let Q be an instance of Fq-QCSPP over n variables and k =

poly(n) equations, for any q = 2r. There is an instance P of Fq-QCSPP over the

same set of variables and q equations such that:
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• If OPT (Q) = 1 then OPT (P ) = 1 and

• if OPT (Q) < 1 then OPT (P ) ≤ k/q.

In our reduction q would be nlogO(1/ε) n and, hence, q � k.

2.2.3 Low Degree Test

Now we move on to the tools necessary for keeping the number of queries in our

PCP small. The first step in this is the Low Degree Test. The Low Degree Test

is a crucial ingredient in the (original) proof of the PCP theorem. We will use a

quantitatively stronger version of the test proved in [RS97, AS03].

In this section we state the basics, the test and the theorem which will be used.

An affine line in Fmq is parameterized by (a, b) ∈ (Fmq \{0}) × Fmq such that

La,b
def
= {ax+ b : x ∈ Fq}. Sometimes, we will drop the subscript if it is clear from

the context. In what follows, if it helps, one can think of m
def
= log n and d

def
= m as

will be the case in our reduction. For a polynomial g : Fmq → Fq of degree d and

a line L
def
= La,b, let g|L be the restriction of g defined as g|L(x)

def
= g(ax + b) for

x ∈ Fq. For two polynomials g, h we denote g ≡ h if they are identical.

Definition 2.2.8 (Low Degree Test). The Low Degree Test takes as input the

value table of a function f : Fmq → Fq and for every (affine) line L of Fmq , the

coefficients of a degree d polynomial gL.

The goal is to check that f is a degree d polynomial. The intention is that gL

is the restriction of f to the line L.

The test proceeds as follows:

1. Pick a random point x ∈ Fmq and a random line L containing x.
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2. Test that gL(x) = f(x).

The following theorem can be inferred from Theorem 1 and Lemma 14 in

[AS03].

Theorem 2.2.9 (Soundness of Low Degree Test). There are absolute con-

stants 0 < c1, c2 < 1 such that for δ
def
= 1/qc1, l

def
= qc2, if f : Fmq → Fq passes

the Low Degree Test (Definition 2.2.8) with probability p, then there are l degree d

polynomials f 1, f 2, . . . , f l such that :

Pr
L,x

[
gL(x) = f(x) & ∃ j ∈ {1, 2, . . . , l} : gL ≡ f j|L

]
≥ p− δ.

In words, whenever the Low Degree Test accepts, except with probability δ,

the test picks a line L such that gL corresponds to the restriction of one of the

polynomials f 1, f 2, . . . , f l to L.

We assume here that d� q (in our application, d ≤ O(log q)).

2.2.4 Sum Check Protocol

We will also need the Sum Check Protocol for our PCP. Like the Low Degree Test,

the Sum Check Protocol [LFKN92] is an essential ingredient of the original proof

of the PCP theorem. We start with some definitions, state the test and the main

theorem needed for our proof. Think of M = 2m and, hence, FMq = Fmq × Fmq in

the discussion below. Also one can think of d = 4m. We first need a notion of

partial sums of polynomials.

Definition 2.2.10 (Partial Sums). Let g : FMq → Fq be a degree d polynomial.

For every 0 ≤ j ≤ M − 1 and every a1, a2, . . . , aj ∈ Fq we define the partial sum

ga1,a2,...,aj as a polynomial from Fq → Fq as follows:
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ga1,a2,...,aj(z)
def
=

∑
bj+2,...,bM∈{0,1}

g(a1, a2, . . . , aj, z, bj+2, . . . , bM).

When j = 0 we denote the polynomial as g∅. When j = M − 1, the summation

is just g(a1, . . . , aM−1, z). Note that all the polynomials so defined are of degree at

most d.

Definition 2.2.11 (Sum Check Protocol). The Sum Check Protocol takes as

input a value table for a function g : FMq → Fq, a target sum c ∈ Fq and for

every 0 ≤ j ≤ M − 1 and every a1, a2, . . . , aj ∈ Fq, the coefficients of a degree d

polynomial pa1,a2,...,aj . The goal is to check whether
∑

z∈{0,1}M
g(z) = c. The intention

is that g is a degree d polynomial and pa1,a2,...,aj correspond to partial sums of g

as in Definition 2.2.10. The test proceeds by picking x
def
= (a1, a2, . . . , aM) ∈ FMq

uniformly at random and accepts if and only if all of the following tests pass.

1. p∅(0) + p∅(1) = c.

2. For all 1 ≤ j ≤M − 1, pa1,a2,...,aj−1
(aj) = pa1,a2,...,aj(0) + pa1,a2,...,aj(1).

3. pa1,a2,...,aM−1
(aM) = g(x).

We state the soundness of the Sum Check Protocol in a somewhat different

form that is convenient for us. The proof appears in Section 2.4.3.

Theorem 2.2.12 (Soundness of Sum Check Protocol). [LFKN92]

Let g1, g2, . . . , gl : FMq → Fq be degree d polynomials and g : FMq → Fq an arbitrary

function. Suppose for every 1 ≤ j ≤ l,
∑

z∈{0,1}M
gj(z) 6= c. For x ∈ FMq , let P(x) be

the event that the Sum Check Protocol (Definition 2.2.11) accepts on inputs g, c

35



and polynomials pa1,a2,...,ai for 0 ≤ i ≤M − 1. Here x is the choice of randomness

in the Sum Check Protocol.

Then

Pr
x∈FMq

[
P(x) & ∃ j ∈ {1, . . . , l} : g(x) = gj(x)

]
≤Mdl/q

In words, the probability that the Sum Check Protocol accepts when g is con-

sistent with one of g1, g2, . . . , gl is at most Mdl/q where g1, g2, . . . , gl are degree d

polynomials whose sum is not the required value.

2.3 The Reduction

The following is the main theorem about the reduction and implies Theorem 1.4.1

via Theorem 2.2.6.

Theorem 2.3.1. Unless NP ⊆ DTIME(2logO(1/ε) n), MWSPP is hard to approx-

imate to factor 2log1−εn for an arbitrary small constant ε > 0.

Towards the proof of this theorem, we will give a reduction from Fq-QCSPP

to MWSPP. The reduction proceeds in three steps:

• Reduction from Fq-QCSPP to a PCP with low query complexity (Section

2.3.1).

• Viewing the PCP as an HLCPP instance (Section 2.3.2).

• Reduction from HLCPP to MWSPP (Section 2.3.3).

Finally, we will complete the proof in Section 2.3.4 where the choice of parameters

is made.
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2.3.1 Smooth PCP with Low Query Complexity

Note that the Fq-QCSPP instance given by Lemma 2.2.7 has almost all the vari-

ables appearing in every equation. For the reduction to MWSPP we require a

PCP where every test depends on a few variables. We will also crucially need

a smoothness property from the PCP similar to the one described for LCPP in

Section 2.1. To this end, we use the Low Degree Test of [AS03] and the Sum Check

Protocol of [LFKN92].

2.3.1.1 Describing the PCP

Let P be the instance of Fq-QCSPP given by Lemma 2.2.7 over variables

{z1, . . . , zn}. Let m
def
= log n. Here we assume that n is a power of 2. We think

of the variables of P as being embedded into {0, 1}m within Fmq . Henceforth,

we will refer to the variables by their corresponding points in {0, 1}m. Thus, an

assignment A : {0, 1}m → Fq to the variables can be extended to a degree m

polynomial f : Fmq → Fq such that f is consistent with A on {0, 1}m.

Let the equations be E1, . . . , Eq where each equation is of the form

Ei ≡ Pi(z1, . . . , zn) = Ci ≡
∑
s,t∈[n]

ci(s, t)zszt = Ci ≡
∑

α,β∈{0,1}m
ci(α, β)zαzβ = Ci.

For an assignment A to {zα}α∈{0,1}m , let fA denote the degree m polynomial en-

coding A. Now, checking whether an equation Ei ∈ P is satisfied by A amounts to

checking ∑
α,β∈{0,1}m

ci(α, β)fA(α)fA(β) = Ci.

Note that ci(α, β) can be thought of as a degree 2m polynomial over F2m
q and is a
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part of the pre-processing.

The PCP we will construct expects the following tables:

1. Points Table: The value of a function f : Fmq → Fq at every point in

Fmq . The intention is that f is a degree m polynomial which encodes a

satisfying assignment to P within {0, 1}m, i.e., for a satisfying assignment A,

f(α) = fA(α) for all α ∈ {0, 1}m. The size of this table is qm.

2. Lines Table: The coefficients of a degree m polynomial gL for every (affine)

line L of Fmq . The intention is that gL is the restriction of f on L. The size

of this table is at most q2m · (m+ 1).

3. Partial Sums Table: For every equation Ei ∈ P , every 0 ≤ j ≤ 2m − 1

and every a1, a2, . . . , aj ∈ Fq, the coefficients of a degree 4m polynomial

pi,a1,a2,...,aj . The intention is that pi,a1,a2,...,aj correspond to partial sums of gi

(Definition 2.2.10) where gi(α, β)
def
= ci(α, β)f(α)f(β) where

α
def
= (a1, . . . , am) and β

def
= (am+1, . . . , a2m). Note that gi has degree at most

4m and the size of the j-th partial sum table is q · qj · (4m+ 1).

PCP Test:

Pick equation Ei ∈ P uniformly at random. Pick α
def
= (a1, a2, . . . , am) ∈ Fmq ,

β
def
= (am+1, am+2, . . . , a2m) ∈ Fmq uniformly at random. Let L be the line passing

through α and β. Read the following values from the corresponding tables:

• f(α), f(β) ∈ Fq from the Points table.

• The polynomial gL from the Lines table.

• The polynomials pi,a1,a2,...,aj from the Partial Sums table for every 0 ≤ j ≤

2m− 1.
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Acceptance Criteria for the Test:

Accept if and only if all of the following tests pass.

1. gL(α) = f(α) and gL(β) = f(β).

2. pi,∅(0) + pi,∅(1) = Ci.

3. For all 1 ≤ j ≤ 2m− 1, pi,a1,a2,...,aj−1
(aj) = pi,a1,a2,...,aj(0) + pi,a1,a2,...,aj(1).

4. pi,a1,a2,...,a2m−1(a2m) = ci(α, β)f(α)f(β).

Note that we allow arbitrary pre-processing on everything except {Ci}mi=1.

2.3.1.2 Completeness and Soundness of the PCP

We prove the following theorem here:

Theorem 2.3.2 (Low Degree and Sum Check). Let P be a Fq-QCSPP instance.

Then

1. If OPT (P ) = 1, then there is a PCP proof such that the Test succeeds with

probability 1.

2. If OPT (P ) ≤ k/q and k < qc for a small enough c, then the test succeeds

above with probability at most 1/qe for some constant e > 0.

The proof of the theorem follows from the following two lemmas.

lemma 2.3.3 (Completeness). If there exists an assignment A to {z1, . . . , zn} such

that OPT (P ) = 1, i.e., E1, . . . , Eq are all satisfied, then there is an assignment to

all the tables such that the test accepts with probability 1.
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Proof. We let f
def
= fA, gL

def
= fA|L for all L, and for all i ∈ [q], 0 ≤ j ≤ 2m − 1,

and a1, . . . , aj ∈ Fq,

pi,a1,...,aj
def
=

∑
bj+2,...,b2m∈{0,1}

hi(a1, . . . , aj, z, bj+2, . . . , b2m),

where hi(x, y) is the polynomial of degree at most 4m representing

ci(x, y)fA(x)fA(y). It is clear that the test succeeds with probability 1.

lemma 2.3.4 (Soundness). There is an absolute constant e > 0 such that if

OPT (P ) ≤ k/q and k < qc for a small enough c, then the PCP described above

has soundness at most 1/qe.

Proof. We first observe that Step 1 of the test is equivalent to running a low degree

test (Definition 2.2.8) on L and α with input tables gL and f respectively. This is

because the choice of β is independent of α and uniform in Fmq . Let 0 < c1, c2 < 1

be the constants given by Theorem 2.2.9. Let f 1, f 2, . . . , f l be the list of l
def
= qc2

polynomials promised by Theorem 2.2.9.

The following events can happen on a run of the PCP:

1. The Low Degree Test between L and α fails. That is, gL(α) 6= f(α). In this

case, the PCP does not accept.

2. gL(β) 6= f(β). In this case, the PCP does not accept.

3. The low degree test accepts (gL(α) = f(α)) but there is no 1 ≤ j ≤ l such

that gL ≡ f j|L. By theorem 2.2.9, this happens with probability at most

δ
def
= 1/qc1 .
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If none of the events listed above occur, then we have that gL is the restriction

of f j for some 1 ≤ j ≤ l. Also, since Step 1 accepts, we must have f(α) = f j(α)

and f(β) = f j(β).

Let Ei be an equation not satisfied by any f j for 1 ≤ j ≤ l. Note that Steps

5.8, 3 and 4 are equivalent to running the Sum Check Protocol (Definition 2.2.11)

on gi : F2m
q → Fq defined as gi(α, β)

def
= ci(α, β)f(α)f(β). gi has degree at most

4m. Let gji (α, β)
def
= ci(α, β)f j(α)f j(β). Finally, for x ∈ F2m

q , let Pi(x) be the event

that the Sum Check Protocol accepts.

Applying Theorem 2.2.12,

Pr
x∈F2m

q

[
Pi(x) & ∃ j ∈ {1, . . . , l} : gi(x) = gji (x)

]
≤ (2m)dl/q

Thus, when none of the events in the list occur, the PCP accepts with prob-

ability at most (2m) · (4m) · l/q conditioned on choosing Ei. Note that every f j

may satisfy at most k of the q equations.

Thus, the total probability that the PCP accepts is at most δ + (1 − lk/q) ·

O(m2l/q) and it is easy to check that by our choice of parameters this is smaller

than 1/qe for some absolute constant e > 0.

2.3.2 PCP as Hyper-Graph Label Cover

It will be useful to think of the PCP as a graph labeling problem. The labeling

problem we consider is similar to the well-known Label Cover problem except

for the following differences:

• The graph is not bipartite but consists of several layers, with edges between

consecutive layers. In addition, there are hyper-edges which consist of several
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edges. The goal is to find a labeling which satisfies the maximum fraction

of hyper-edges, where the constraint corresponding to a hyper-edge is the

logical AND of the constraints corresponding to each of its edges.

• The constraints corresponding to edges are not projection constraints as in

the case of Label Cover, but the more general many-to-many constraints.

For an edge e = (u, v), a many-to-many constraint is described by an ordered

partition of the label set of u and the label set of v such that the constraint is

satisfied if and only if both u and v receive labels from matching partitions.

Formally, let e = (u, v) be an edge and [Ru], [Rv] be the label sets of vertices

u and v. Then the many-to-many constraint is described by a pair of maps

πe : [Ru]→ [Re], σe : [Rv]→ [Re] where [Re] is a label set associated to e. A

label l to u and a label l′ to v is said to satisfy edge e if πe(l) = σe(l
′).

We now formally describe the Hyper-graph Label Cover problem. While

the term Hyper-graph Label Cover can be potentially used for a more general

class of problems, in this thesis we restrict our attention to a very special class of

graphs useful for our reduction.

Definition 2.3.5. Hyper-graph Label Cover Problem (HLCP)

An instance G(V,E, E , [R0], [R1], . . . , [R2m+1], {πe, σe}e∈E, {Sv, Sv}v∈L0) of

HLCP consists of:

• A graph G(V,E). The vertices are partitioned into 2m + 2 disjoint layers,

V
def
= L0 ∪ L1 ∪ · · · ∪ L2m+1. The edges in E are always between a vertex in

Li and a vertex in Li+1 for some i.

• Label sets [Ri] for vertices in layer Li. Furthermore, for every vertex v ∈ L0,

there is a partition Sv of [R0] and an allowable set of labels Sv ∈ Sv.
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• A many-to-many constraint for every edge. Let e = (u, v) be an edge where

u ∈ Li, v ∈ Li+1. The instance contains projections πe : [Ri] → [Re], σe :

[Ri+1]→ [Re]. A labeling (l, l′) to (u, v) is said to satisfy e if πe(l) = σe(l
′).

• A set of hyper-edges E. Every hyper-edge consists of one vertex from the

first 2m+ 1 layers and two vertices from the last layer, such that there is an

edge between any pair of vertices in adjacent layers. A labeling to the graph

satisfies a hyper-edge if all the edges contained in it are satisfied.

The goal is to find a labeling to the vertices which satisfies the maximum fraction

of hyper-edges. Vertices in Li are required to receive a label from [Ri]. Furthermore,

vertices in L0 are required to receive labels from their allowable set.

We also define a pre-processing version of HLCP similar to the LCPP problem

of [AKKV05].

Definition 2.3.6. Hyper-graph Label Cover Problem

with Pre-processing (HLCPP)

Given an instance G(V,E, E , [R0], [R1], . . . , [R2m+1], {πe, σe}e∈E, {Sv, Sv}v∈L0)

of HLCP, the HLCPP problem allows arbitrary pre-processing on all parts of

the input except the allowable sets {Sv}v∈L0.

We will need a notion of smoothness similar to the definition of Smooth Label

Cover.

Definition 2.3.7. (Smoothness)

We say that an HLCPP instance

G(V,E, E , [R0], [R1], . . . , [R2m+1], {πe, σe}e∈E, {Sv, Sv}v∈L0) is δ-smooth if for every

0 ≤ i ≤ 2m, u ∈ Li, l 6= l′ ∈ [Ri] we have
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Pr
e=(u,v)∈E

[πe(l) = πe(l
′)] ≤ δ

Here v ∈ Li+1 and (πe, σe) is the many-to-many constraint associated to e.

Lastly, we will need that the hyper-edges of the graph are regular in a certain

sense.

Definition 2.3.8. (Uniformity)

Let G(V,E, E , [R0], [R1], . . . , [R2m+1], {πe, σe}e∈E, {Sv, Sv}v∈L0) be an HLCPP

instance. We say that the instance is uniform if the following conditions are sat-

isfied:

1. For every 0 ≤ i ≤ 2m + 1, every vertex in layer Li has the same number of

hyper-edges passing through it.

2. For every 0 ≤ i ≤ 2m, the following two distributions are equivalent:

• Select an edge between a vertex in layer Li and a vertex in layer Li+1

uniformly at random.

• Select a hyper-edge H ∈ E uniformly at random and then select an edge

from H between a vertex in layer Li and a vertex in layer Li+1 uniformly

at random. Recall that a hyper-edge contains exactly one edge between

layers Li and Li+1 for 0 ≤ i ≤ 2m − 1 and two edges between layers

L2m and L2m+1.

We next briefly describe how the PCP described in Section 2.3.1 can be thought

of as an HLCPP instance.
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• Layers L2m and L2m+1: These are the Lines table and the Points table

respectively. There is a vertex L in L2m corresponding to every line in Fmq .

There is a label to L for every possible univariate degree m polynomial over

Fq. Hence, the number of vertices in L2m is at most q2m and the size of

the label set for each vertex is R2m = qm+1. There is a vertex α in L2m+1

corresponding to every α ∈ Fmq . There is a label a to α for every possible

a ∈ Fq. Hence, the size of the vertex set in L2m+1 is qm and size of the label

set is R2m+1 = q.

There is an edge between L and α if the point α belongs to the line L. The

constraint between the two vertices corresponds to Step 1 of the PCP.

• Layers L0 through L2m: These are the Partial Sums table and the Lines

table respectively. For 1 ≤ j ≤ 2m − 1, there is a vertex corresponding to

(i, a1, a2, . . . , aj) in Lj for every equation Ei ∈ P and every a1, a2, . . . , aj ∈ Fq.

There is a label to (i, a1, a2, . . . , aj) for every possible univariate degree 4m

polynomial over Fq.

The layer corresponding to j = 0 is a special case since that is the only

layer with a partition on the label set for each vertex. For j = 0, there is

a vertex (i, ∅) corresponding to every equation Ei ∈ P . There is a label to

(i, ∅) for every univariate degree 4m polynomial over Fq. Furthermore, there

is a partition of the label set into q parts, indexed by Fq as follows:

Pa
def
= {all polynomials p of degree at most 4m

over Fq such that p(0) + p(1) = a}.
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The allowable set of labels for every vertex corresponds to the part that

satisfies Step 5.8 of the PCP.

Thus, for 0 ≤ j ≤ 2m− 1, the size of Lj is q · qj while the size the label set

is R0 = R1 = · · · = R2m−1 = q4m+1.

For 1 ≤ j ≤ 2m− 1, there is an edge between a vertex (i, a1, a2, . . . , aj−1) in

Lj−1 and a vertex (i′, a′1, a
′
2, . . . , a

′
j) in Lj if i = i′ and ak = a′k for 1 ≤ k ≤

j − 1. The corresponding constraints are given by Step 3 of the PCP.

There is an edge between vertex (i, a1, a2, . . . , a2m−1) in L2m−1 and vertex

L in L2m if there is an am ∈ Fq such that for α
def
= (a1, . . . , am), β

def
=

(am+1, . . . , a2m), the line L passes through α and β. The corresponding

constraints are given by Step 4 of the PCP. Note that Step 4 requires the

values of the function at points α and β both of which lie on line L. Thus,

a label to L specifies the values of f at α and β.

It can be checked that the constraints so defined are many-to-many constraints.1

Note that we allow pre-processing on everything except the allowable set of labels

for vertices in layer L0 as required.

It can be seen that the HLCPP instance so constructed is 4m/q-smooth, since

no two distinct degree 4m polynomials over Fq can agree on more than 4m/q

fraction of points in Fq.

We record this identification of the PCP with an HLCPP instance as the

following theorem.

1Actually, the constraint between vertices in layers L2m−1 and L2m is not many-to-many when
ci(α, β) = 0 but this happens for at most 2m/q fraction of vertices for every equation hence we
can afford to ignore these vertices and any hyper-edges containing them.
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Theorem 2.3.9. There is a reduction from an Fq-QCSPP instance P over n

variables to an HLCPP instance

L = G(V,E, E , [R0], [R1], . . . , [R2m+1], {πe, σe}e∈E, {Sv, Sv}v∈L0) where m = log n,

such that

1. If OPT (P ) = 1, then OPT (L) = 1.

2. If OPT (P ) ≤ k/q and k < qc for a small enough c, then OPT (L) ≤ 1/qe for

some constant e > 0.

Furthermore, the HLCPP instance L is (4m/q)-smooth (Definition 2.3.7) and

uniform (Definition 2.3.8).

2.3.3 Reduction to MWSPP

The reduction from HLCPP to MWSPP is very similar to the reduction from

LCPP to MWSPP described in [AKKV05].

Let G(V,E, E , [R0], [R1], . . . , [R2m+1], {πe, σe}e∈E, {Sv, Sv}v∈L0) be an instance

of HLCPP. For each vertex v ∈ V and each label l to v we have a variable wv,l.

We now describe the fixed linear forms Bf of the MWSPP instance. Below,
⊕

denotes addition over F2.

Vertex constraints:

1. ∀1 ≤ j ≤ 2m+ 1, ∀v ∈ Lj,
⊕

l∈[Rj ]
wv,l = 1.

2. ∀v ∈ L0, ∀S ∈ Sv,

⊕
l∈S

wv,l = 1 if S = Sv and 0 otherwise. (2.1)

Notice that only the r.h.s. depends on the input (which is Sv).
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Edge constraints:

Let e = (u, v) be an edge where u ∈ Li, v ∈ Li+1. Let πe : [Ri] → [Re],

σe : [Ri+1] → [Re] be the projections describing the many-to-many constraint

associated to e. For every element a ∈ [Re] we add the following fixed linear form:

⊕
l∈[Ri]:πe(l)=a

wu,l =
⊕

l∈[Ri+1]:σe(l)=a

wv,l. (2.2)

We now describe the variable forms Bv for the MWSPP instance. Let qj

be the number of vertices in layer Lj. Let q̃
def
=
∏2m+1

j=0 qj. For every layer Lj,

0 ≤ j ≤ 2m + 1, every vertex v ∈ Lj and every label l to v, we have the variable

form wv,l repeated q̃/qj times. This completes the description of the MWSPP

instance. It remains to prove the completeness and the soundness of this reduction

which we do next.

2.3.3.1 Soundness of the MWSPP instance

Here we show that the MWSPP instance constructed has a large gap.

Theorem 2.3.10 (Reduction from Fq-QCSPP to MWSPP). Let h be such that

1/(m3h)3m ≥ 1/qe for large enough m and for some fixed small constant e.

• Completeness: If P is satisfiable then the MWSPP instance constructed

in Section 2.3.3 has a solution of weight at most (2m+ 2) · q̃.

• Soundness: If P is such that OPT (P ) ≤ k/q then the MWSPP instance

constructed in Section 2.3.3 has no solution of weight less than h ·(2m+2) · q̃.

Proof. Completeness. If the Fq-QCSPP instance P is satisfiable then the

HLCPP instance has a labeling which satisfies all constraints (Theorem 2.3.9).
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For an MWSPP variable wv,l corresponding to vertex v and label l to v, we let

wv,l = 1 if v was assigned the label l and 0 otherwise. It is easy to see that this

satisfies all fixed linear forms and gives a solution of weight

2m+1∑
j=0

∑
v∈Lj

1 · q̃/qj =
2m+1∑
j=0

qj · q̃/qj = (2m+ 2) · q̃.

Soundness. In this case we are given that OPT (P ) ≤ k/q and, hence by

Theorem 2.3.9, any labeling to the HLCPP instance satisfies at most 1/qe fraction

of the hyper-edges for some small constant e. The number of hyper-edges in the

instance is |[q] × Fmq × Fmq | = q2m+1. Suppose there is a solution to the MWSPP

instance of weight h·(2m+2)· q̃ which satisfies all fixed linear forms. We will give a

(randomized) labeling to the HLCPP instance which in expectation satisfies more

than 1/(m3h)3m ≥ 1/qe fraction of the hyper-edges, contradicting Theorem 2.3.9.

Let {wv,l} be a solution of weight at most h · (2m + 2) · q̃. Call a label l for

v nonzero if wv,l = 1. (Note that our variables are allowed only 0/1 values.) We

know from our assumption that

2m+1∑
j=0

∑
v∈Lj ,l

wv,l · q̃/qj = h · (2m+ 2) · q̃.

Let nv denote the number of nonzero variables for the vertex v. Then the above

can be written as
2m+1∑
j=0

∑
v∈Lj

nv/qj = h · (2m+ 2).

Hence, for all j,
∑

v∈Lj nv/qj ≤ h · (2m + 2). Hence by Markov’s inequality, for

every j, the fraction of vertices v for which njv ≥ m3h is at most h · (2m+ 2)/(m3 ·

h) ≤ 3/m2 for large enough m. We remove all vertices from the graph which have
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more than r
def
= h · m3 non-zero labels. This removes at most 3/m2 fraction of

vertices from each layer. Next, we remove all hyper-edges containing any vertex

removed in this step. To bound this number notice that our graph has the property

that number of hyper-edges per vertex of layer j is at most q2m+1/qj (by Item 1

of the uniformity property: Definition 2.3.8). Since number of vertices removed

per layer is at most 3qj/m
2, the number of hyper-edges removed in layer j is at

most 3q2m+1/m2. Hence, the number of hyper-edges removed overall is at most

3 · (2m + 2)q2m+1/m2 ≤ 9/m · q2m+1 for large enough m. Thus, the total fraction

of hyper-edges removed is at most 9/m which is negligible. Thus, we have an

HLCPP instance where every vertex has at most r non-zero labels and we wish

to satisfy more than 1/qe fraction of the queries.

Labeling. We define a randomized labeling for the HLCPP instance: ran-

domly assign a non-zero label independently for each vertex. This is possible as

the sum (over F2) of the variables corresponding to each v is 1 and hence not all

variables for a vertex can be 0.

The next claim shows that the expected fraction of hyper-edges satisfied is at

least r−3m = (h ·m3)−3m which is larger than 1/qe by our assumption.

Claim 2.3.11. Conditioned on the hyper-edge not being removed, the expected

fraction of hyper-edges satisfied by the randomized labeling defined above is at least

r−3m where r = hm3.

Proof of Claim. We first remove all edges e in the graph for which some pair of

non-zero labels map to the same label via the constraint associated to e. Formally,

let e = (u, v) be an edge, l 6= l′ be two non-zero labels for u and (πe, σe) be the

maps describing the many-to-many constraint associated to e. We remove the edge
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e if πe(l) = πe(l
′). Since the instance is 4m/q-smooth (Definition 2.3.7), taking

a union bound over all pairs of non-zero labels implies that the fraction of edges

removed in the graph is at most 4mr2/q.

Next, we remove all hyper-edges containing any edge removed in the previous

step. Using Item 2 of the uniformity property (Definition 2.3.8) and a union

bound, it can be seen that the total fraction of hyper-edges removed is at most

3m · 4mr2/q ≤ 12m2r2/q, which is negligible by our choice of parameters. Thus,

we have an HLCPP instance where every vertex has at most r non-zero labels

and the many-to-many constraint maps all non-zero labels to distinct labels.

For a hyper-edge to be satisfied, its vertex in L0 should receive a label from the

allowable set. By Equation (2.1), there is at least one non-zero label from this set.

Thus, with probability at least 1/r, we pick an allowed label for a hyper-edge.

For 0 ≤ j ≤ 2m, we will show that if we have assigned label l to vertex u ∈ Lj,

then the probability of assigning a consistent label to any of its neighbors in Lj+1

is at least 1/r. By a consistent label we mean one which satisfies the constraint

on the edge.

Suppose we have picked a label l for a vertex u ∈ Lj. We claim that the

left side of Equation 2.2 is 1, since there is no non-zero label l′ for u such that

πe(l) = πe(l
′). This means that the r.h.s. is also 1 (since the fixed linear forms are

satisfied). Hence there must be a non-zero label for v which satisfies the constraint

associated with the edge e = (u, v), and this label is assigned to v with probability

at least 1/r (over the random choice of a labeling). Hence, the constraint between

u and v is satisfied with probability at least 1/r.

This shows that for a fixed hyper-edge, the probability (over the randomized

labeling) it is satisfied is at least r−(2m+3) which is the number of vertices in
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the hyper-edge. Thus, the expected fraction of hyper-edges satisfied is at least

r−(2m+3) ≥ r−3m. This completes the proof of the claim.

Noticing that by our choice of parameters 1/qe < r−3m, we obtain a contradic-

tion. Hence, this completes the soundness proof and, hence, the theorem.

2.3.4 Choice of Parameters and the Proof of Main Theo-

rem

Proof of Theorem 2.3.1. Let Q be the Fq-QCSPP instance given by Theorem

2.2.3 over n variables and k = poly(n) equations. We apply Lemma 2.2.7 to get an

Fq-QCSPP instance over n variables and q equations where q
def
= 2(logn)(4/ε) . We

then apply the series of reductions described in Sections 2.3.1, 2.3.2 and 2.3.3.

Let N be the size of the MWSPP instance constructed in Section 2.3.3. It

can be checked that N ≤ q100m for large enough m, where m
def
= log n. Hence,

N ≤ qlog2 n for large enough n. We need m and h to satisfy

1/r3m = 1/r3 logn = 1/(m3h)3m ≥ 1/qe. This is true if log h ≤ log q/log2 n and log q �

log n log log n and n is let to be large enough.

We set h
def
= qlog−2n. For a large enough positive integer D = 4/ε, let q be such

that log q
def
= logD n. Hence, log q � log n log log n. Moreover logN ≤ logD+2 n and

log h = logD−2 n. This implies that

log1−εN = log(D+2)(1−ε) n ≤ logD−2 n = log h

Finally, N ≤ qlog2 n = 2logO(1/ε) n. Summarizing, our reduction is deterministic, the

hardness factor is 2log1−εN and takes time 2logO(1/ε) n and, hence, holds under the

hypothesis NP 6⊆ DTIME(nlogO(1/ε) n).
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2.4 Omitted Proofs

2.4.1 Fq-QCSPP is NP-complete

Theorem 2.4.1. For all q = 2r, there is a reduction from a 3-SAT instance of

size n to an Fq-QCSPP instance of size poly(n, q) which runs in time poly(n, q).

Proof. We reduce 3SAT to Fq-QCSPP. For this proof, it is convenient to view the

input for 3SAT in the following form: the input is (V,E), where V,E ∈ {0, 1}m×n

and corresponds to a 3SAT formula φ = C1 ∧ · · · ∧Cm with variables {x1, . . . , xn}.

Each row of V corresponds to a clause Ci and Vij is 1 if and only if xj appears in

Ci. Thus, each row of V has exactly three 1’s. The entry Eij is 1 if and only if the

variable xj appears as a negated literal in Ci.

Since 3SAT is in NP, for every n, there is a circuit Cn which takes as input

(V,E) and an assignment a ∈ {0, 1}n, such that, Cn(a, V, E) = 1 if a is a satisfying

assignment for φ, and 0 otherwise.

Now we present the reduction, which is exactly the same as in Theorem 4.2 of

[AKKV05], except that we work over Fq rather than F2. Let (V,E) be the input

corresponding to a 3SAT instance φ. We may assume that every gate in Cn has

fan-in 2 and fan-out 1. For every bit in the input (a, V, E) to Cn, there is a variable

in Fq: xi is supposed to be assigned the i-th bit of a, xij is supposed to be assigned

Vij, while x′ij is supposed to be assigned Eij.

Associated to the output of the i-th internal gate2 in Cn is a variable zi. Further,

let y0 be the variable corresponding to the output gate which outputs whether an

assignment a satisfies φ or not.

The computation of any gate can be written as a quadratic polynomial (over

2A gate is said to be internal if its output is not an output of the circuit.
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F2) in its inputs (call these z, z′) and output (call it z′′): z′′ = zz′ for an AND

gate, z′′ = 1 + (1 + z)(1 + z′) for an OR gate, and z′′ = 1 + z for a NOT gate.

Note that F2 is a sub-field of Fq since q = 2r is a power of 2. Thus, each of

these equations can also be thought of as equations over Fq which gives the correct

result when both the inputs are in F2.

We write such an equation for every gate in Cn. Each equation is of degree at

most 2 and has at most 3 variables. Note that every such equation depends only

on the description of Cn. Finally, we add the additional set of equations y0 = 1,

xij = Vij, x
′
ij = Eij and x2

i = xi. Hence, we get a Fq-QCSPP instance over the set

of variables:

{xi : i ∈ [n]} ∪ {xij : i ∈ [m], j ∈ [n]}∪

{x′ij : i ∈ [m], j ∈ [n]} ∪ {zi : 1 ≤ i ≤ size(Cn)} ∪ {y0}.

Notice that Cn can be generated by a polynomial time algorithm which is given

as input 1n. Hence, this reduction is a polynomial time reduction.

We claim that this quadratic system has a solution (over Fq) if and only if φ

has a satisfying solution. The corresponding claim when all variables take values

in F2 follows by construction. Finally note that we have restricted all satisfying

inputs to F2 because of the constraints x2
i = xi.

The reduction described above gives constraints which are of degree at most 2,

but not homogeneous. This is easy to fix by introducing an auxiliary variable z0

and adding the constraint z0z0 = 1. We then multiply all terms of degree less than

2 by z0.

This completes the proof of the lemma.
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2.4.2 Boosting Soundness through Codes

We first need some basic definitions.

Definition 2.4.2. Codes: A matrix C ∈ Fm×kq is said to be a generator of the

linear code {Cx : x ∈ Fkq} with distance 1 − δ if for any x 6= y ∈ Fkq , C(x) and

C(y) agree on at most δm co-ordinates.

fact 2.4.3 (Reed-Muller Codes). For any q, let Fq be the field over q elements.

There is a family of linear codes with generator matrix Ck ∈ Fq×kq with distance

1− k/q. These are the so called Reed Muller codes over Fq, where the message is

thought of as the coefficients of a degree k− 1 polynomial and the codeword as the

evaluation of this polynomial on all the points in Fq.

lemma 2.4.4. Let Q be an instance of Fq-QCSPP over n variables and k =

poly(n) equations, for any q = 2r. There is an instance P of Fq-QCSPP over the

same set of variables and q equations such that:

• If OPT (Q) = 1 then OPT (P ) = 1 and

• if OPT (Q) < 1 then OPT (P ) ≤ k/q.

2.4.3 Sum Check Protocol

Theorem 2.4.5 (Soundness of Sum Check Protocol). [LFKN92]

Let g1, g2, . . . , gl : FMq → Fq be degree d polynomials and g : FMq → Fq an arbitrary

function. Suppose for every 1 ≤ j ≤ l,
∑

z∈{0,1}M
gj(z) 6= c. For x ∈ FMq , let P(x) be

the event that the Sum Check Protocol (Definition 2.2.11) accepts on inputs g, c
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and polynomials pa1,a2,...,ai for 0 ≤ i ≤M − 1. Here x is the choice of randomness

in the Sum Check Protocol.

Then

Pr
x∈FMq

[
P(x) & ∃ j ∈ {1, . . . , l} : g(x) = gj(x)

]
≤Mdl/q

In words, the probability that the Sum Check Protocol accepts when g is con-

sistent with one of g1, g2, . . . , gl is at most Mdl/q where g1, g2, . . . , gl are degree d

polynomials whose sum is not the required value.

Proof. We will prove the theorem by induction on M . The Steps in the discussion

below refer to the Sum Check Protocol (Definition 2.2.11).

Base Case: M=1 We consider two cases:

1. p∅ = gj∅ for some 1 ≤ j ≤ l. In this case Step 1 fails by our assumption on

gj.

2. p∅ 6= gj∅ for all 1 ≤ j ≤ l. In this case,

Prx∈Fq [P(x) & ∃ j ∈ {1, . . . , l} : g(x) = gj(x)]

≤ Prx∈Fq [g(x) = p∅(x) & ∃ j ∈ {1, . . . , l} : g(x) = gj(x)]

(Since Step 3 accepts)

= Prx∈Fq [∃ j ∈ {1, . . . , l} : p∅(x) = gj(x)]

≤ ld/q

The last inequality uses the fact that any two distinct degree d polynomials

can agree on at most d/q fraction of the points followed by a union bound.

Inductive Case: M = N We again consider two cases as before:
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1. p∅ = gj∅ for some 1 ≤ j ≤ l. In this case Step 1 fails by our assumption on

gj.

2. p∅ 6= gj∅ for all 1 ≤ j ≤ l. In this case, the fraction of points a ∈ Fq such that

∑
b2,...bN∈{0,1}

gj(a, b2, . . . , bN) = p∅(a) (2.3)

for some 1 ≤ j ≤ l is at most ld/q.

Note that for a fixed a ∈ Fq, Steps 2 and 3 are equivalent to running the

Sum Check Protocol for checking

∑
b2,...bN∈{0,1}

g(a, b2, . . . , bN) = c′

where c′
def
= p∅(a). For x ∈ FN−1

q , let Pa(x) be the event that this protocol

accepts.

If Equation 2.3 does not hold for any 1 ≤ j ≤ l then we can use the inductive

assumption to get

Pr
x∈FN−1

q

[
Pa(x) & ∃ j ∈ {1, . . . , l} : g(a, x) = gj(a, x)

]
≤ (N − 1)dl/q

Thus, the total probability of acceptance is at most ld/q + (N − 1)dl/q ≤

Ndl/q.
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Chapter 3

Hardness of pricing Loss Leaders

In this chapter we will prove Theorem 1.4.2, Theorem 1.4.5 and Lemma 1.4.3. In

the next section, we give an overview of our proof for Theorem 1.4.2 and Theorem

1.4.5. In Section 3.2 we formally define the problems and introduce some notation

and tools that will be useful for the rest of the chapter. We restate and prove

Lemma 1.4.3 in Section 3.2.5, Theorem 1.4.2 in Section 3.3 and Theorem 1.4.5 in

Section 3.4.

3.1 Overview of our proof

In this section, we give a high level overview of our proof. We assume some famil-

iarity with the proof of Max 2-LINq in [KKMO07] and Max 3-LINq in [H̊as01].

Since the approximability of Highway Pricing is equivalent to that of Ver-

tex Pricing2 on bipartite graph, we would only describe our proof for Vertex

Pricing2 and Vertex Pricing3.

The work of [KKMO07] establishes a connection between “Dictator Test” and

“Hardness of approximation” of CSPs assuming the Unique Games Conjec-
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ture. The pricing problem can be viewed as a CSP with a generalized payoff

function. Therefore, our hardness results for the Vertex Pricing is based on

building a proper Dictator Test. In addition, for the Vertex Pricing3 problem,

since our result only assumes P6= NP, we need to combine the Dictator Test with

a PCP construction that H̊astad uses to obtain the NP-hardness result for Max

3-LINq [H̊as01].

Roughly speaking, a Dictator Test for Vertex Pricing is just a instance of the

Vertex Pricing problem defined over the vertex set Fnq where n is thought of as

a large number. A pricing to these items is as a function defined over f : Fnq → R.

A Dictator function is functions that only depend on one of its coordinates. The

Dictator Test is a Vertex Pricing instance with the following properties:

• (completeness) There exists some one dimensional real function h : R → R

such that f(x) = h(xi) has a high profit c for every i ∈ [n].

• (soundness) Any function that depends on a lot of its coordinates will have

at most profit s.

By the reduction in [KKMO07], a Dictator Test with above property would estab-

lish that it is UG-hard to distinguish whether a given instance of vertex pricing has

profit above c or below s (which implies a s/c hardness of approximation result).

For example, to construct a Dictator Test for Vertex Pricing2 under the

coupon model, it is enough to specify a distribution over x, y ∈ Fnq , b ∈ R+. Here

we add a customer interested in x, y with budget b and the weight is the probability

mass on (x, y, b). The profit of the price function f : Fnq → R can be written as

Ex,y,b[I(0 ≤ f(x)+f(y) ≤ b)·(f(x)+f(y))], where I(w) is the indicator function of

the boolean condition w. The main task is to construct such a distribution which
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has a good profit for dictator functions and has a low profit for all functions that

depend on a lot of coordinates.

3.1.1 The Dictator Test for Vertex Pricing2

The Dictator Test for Vertex Pricing2 is, in a sense, similar to the Dictator

Test that is used in [KKMO07] to obtain a hardness result of Max 2-LINq. Max

2-LINq is a problem of solving a linear system over Zq where each equation only

depends on two variables. The main construction of the Dictator Test (as a instance

of Max 2-LINq over Fnq ) is described as follows: choose x to be uniformly random

from Fnq and y is generated by adding “ε noise” as follows: for every i, yi = xi

with probability 1− ε and yi is set to be a random element in Zq with probability

ε. Then the Dictator Test will add a equation f(x)− f(y) = 0.

Since our objective function is of the form I(0 ≤ f(x)+f(y) ≤ b)·(f(x)+f(y)),

we first construct x uniformly random from [q]n and yi = [b − xi]q where budget

b is randomly chosen from 2, 4, 8, . . . , 2k where k := log
√
q. We add 2k/b edges

between x and y. Notice that if we use the Dictator price function f(x) = xi −

q/2 and f(y) = yi − q/2, then with probability at least 1 − 1/
√
q ≥ 1/2, we

have f(x) + f(y) = b. Therefore, the profit of the dictator function is at least

1/2 · 1/k ·
∑k

i=1 2k/2i = Ω(2k).

On the other hand, we manage to show that functions that depend on a lot

of coordinates cannot have a profit significantly better than the constant price

function that assign the same price to every item. It is easy to verify that for

any constant price function, the profit on the above instance is at most O(2k/k).

This gives us a Ω(log q) gap between the profit of Dictator function and functions

that depends on a lot of its coordinates. Note that q can be an arbitrarily large
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constant in this construction.

Technically, the main body of the proof is to show that functions that depends

on a lot of coordinates behave like constant functions. We use the general approach

of [KKMO07]. For simplicity, suppose the pricing function is integer valued f :

Fnq → [q] and suppose we have a customer interested in x, y with budget q, then the

profit can be written as
∑

0≤i+j≤q(i+ j)fi(x)fj(x). One of the difficulty we face is

that there can be Ω(q2) terms in the sum while the analysis in [KKMO07] usually

generate x, y with noise rate ε and this would bound the sum by q2−ε. To see why

this is the case, let us recall how the analysis in [KKMO07] proceeds. The goal is

to show that functions which depend on many coordinates satisfy a small fraction

of equations in the Max 2-LINq instance. This is achieved by writing the fraction

of equations satisfied by a function f in terms of its Noise stability, and using the

invariance principle of [MOO05] to show that if f depends on many co-ordinates

then the Noise stability of f is essentially the same as the Noise stability of a

related function f̃ which takes as input gaussian random variables rather than Fq-

valued random variables. It is known by a result of [Bor85] that the function f̃ for

which the noise stability is maximum in the gaussian domain is the half-space with

the appropriate measure, and [KKMO07] use estimates about the noise stability

of this function to prove their result.

We follow the same approach as [KKMO07] of writing the profit in terms of the

Noise stability of the pricing function. It turns out that if the noise is small then

the expression for profit is quite large when written for the half-space function

in the gaussian domain. Our main technical contribution is to get around this

issue by introducing a large noise (1−o(1) noise) and carefully analyzing the noise

stability of pairs of half-spaces in the gaussian domain (Lemma 3.1.4).
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Another technical challenge in our proof is that we need our hardness result

hold even for Vertex Pricing2 on bipartite graph, therefore we use a bipartite

version of the invariance principle due to [DMR09].

3.1.1.1 Main Technical Lemma

Here we state the main technical lemma used in the reduction for

Vertex Pricing2.

Definition 3.1.1. Let φ be the probability density function of the standard gaussian

i.e. φ(t) := 1√
2π
e−t

2/2.

Definition 3.1.2. Let N be the cumulative distribution function of the standard

gaussian i.e. N(t) :=

∫ ∞
t

φ(x)dx. Equivalently, N(t) := Pr[X ≥ t] where X is a

standard gaussian random variable.

Definition 3.1.3. (Gaussian noise stability of half-spaces) Λρ(µ, ν) := Pr[X ≥

t and Y ≥ s] where t := N−1(µ), s := N−1(ν) and X, Y are standard Gaussians

with E[XY ] = ρ.

lemma 3.1.4. Let 1/(q log q) ≤ µ ≤ 1, ρ ≤ (log q)−(1/2+ε), k ≤ log q and

{ν1, ν2, . . . , νk} be such that
∑k

i=1 νi ≤ 1. Then for q large enough,

k∑
i=1

Λρ(µ, νi) = O(µ)

3.1.2 The Dictator Test for Vertex Pricing3

Our construction for the Vertex Pricing3 is based on H̊astad’s seminal result of

Max 3-LINq [H̊as01] and a Dictator Test for Vertex Pricing3 that is previously
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introduced in [Wu11]. H̊astad essentially construct “Matching-Dictator Test” on

two functions for f : ZKq → Zq, g : ZLq → Zq and π : L→ K. The test is defined by

a distribution over x ∈ ZKq ,y ∈ ZLq , z ∈ ZLq with the check f(x) + g(y) + g(z) = 0

mod q. H̊astad’s Test has the following completeness and soundness promises:

• If f(x) = xi and g(y) = yj such that π(i) = j, then f and g passes with

probability 1− ε.

• If f and g are far from being a pair of matching dictator functions, then they

behave like constant functions.

Our proof essentially use the same distribution of x, y, z and add
⌊√

q
⌋

buyers

such that they are interested in x, y, z⊕q bq/tc · (1, 1, ...1) with budget q/t for every

t ∈
⌊√

q
⌋
. It is easy to verify that for every i ∈ [q] and f(x) = xi − q/3, g(y) =

yi− q/3 would have log q times more profit than setting f, g to be a constant. The

main body of the work is to show if f, g are far from being “matching” dictator

functions” , then they just behave like being constant functions.

Notice that in [Wu11], the author manages to construct such a test for K = L

and f = g, which suffices to give a hardness result assuming the Unique Games

Conjecture. Technically speaking, in [Wu11], the author used the invariance prin-

ciple [MOO05] to analyze the profit of functions that depends on a lot of coor-

dinates. However we can not use the invariance here directly partly because it

requires pairwise independent distributions. Also the projection instead of bijec-

tion in our test make it hard for us to use the same analysis. We also found it

hard to directly use the Fourier Analysis with complex function basis by which

H̊astad proved the hardness result for Max 3-LINq. This is because our objective

function is less symmetric compared with the objective function of Max 3-LINq.
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Instead we use the Efron-Stein Decomposition combining with a H̊astad style de-

coding. Such a proof also avoid the use of the “invariance principle” which we

view as a simplification of the proof in [Wu11]. Our proof is inspired by a re-

cent work [OWZ11] which also uses the same method to generalize H̊astad’s Max

3-LINq result to the integer domain without using the complex Fourier analysis.

3.1.3 Open problems

We show that Graph Vertex Pricing and Highway Pricing are UG-hard

to approximate to any constant factor under the Coupon model. It would be

interesting to prove a similar result for the discount model. Our techniques fall

short of achieving this because of the necessity to introduce very large noise as

explained in Section 3.1.1.

3.2 Preliminaries

In this section, we formally define all the pricing problems and some notation used

frequently throughout the chapter.

3.2.1 Notations

For q being a positive integer, we define:

• Zq: the set {0, 1 . . . , q − 1}.

• [x]q: the remainder of x divided by q

• ⊕q: addition of integers (or integer vectors) modulo q.
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• For any statement ω, I(ω)→ {0, 1} is the indicator function of whether w is

correct (when I(w) = 1) or not (when I(w) = 0).

• bxc: for any x ∈ R, bxc is the largest integer less than or equal to x.

• dxe: for any x ∈ R, dxe is the smallest integer greater than or equal to x.

3.2.2 Problem Definitions

Definition 3.2.1 (Vertex Pricing). An instance

I(G(V,E), {be | e ∈ E}, {we | e ∈ E})

of Vertex Pricing is characterized by a multi-hypergraph G(V,E). Here each

vertex corresponds to an item and each hyper-edge corresponds to the bundle of

items a customer is interested in. For each edge e ∈ E, there is an associated

budget be > 0 and a weight we. When G is a k-hypergraph, we call the corresponding

problem Vertex Pricingk.

The goal is to find a pricing function f : V → R so as to maximize the profit.

As we have discussed, there are mainly two kinds of profit models considered

previously. The first profit model is the discount model. Given a vertex pricing

instance I(G(V,E), {be | e ∈ E}, {we | e ∈ E}) and a price function f : V → R:

Definition 3.2.2 (profit under the discount model).

profitI(f) =
∑
e

I (f(e) ≤ be) · we · f(e)

where f(e) :=
∑

v∈e f(v).
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Under the above model, the seller may lose money to the buyer when∑
v∈e f(v) < 0. The coupon model assumes the seller would have at least profit 0

from each buyer.

Definition 3.2.3 (profit under the coupon model).

profit+
I (f) =

∑
e

I(0 ≤ f(e) ≤ be) · we · f(e)

where f(e) :=
∑

v∈e f(v).

Now given a vertex pricing instance I(G(V,E), {be | e ∈ E}, {we | e ∈ E}), we

can study the problem of maximizing the profit under the following three settings.

The first one is the widely studied one when the seller want to price each item

with a positive profit margin:

Definition 3.2.4. (Positive price model) Opt(I) = maxf :V→R+ profitI(f).

When we allow a real-valued price function, we can maximize the profit under

either the coupon or discount model.

Definition 3.2.5. (Discount Model) OptD(I) = maxf :V→R profitI(f).

Definition 3.2.6. (Coupon Model) OptC(I) = maxf :V→R profit+
I (f).

We also consider the following Highway Pricing problem.

Definition 3.2.7 (Highway Pricing). Let V = {0, 1, 2, . . . , n}. G is an n-

edge line with ei = (i − 1, i) for i = 1, 2, . . . , n. We are given a set of intervals

I1, I2, . . . Im where each interval is specified by Ij = [sj, tj] for sj, tj ∈ V with an

associated budget bj and weight wj. The goal is to properly price each ei with a

price function p : [n]→ R so as to maximize the total revenue.
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The item of the Highway Pricing problem is the segments of a line graph.

Alternatively, we can think of the problem as finding a function that assign a price

on f : V → R and the toll on {i, i+ 1} is defined as p(i) = f(i+ 1)− f(i).

3.2.3 Gaussians

lemma 3.2.8.

N−1(µ) = Θ(
√

log(1/µ))

Proof. Let t = N−1(µ). Use the well known fact that N(t) ∼ φ(t)/t along with

the definition of φ and N(t) = µ.

3.2.4 Tools from Discrete Fourier Analysis

We recall some standard definitions from the discrete Fourier analysis (see, e.g.,

[Rag09]). We will be considering functions of the form f : Znq → R. The set of all

functions f : Znq → R forms an inner product space with inner product

〈f, g〉 = E
x∼Znq

[f(x) · g(x)]

where x ∼ Znq means that x is chosen uniformly at random from Znq . We also

write ‖f‖2 =
√
〈f, f〉 as usual.

The following Efron–Stein decomposition theorem is well-known;

see e.g. [KKMO07].

Theorem 3.2.9. Any f : Znq → R can be uniquely decomposed into sum of func-
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tions

f(x) =
∑
S⊆[n]

fS(x),

where

• fS(x) depends only on xS = (xi, i ∈ S),

• for every S ⊆ [n], for every S ′ such that S \ S ′ 6= ∅, and for every y ∈ Znq , it

holds that

E
x

[fS(x)|xS′ = yS′ ] = 0.

We also need define the noise operator as follows:

Definition 3.2.10. For x ∈ Znq , we define random variable y ∼ρ x if y is generated

as follows: for each coordinate i ∈ [n], independently we set yi = xi with probability

ρ and uniformly random in [q] with probability 1 − ρ. For functions f : Znq → R,

define the noise operator Tρ to be

Tρf(x) = E
y∼ρx

[f(y)].

Definition 3.2.11 (influence). For function f : {−1, 1}n → R, we define the

influence of the i-th coordinate Inf if as

Inf if =
∑
S3i

‖fS‖2
2

Definition 3.2.12 (low-degree influence). For function f : {−1, 1}n → R, we

define the k-degree influence of the i-th coordinate Infki f as
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Infki f =
∑

S3i, |S|≤k

‖fS‖2
2

Following facts are well known.

fact 3.2.13. ‖TρfS‖2
2 = ρ|S|‖fS‖2

2.

fact 3.2.14. For f : Fnq 7→ Fq

[
n∑
i=1

Inf i(T1−ηf) ≤ 1/η.

]

fact 3.2.15. For f : Fnq 7→ Fq

[
n∑
i=1

Infki (f) ≤ k

]

Definition 3.2.16. For a function f : Fnq 7→ Fq and a ∈ Fq, let fa : Fnq 7→ R be

defined as fa(x) := 1 if f(x) = a and fa(x) := 0 otherwise.

Definition 3.2.17. The noise stability of f and g at ρ is defined to be Sρ(f, g) :=

〈f, Tρg〉.

Theorem 3.2.18. [DMR09]

Fix q ≥ 2 and 0 < ρ < 1. Then for any δ > 0 there is a τ = τ(ρ, δ, q) > 0

small enough and k = k(ρ, δ, q) large enough such that if f, g : [q]n 7→ [0, 1] are

any functions satisfying E[f ] = µ, E[g] = ν and min(Infki (f), Infki (g)) ≤ τ for all

i = 1 . . . n, then

Sρ(f, g) ≤ Λρ(µ, ν) + δ
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3.2.5 Proof of Lemma 1.4.3

In this subsection, we restate and prove Lemma 1.4.3 which states that the ap-

proximability of Highway Pricing is equivalent to that of Vertex Pricing2

on a bipartite graph.

lemma. (Restatement of Lemma 1.4.3) Consider the profit maximization prob-

lem under the coupon model. If Vertex Pricing2 on bipartite graph is hard to

approximate to factor α , then Highway Pricing problem is also hard to approx-

imate to factor α under the coupon model.

Proof. Let I(G(V,E), {be | e ∈ E}, {we | e ∈ E}), V := VL ∪ VR be an instance

of Vertex Pricing2 and assuming that G is a bipartite graph. We construct

an instance of Highway Pricing J (G(V,E), {be | e ∈ E}, {we | e ∈ E}), V :=

VL ∪ VR as follows.

The vertex set remains the same. We align all the vertices in VL to the left of

the vertices in VR in a line. Then for every edges e = (v1, v2) in I, we also add a

driver interested in the interval between v1 and v2.

We claim that Opt+(I) = Opt+(J ). This is because if fL : VL 7→ R, fR :

VR 7→ R is a pair of pricing functions for I then (−fL, fR) is a pair of pricing

functions for J such that profit+
I (fL, fR) = profit+

J (−fL, fR), and the argument

is reversible.

3.3 UG-hardness of Graph Vertex Pricing

In this Section we prove Theorem 1.4.2, restated below.

Theorem. (Theorem 1.4.2 restated) Graph Vertex Pricing under the coupon
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model is UG-hard to approximate to any constant factor, even when the graph is

bipartite.

In the next subsection, we state and prove the main technical lemma used

in our proof. In Section 3.3.2 we describe our dictatorship test and prove its

completeness and soundness. Finally in Section 3.3.3, we compose the dictatorship

test with Unique Games to obtain our final reduction. Theorem 1.4.2 follows

from Theorem 3.3.6.

3.3.1 Main technical lemma

lemma 3.3.1. Let 1/(q log q) ≤ µ ≤ 1, ρ ≤ (log q)−(1/2+ε), k ≤ log q and

{ν1, ν2, . . . , νk} be such that
∑k

i=1 νi ≤ 1. Then for q large enough,

k∑
i=1

Λρ(µ, νi) = O(µ)

Proof. Fix 1 ≤ i ≤ k. Let t := N−1(µ), si := N−1(νi) and (X, Y ) be standard

Gaussians with E[XY ] = ρ.

Λρ(µ, νi) = Pr[X ≥ t , Y ≥ si]

= Pr[Y ≥ si | X ≥ t] · Pr[X ≥ t]

= µ · Pr[Y ≥ si | X ≥ t]

≤ µ · (Pr[Y ≥ si | X ∈ [t, 2t]] + Pr[X ≥ 2t | X ≥ t])

Using N(x) ∼ φ(x)/x and N(t) = µ we get

Pr[X ≥ 2t | X ≥ t] = O(µ2 log(1/µ))
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Thus,

k∑
i=1

Λρ(µ, νi) ≤
k∑
i=1

µ · (Pr[Y ≥ si | X ∈ [t, 2t]] + Pr[X ≥ 2t | X ≥ t])

= µ ·O(µ2 log2(1/µ)) +
k∑
i=1

µ · Pr[Y ≥ si | X ∈ [t, 2t]]

= O(µ) + µ ·
k∑
i=1

Pr[Y ≥ si | X ∈ [t, 2t]]

Thus, it suffices to show that
∑k

i=1 Pr[Y ≥ si | X ∈ [t, 2t]] = O(1). Let Z be a

standard gaussian independent of X. For a fixed i we have,

Pr[Y ≥ si | X ∈ [t, 2t]] = Pr[ρX +
√

1− ρ2Z ≥ si | X ∈ [t, 2t]]

≤ Pr[Z ≥ (si − 2ρt)/
√

1− ρ2]

≤ Pr[Z ≥ si − (2ρt/
√

1− ρ2)]

≤ Pr[Z ≥ si − 4ρt]

where we used ρ2 < 3/4.

Using Fact 3.2.8 we have t = O(
√

log(1/µ)) = O(
√

log q). Since

ρ ≤ (log q)−(1/2+ε), we have that 4ρt = O((log q)−ε).

Now Pr[Z ≥ a−b] ≤ Pr[Z ≥ a]+bφ(a−b). Also, φ(a−b) = 1/
√

2πe−(a−b)2/2 =

O(e−a
2/2 · e−b2/2 · eab) = O(φ(a) · eab). Thus, Pr[Z ≥ si − 4ρt] ≤ Pr[Z ≥ si] + ρt ·

φ(si) · eO(ρtsi) ≤ νi + ρt · φ(si) · eO((log q)−εsi). We consider two cases.

• If si ≤ (log q)ε/2, then ρt·φ(si)·eO((log q)−εsi) ≤ ρt·O(φ(si)) = ρt·O(siN(si)) =

O((log q)−ενisi) = O(νi).

• If si ≥ (log q)ε/2, then νi+ρt·φ(si)·eO((log q)−εsi) ≤ O(φ(si))+O(ρt·φ(si)·esi) =
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e−Ω(s2i ) = O(e−Ω((log q)ε)).

Putting everything together we have,

k∑
i=1

Pr[Y ≥ si | X ∈ [t, 2t]]

≤
k∑
i=1

Pr[Z ≥ si − 4ρt]

=
∑

i:si≤(log q)ε/2

Pr[Z ≥ si − 4ρt] +
∑

i:si≥(log q)ε/2

Pr[Z ≥ si − 4ρt]

=
∑

i:si≤(log q)ε/2

O(νi) +
∑

i:si≥(log q)ε/2

O(e−Ω((log q)ε))

≤ O(ke−Ω((log q)ε)) +
∑

i:si≤(log q)ε/2

O(νi) = O(1)

(3.1)

where the last line uses k ≤ log q and
∑k

i=1 νi ≤ 1.

3.3.2 Dictatorship Test

We will create an instance of Graph Vertex Pricing where the vertex set

consists of two disjoint hypercubes L,R where L = R = Fnq . The instance will

have the property that dictator pricing functions have good profit in the coupon

model. On the other hand, if there is a pair of pricing functions fL : L 7→ R,

fR : R 7→ R which has sufficiently high profit then we will show that fL and fR

have a common influential co-ordinate.

Formally, we will describe the Graph Vertex Pricing instance

I(G(V,E), {be | e ∈ E}, {we | e ∈ E}) where V = L∪R as above and E is given by

the randomized procedure in Figure 3.1. The weight we of an edge e corresponds
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Figure 3.1: Dictatorship test for Graph Vertex Pricing
.

1. Generate x ∈ Fnq uniformly at random and x′ ∼ρ x where ρ := (log q)−2/3.

2. For j ∈ [log q], let yj ∈ Fnq be defined as yj := (~2j − x)q, where ~2j :=
{2j, . . . , 2j} ∈ Fnq .

3. Add t/2j hyper edges between (x′L,y
j
R) each of budget 2j for every j ∈

{1, 2, . . . , k} where k := log t, t :=
√
q.

to the probability with which it was generated. Note that the total weight of all

edges is at most 2t.

For x ∈ Fnq , we will denote by xL as its copy in L and xR as its copy in R.

Theorem 3.3.2. The following holds for the dictatorship test described above:

• Completeness: Let f : L ∪R 7→ R be of the form

f(xL) = f(xR) = xi

for some i ∈ [n] then profit+
I (f) = Ω(ρt log t) = Ω(t(log q)1/3)

• Soundness: Let fL : L 7→ R, fR : R 7→ R. Then there is a τ = τ(q) small

enough and k = k(q) large enough such that if

min(Infki (fL), Infki (fR)) ≤ τ

for all i ∈ [n] then profit+
I (fL, fR) = O(t)

Proof. Completeness: Let f(xL) = f(xR) = xi. For a hyper edge e, let f(e) :=

f(yR) + f(xL).
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profit+
I (f) =

∑
e

I(0 ≤ f(e) ≤ be) · we · f(e)

= E
x,x′∼ρx

[
k∑
j=1

I(0 ≤ yji + x′i ≤ 2j) · (yji + x′i) · t
2j

]

Now note that yji + xi ∈ {2j, 2j + q}. Furthermore, whenever xi ≥ 2j it holds

that yji +xi = q+2j. This happens for all j with probability at least 1− t/q ≥ 1/2

over the choice of x. With probability at least ρ over the choice of x′, we have

x′i = xi. Thus, with probability at least ρ/2 we have yji + x′i = 2j.

Thus, profit+
I (f) ≥ Ω(ρtk) = Ω(ρt log t) = Ω(t(log q)1/3) .

Soundness:

For a hyper-edge e, let f(e) := f(yR) + f(xL).

We first show that it suffices to work with Fq-valued pricing functions.

Definition 3.3.3. (Fq-valued pricing)

Let I(G(V,E), {be | e ∈ E}, {we | e ∈ E}) be an instance of Vertex Pricing

or Highway Pricing. For a function f : V 7→ Fq, the price for an edge e ∈ E

is defined as f(e) := (
∑

v∈e f(v))q. Given the price of each edge, profitI(f) and

profit+
I (f) are defined in the usual manner.

lemma 3.3.4. Let f ′L := bfLc, f ′R := bfRc then

profit+
I (fL, fR) ≤ profit+

I (f ′L, f
′
R) + 2 ·

∑
e∈E

we = profit+
I (f ′L, f

′
R) +O(t)

Proof. Let f ′(e) := f ′R(y) + f ′L(x)
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For every edge e ∈ E, f ′(e) ≤ f(e) ≤ f ′(e) + 2. Thus,

profit+
I (fL, fR) =

∑
e I(0 ≤ f(e) ≤ be) · we · f(e)

≤
∑

e I(0 ≤ f ′(e) ≤ be) · we · (f ′(e) + 2)

≤ profit+
I (f ′L, f

′
R) + 2 ·

∑
e∈E we

lemma 3.3.5. Let fL, fR be integral pricing functions for the instance given by the

dictatorship test, and let f ′L := (fL)q, f
′
R := (fR)q. Then

profit+
I (fL, fR) ≤ profit+

I (f ′L, f
′
R) + profit+

I (f ′L − q, f ′R)

Proof. Fix an edge e = (xL,yR) with budget be. f gets a non-zero profit on e if

and only if 0 ≤ f(e) ≤ be. Since f ′R(y) + f ′L(x) = (fR(y) + fL(x))q, we must have

f ′R(y) + f ′L(x) ∈ {f(e), f(e) + q}. In either case, one of (f ′L, f
′
R) and (f ′L − q, f ′R)

has the same profit as f on e, which immediately implies the lemma.

Thus, it suffices to prove the soundness for fL : L 7→ Fq, fR : R 7→ Fq.

We now arithmetize the profit.
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profit+
I (fL, fR)

=
∑

e∈E:0≤f(e)≤be

we · f(e)

= E
x,x′∼ρx

[
k∑
j=1

I(0 ≤ fR(yj) + fL(x′) ≤ 2j) · (fR(yj) + fL(x′)) · t
2j

]

= E
x,x′∼ρx

 k∑
j=1

∑
0≤b+a≤2j

f bR(yj) · faL(x′) · (b+ a) · t
2j


=

k∑
j=1

∑
0≤b+a≤2j

E
x

[
f bR(yj) · (TρfL)a(x) · (b+ a) · t

2j

]

Let gj : Fnq 7→ Fq be defined as gj(x) := fR(yj) where yj is as in Step 2 of the

Test. It is easy to see that E[gaj ] = E[faR] for all a ∈ Fq. This gives,

profit+
I (fL, fR) = t ·

k∑
j=1

∑
0≤b+a≤2j

Sρ(faL, gbj)
(b+ a)

2j

For l ∈ {1, 2, . . . , k} Let

F a
j,l(x) :=

∑
b:2l−1<b+a≤2l

gbj(x)

Equivalently, F a
j,l(x) = 1 if 2l−1 < gj(x) + a ≤ 2l and 0 otherwise.

It is clear that
∑k

l=1 E[F a
j,l] ≤ 1. Also, for every l, E[F a

j,l] is independent of

j since E[gbj ] = E[f bR] is independent of j for each b ∈ Fq. Let µa := E[faL] and

νal := E[F a
j,l].

Note that Infki (F
a
j,l) ≤ Infki (fR) ≤ τ for all i ∈ [n]. Similarly, Infki (f

a
L) ≤

Infki (fL) ≤ τ .

We thus have,
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profit+
I (fL, fR)

= t ·
k∑
j=1

∑
0≤b+a≤2j

Sρ(faL, gbj)
(b+ a)

2j

≤ t ·
k∑
j=1

∑
a∈Fq

j∑
l=1

Sρ(faL, F a
j,l)

2l

2j

≤ t ·
∑

a∈Fq

k∑
j=1

j∑
l=1

Λρ(µ
a, νal )

2l

2j
+ o(1)

(Choosing δ = (tqk2)−1 in Theorem 3.2.18)

= t ·
∑

a∈Fq

k∑
l=1

Λρ(µ
a, νal )

k∑
j=l

2l

2j
+ o(1)

≤ 2t ·
∑

a∈Fq

k∑
l=1

Λρ(µ
a, νal ) + o(1)

= 2t ·
∑

a∈Fq :µa≥(q log q)−1

k∑
l=1

Λρ(µ
a, νal )

+2t ·
∑

a∈Fq :µa≤(q log q)−1

k∑
l=1

Λρ(µ
a, νal )

≤ 2t ·
∑

a∈Fq :µa≥(q log q)−1

k∑
l=1

Λρ(µ
a, νal )

+2t ·
∑

a∈Fq :µa≤(q log q)−1

k∑
l=1

µa

≤ 2t ·
∑

a∈Fq :µa≥(q log q)−1

k∑
l=1

Λρ(µ
a, νal ) +O(t) (Using k ≤ log q)

≤ 2t ·
∑

a∈Fq O(µa) +O(t) (Using Lemma 3.3.1)

= O(t)
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Figure 3.2: Reduction from Unique Games to Graph Vertex Pricing

1. Pick a random edge e = (u,w) ∈ E ′.

2. Generate x ∈ Fnq uniformly at random and x′ ∼ρ x where ρ := (log q)−(2/3).

3. For j ∈ [log q], let yj ∈ Fnq be defined as yj := (~2j − x)q, where ~2j :=
{2j, . . . , 2j} ∈ Fnq .

4. Add t/2j edges between ((u,x′), (w, πuw(yj))) each of budget 2j for each
j ∈ {1, 2, . . . , k} where k := log t, t :=

√
q and π(x) := (xπ1 , xπ2 , . . . , xπn).

3.3.3 Reduction from Unique Games

Given a bipartite unique-games instance U(G′(U,W,E ′), [n], {πe}e∈E) we create

an instance of Graph Vertex Pricing I(G(V,E), {be | e ∈ E}, {we | e ∈ E})

where V = U × Fnq ∪W × Fnq and E is defined by the randomized procedure in

Figure 5.4.2. The weight we of an edge e ∈ E corresponds to the probability with

which it was generated and the budgets are as specified in the procedure.

Theorem 3.3.6. The following holds for the Graph Vertex Pricing

instance constructed above:

• Completeness: If OPT (U) ≥ 1− ε then there is an assignment of prices

f : V 7→ R such that profit+
I (f) = Ω(ρt log t) = Ω(t(log q)1/3).

• Soundness: There is an η = η(q) small enough such that if OPT (U) ≤ η

then for every assignment of prices f : V 7→ R,

profit+
I (f) = O(t)

Since q can be arbitrarily large, this implies Theorem 1.4.2.

79



Proof. For a fixed edge e = (u,w) ∈ E ′, the instance I of Figure 5.4.2 restricted

to u×Fnq ∪w×Fnq is same as the one constructed by Figure 3.1 up to renumbering

of labels according to πuw. Formally, let L = R = Fnq , let fL : L 7→ R be defined

as f eL(x) := f(u,x) and f eR : R 7→ R be defined as fR(x) := f(w, πuw(x)). Then it

is clear that

profit+
I (f) = E

e∈E′
[profit+

I (f eL, f
e
R)]

where profit+
I (f eL, f

e
R) refers to the profit of (f eL, f

e
R) on I restricted to e.

• Completeness:

Let L : U ∪ W 7→ [n] be a labeling which satisfies 1 − ε fraction of the

constraints. We define the pricing function f : V 7→ R as f(u,x) := xL(u).

If e is satisfied by L, then f eL(x) = f eR(x) = xi for some i ∈ [n]. By Theorem

3.3.2 we get that profit+
I (f eL, f

e
R) is at least Ω(ρt log t).

Thus, the overall profit is at least (1− ε)Ω(ρt log t) = Ω(ρt log t).

• Soundness:

We will show that if profit+
I (f) = ω(t) then there is a randomized labeling

strategy to the Unique Games instance which in expectation satisfies more

than η fraction of the edges.

Note that the profit for any e = (u,w) ∈ E ′ is bounded by O(t log t). So

if profit+
I (f) = ω(t) then for at least 1/(log t) fraction of the edges e ∈ E ′

we have profit+
I (f eL, f

e
R) = ω(t). For such e by Theorem 3.3.2 we have that

Infki (f
e
L) and Infki (f

e
R) are both larger than τ for some i ∈ [n]. By definition
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of f eL and f eR this implies Infki (fu) and Infkπuw(i)(fv) are both larger than τ

where fu is f restricted to u× Fnq .

For each u ∈ U ∪W , let

Inf(u) := {i ∈ [n] | Inf i(fu) ≥ τ}

The labeling strategy is to assign for each u ∈ U ∪W a label independently

and uniformly at random from Inf(u). If Inf(u) is empty, assign an arbitrary

label to u. By Fact 3.2.15 (and since we can work with Fq-valued functions)

, the size of Inf(u) is at most k/τ for each u.

The above analysis shows that the expected fraction of edges satisfied by this

labeling is at least

1

log t
·
(τ
k

)2

Since this quantity depends only on q, we can choose η = η(q) small enough

so that more than η fraction of the edges are satisfied. This completes the

proof.

3.4 NP-Hardness of Vertex Pricing3

In this section we restate and prove Theorem 1.4.5.

Theorem. (Theorem 1.4.5 restated) Vertex Pricing3 under the coupon or the

discount model is NP-hard to approximate to factor Ω(log log log n).
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Figure 3.3: Dictator test Tπ
.

Test Tπ.

1. Generate x to be uniformly random from ZKq .

2. Generate y to be a uniformly random from ZLq .

3. For each j ∈ [L] and i = π(j), set

zj =
{ q − (xi + yj) if xi + yj ≤ q

2q − (xi + yj) if xi + yj > q

4. Let x′ ∼1−ε x, y′ ∼1−ε y and z′ ∼1−ε z for ε = 1/q

5. Randomly generate a integer k ∈ [
√
q],

6. Let z′′ = z′ + ~1 ·
⌊√

q/k
⌋

and add a customer interested in three items
x′,y′, z′′ with budget

⌊√
q/k
⌋

In Section 3.4.1 we present the dictatorship test for Vertex Pricing3 while

in Section 3.4.2 we compose the dictatorship test with Label Cover to obtain

our final reduction. Theorem 1.4.5 follows by combining Theorem 3.4.4, Theorem

3.4.5 and Theorem 3.4.6 and observing that OptD(I) ≤ OptC(I) for any Vertex

Pricing instance I.

3.4.1 Dictatorship test for Vertex Pricing3

Let K,L ∈ Z+ and L > K. For π : [L] → [K] being a projection, we define

the Vertex Pricing3 instance corresponding to the Dictator Test Tπ on V =

[q]L ∪ [q]K in Figure 3.3.

Below are two key properties of Tπ.
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Theorem 3.4.1 (completeness). For every j ∈ [L] and i = π(j), if we set f(t) =

ti− q/3 for t ∈ ZKq and g(r) = rj − q/3 for r ∈ ZLq , then profitTπ(f, g) ≥ Ω(log q).

Proof. It is easy to check with probability at least 1/3, we have that xi + yj ≤ q

for randomly and independently generated xi and yj after the second step in

Figure 3.3. Therefore for these xi,yj, we have zj = q − xi − yj at the third step.

Since x′i,y
′
j and z′j is generated by perturbing xi,yj, zj with probability at

most 1/q, by union bound we know that with probability at least 1/3 − 3/q, we

still have x′i+y′j +z′j = q. Also since z′j follows the uniform distribution on Zq, we

know with probability at least 1/3− 3/q− 1/
√
q ≥ 1/4 it holds that z′j ≤ q−√q.

Let us call these x′,y′, z′ “good”.

For “good” x′,y′, z′, we know that f(x′) = xi − q/3 and g(y′) = yj − q/3

and g(z′⊕q + ~1 ·
⌊√

q/k
⌋
) = zj +

⌊√
q/k
⌋
− q/3 (since z′j ≤ q − √q). Thus,

f(x′) + g(y′) + g(z′ + ~1 ·
⌊√

q/k
⌋
) =

⌊√
q/k
⌋
. Therefore, for good x′,y′, z′, we

made
⌊√

q/k
⌋

on the buyer interested in x′,y′, z′ + ~1 ·
⌊√

q/k
⌋
. Since we have at

least 1/4 “good” x′,y′, z′, we made profit 1/4 · 1/√q ·
∑

k

⌊√
q/k
⌋

= Ω(log q) on

them.

We also need to bound the negative profit as f and g can also take negative

value. This is when the case that f(x) + f(y) + f(z +~1 ·
⌊√

q/k
⌋
) < 0. We claim

that we may only lose money in one of the following two cases:

1. xi 6= x′i or yj 6= y′j or zj 6= z′j.

2. xi + yj <=
√
q.

To verify this, if case 1 and case 2 do not happen, then x = x′, y = y′ and

z = z′ and xi + yj >
√
q. When

√
q < xi + yj ≤ q,we know that f(x) + f(y) +
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f(z+~1 ·
⌊√

q/k
⌋
) =

⌊√
q/k
⌋
; when xi +yj > q, we know that f(x) +f(y) +f(z+

~1 ·
⌊√

q/k
⌋
) ≥ xi + yj − q + [zj +

⌊√
q/k
⌋
]q > 0.

By union bound we know that case 1 happens with probability at most 3/q;

and case 2 could only happen when xi + yj ≤
√
q and this also happens with

probability at most 1
q

(because we must have both x, y less than
√
q which occur

with probability 1/q). Overall, we know that only for 4/q fraction of the x, y, z

generated, we can possibly lose money. Also since f, g >= −q/3 by definition, we

can lose money for at most q on each customer. Therefore, we can at most lose

profit 4/q · q <= 4.

Overall the profit we have on f and g is still Ω(log q).

Theorem 3.4.2 (soundness). If for some function f : ZKq → R and g : ZLq → R,

we have profit+
T (f, g) ≥ 12, then we can have a (randomized) way of decoding f

in to a coordinate if ∈ [K] and g into a coordinate jg ∈ [L] such that the

Pr(π(jg) = if ) ≥ 1/q6.

In addition, the decoding of f is independent of g or π; i.e., there is one decoding

procedure that works for all possible π, g. Similarly the decoding procedure of g is

independent of f and π

Proof. First, we can assume that the pricing function is integer with profit loss 3

simply by taking the integer part of f and g.. To see this, for any fixed x′,y′, z′′,

we have some real pricing function f(x′) + g(y′) + g(z′′), then bf(x′)c+ bg(y′)c+

bg(z′′)c ≥ f(x′) + g(y′) + g(z′′)− 3. Therefore, we have that

profit+(bfc , bgc) ≥ profit+(f, g)− 3
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Further, we restrict the range of f, g by modulo q as in Definition 3.3.3. For

any function f , we define f̃ = [bfc]q g̃ = [bgc]q. Following lemma illustrates the

relationship between the profit of using bfc , bgc and f̃ , g̃.

lemma 3.4.3. profit+
Tπ(bfc , bgc) ≤ profit+

Tπ(f̃ , g̃) + profit+
Tπ(f̃ − q/3, g̃ − q/3) +

profit+
Tπ(f̃ − 2q/3, g̃ − 2q/3)

Proof. We know that if for some buyer who is interested in x′,y′, z′′ with budget⌊√
q/k
⌋
, then if f(x′) + g(y′) + g(z′′) ≤

⌊√
q/k
⌋
. Then it must be the case that

0 < f̃(x′) + g̃(y′) + g̃(z′′) <
⌊√

q/k
⌋

or q < f̃(x′) + g̃(y′) + g̃(z′′) < q+
⌊√

q/k
⌋

or

2q < f̃(x′) + g̃(y′) + g̃(z′′) < 2q +
⌊√

q/k
⌋
. Therefore, at least one of the pricing

strategy among (f̃ , g̃), (f̃ − q/3, g̃− q/3) or (f̃ − 2q/3, g̃− 2q/3) will have the same

profit as (f, g) on x′,y′, z′′.

It remains to bound profit+
T (f̃ , g̃) + profit+

T (f̃ − q/3, g̃ − q/3) + profit+(f̃ −

2q/3, g̃ − 2q/3). We will only show how to bound profit+(f̃ , g̃) ≤ 3 and the other

proof is similar.

Let us also introduce the notion f̃i : ZLq → {0, 1} as indicator function of

whether f̃ = i. We similarly define g̃i = i. We also write f̃i =
∑
f̃Si and g̃i =

∑
gSi

as the Efron-Stein Decomposition of f̃i, g̃i. .

We can represent the profit+(f̃ , g̃) as follows:

profit+
Tπ(f̃ , g̃) ≤ E

x′,y′,z′′,k

 ∑
0<i+j+l≤b√q/kc

(i+ j + l) · f̃i(x′)g̃j(y′)g̃l(z′′)

 (3.2)
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Now we plug in the Efron-Stein Decomposition of f̃i, g̃j, g̃l:

(3.2) = E
k

 ∑
0<i+j+l≤b√q/kc

∑
T1,T2⊆[L],S⊆[K],

(i+ j + l) E
x′,y′,z′′

[f̃Si (x′)g̃T1j (y′)g̃T2l (z′′)


(3.3)

We know that x′ is independent of y′ and x′ is independent of z′′ . By the

second property of Efron-Stein Decomposition, we must have that T1 = T2 = T as

otherwise ,Ex′,y′,z′′ [f̃
S
i (x)g̃T1j (y)g̃T2l (z′′)] = 0. For the similar reason if we write the

set π(T ) = {π(j) | j ∈ T}, then we must also have S ⊆ π(T ). We know then

(3.3) = E
k

 ∑
0<i+j+l≤b√q/kc

∑
T⊆[L]
S⊆π(T )

(i+ j + l) E
x′,y′,z′

[f̃Si (x′)g̃Tj (y′)g̃Tl (z′ +~1 · b√q/kc)]

(3.4)

= E
k

 ∑
0<i+j+l≤b√q/kc

∑
T⊆[L]
S=∅

(i+ j + l) E
x′,y′,z′

[f̃Si (x′)g̃Tj (y′)g̃Tl (z′ +~1 · b√q/kc)]

(3.5)

+ E
k

 ∑
0<i+j+l≤b√q/kc

∑
T⊆[L]

∅(S⊆π(T )

(i+ j + l) E
x′,y′,z′

[f̃Si (x′)g̃Tj (y′)g̃Tl (z′ +~1 · b√q/kc)]

(3.6)

In the second equality above, we divide (??) into two parts. (3.5) is when S = ∅

and the (3.6) is when S 6= ∅ and we will bound the two parts individually.

Case i) First we prove that (3.5) ≤ 2. Notice that f̃ ∅i (x′) is a constant, say

f̃ ∅i . Thus (3.5) is equal to

E
k

 ∑
0<i+j+l≤b√q/kc

∑
T⊆[L]

(i+ j + l) f̃ ∅i E
y′,z′

[gTj (y′)g̃Tl (z′ +~1 · b√q/kc)]

 (3.7)
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Figure 3.4: Test T ′π

Test T ′.

1. generate y′, z′, k according to their margin distribution on T .

2. set x′ to be uniformly over ZKq independent with y′, z′, k.

3. let us write z′′ = z′ + ~1 ·
⌊√

q/k
⌋

and add a customer interested in three
items x′,y′, z′′ with budget

⌊√
q/k
⌋

A crucial observation is that above expression can be viewed as the the profit

of bf̃c, bg̃con Dictator test T ′ defined in Figure 3.4.The test T ′π is different from Tπ

only in the generation of x′ which is set to be independent with y′ and z′′.Then

when we calculate the profit as in equation (??), we would get that

E
x′,y′,z′′∼T ′π

[f̃Si (x′)g̃T1j (y′)g̃Tl (z′′)] 6= 0

only when S = ∅ and T1 = T2. This is exactly the same as (3.7). It remains to

bound the profit on T ′π.

The next important observation on T ′π here is that actually y′, z′ and y′, z′′

has the same marginal distribution. Therefore, we can further simplify the test as

T ′′π defined in Figure 3.5. As for the test T ′′π , for every fixed x′,y′, z′, and suppose

√
q/(k0 + 1) < f̃(x) + g̃(y) + g̃(z) ≤ √q/k0. Then such a pricing function will

only have profit when k ≤ (k0 + 1) and for that fixed x′,y′, z′, the expected profit

conditioned on k (being randomly generated from [
√
q]) is at most 1√

q
· √q/k0 ·

(k0 + 1) ≤ 2..
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Figure 3.5: Test T ′′π

Test T ′′.

1. generate y′, z′, k according to their marginal distribution on T .

2. set x′ to be uniformly over ZKq independent with y′, z′, k.

3. add a customer interested in three items x′,y′, z′ with budget
⌊√

q/k
⌋
.

Overall, we proved that

(3.5) = profit+
T ′π(bf̃c, bg̃c) = profit+

T ′′π (bf̃c, bg̃c) ≤ 2.

Case ii) It remains to bound (3.6). Let us prove this by contradiction. We

will show that if (3.6) ≥ 1, then there exists a way of decoding f and g as described

in Theorem 3.4.2.

We know that (3.6) is equal to

E
k

 ∑
0<i+j+l≤b√q/kc

∑
T⊆[L]

∅(S⊆π(T )

(i+ j + l) E
x′,y′,z′

[f̃Si (x′)g̃Tj (y′)g̃Tl (z′ +~1 · b√q/kc)]


(3.8)

Let us now focus on the second sum within the expectation for fixed i, j and

l. Notice that x′ ∼1−ε x, y′ ∼1−ε y
′ and z′ ∼1−ε z, by the definition of the noise

operator, we have that the second sum in (3.8) is equal to

∑
T⊆[L]

∅(S⊆π(T )

(i+ j + l) E
x,y,z

[T1−εf̃
S
i (x)T1−εg̃

T
j (y)T1−εg̃

T
l (z +~1 · b√q/kc)] (3.9)

88



Let us write f̃π(T ) =
∑
∅(S⊆π(T )

ˆ̃f(S). Then we know that (3.9) is equal to

∑
T⊆[L]

(i+ j + l) E
x,y,z

[T1−εf̃
π(T )
i (x)T1−εg̃

T
j (y)T1−εg̃

T
l (z +~1 · b√q/kc)]

Using Cauchy Inequality in the expectation of above formula and noticing that

x,y and y, z are independent, we have that (3.9) is at most

(i+ j + l)
∑
T⊆[L]

√
E
x

[T1−εf̃
π(T )
i (x)2] E

y
[T1−εg̃Tj (y)2] E

z
[T1−εg̃Tl (z +~1 · b√q/kc)2]

= (i+ j + l)
∑
T⊆[L]

‖T1−εf̃
π(T )
i ‖2 · ‖T1−εg̃

T
j ‖2 · ‖T1−εg̃

T
l ‖2

(3.10)

We can further use Cauchy inequality to bound the inside sum for every i, j, l :

∑
T⊆[L]

‖T1−εf̃
π(T )
i ‖2 · ‖T1−εg̃

T
j ‖2 · ‖T1−εg̃

T
l ‖2

≤
√∑

T⊆[L]

‖T1−εf̃
π(T )
i ‖2

2 · ‖T1−εg̃Tj ‖2
2

∑
T⊆[L]

‖T1−εg̃Tl ‖2
2 (3.11)

Notice that
∑

T⊆[L] ‖T1−εg̃
T
l ‖2

2 = ‖T1−εg̃l‖2
2 ≤ 1. Therefore, we have that

1 ≤ (3.6) ≤ (3.10) ≤
∑

0<i+j+l≤√q

(i+ j + l)

√∑
T⊆[L]

‖T1−εf
π(T )
i ‖2

2 · ‖T1−εgTj ‖2

Thus there must exist some i0, j0 such that

∑
T⊆[L]

‖T1−εf̃
π(T )
i0
‖2

2 · ‖T1−εg̃
T
j0
‖2 =

∑
T⊆[L]

∅(S⊆π(T )

(1− ε)|S|+|T |‖f̃Si0‖
2
2‖g̃Tj0‖

2
2 ≥ 1/q5.

89



It is easy to verify that
∑

i∈Fq ,S⊆[K] ‖f̃Si ‖2
2 = 1 and

∑
j∈Fq ,T⊆[L] ‖g̃Tj ‖2

2 = 1. Below

is the randomized decoding procedure for f and g. For f , we sample (i, S) with

probability ‖f̃Si ‖2
2 and randomly output a mf ∈ S. Similarly for g, we randomly

sample (j, T ) with probability ‖gTj ‖2
2 and randomly output a coordinate ng in T .

Then the probability that π(ng) = mf is at least

Pr(π(ng) = mf ) ≥
∑

∅(S⊆π(T ),T⊆[L]

‖f̃Si0‖
2
2 · ‖g̃Tj0‖

2

T
(3.12)

Above we only count the probability when (i0, S) and (j0, T ) are selected such that

∅ ( S ⊆ π(T ). Then we know that for randomly picked elements mf ∈ S and

ng ∈ T , with probability at least 1/T , we have π(ng) = mf .

Also notice that 1/|T | ≥ ε · (1− ε)|T |. Since ε = 1/q, we have that

Pr(π(ng) = mf ) ≥ (3.12) ≥
∑

∅(S⊆π(T ),T⊆[L]

ε(1− ε)T‖f̃Si0‖
2
2 · ‖g̃Tj0‖

2 ≥ 1/q6. (3.13)

3.4.2 Reduction from Label Cover

The starting point of our hardness reduction is the following Label Cover prob-

lem (Definition 1.3.2).

The following is known about the hardness of approximating Label Cover.

Theorem 3.4.4 ([MR10]). For some positive constant c > 0, it is NP-hard to

distinguish a label cover problem vertices of n vertices and alphabet size K,L ≤
√

log n.

• YES Case: Opt(L) = 1.
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Figure 3.6: Hardness reduction from Label Cover

1. randomly sample an edge e = (u, v) ∈ E.

2. sample x′,y′, z′′, k according to the Tπe

3. add a customer interested in (v,x′),(u,y′), (u, z′′) with budget k.

• NO Case: Opt(L) ≤ δ for δ = 1/(log log n)c.

Given a Label Cover instance L(G(U, V,E), [L], [K], {πe|e ∈ E}), we con-

struct a Vertex Pricing3 instance I with its vertices defined over (U × [q]L ∪

V × [q]R) for q = (log log n)c/10. The construction of edges and budget is described

in in Figure 3.6. It is easy to verify the reduction is in polynomial time.We identify

each item by (w, r) for w ∈ U, r ∈ [q]L or w ∈ V, r ∈ [q]K . Let us denote the corre-

sponding pricing function to be {fu : [q]L → R|u ∈ U} ∪ {fv : [q]K → R | v ∈ V }:

we price items (w, r) by fw(r). We will prove that the reduction has the following

properties(Theorem 3.4.5 and Theorem 3.4.6).

Theorem 3.4.5 (Completeness). If there is a labelling that satisfies every edge for

L, then OptD(I) ≥ Ω(log q).

Proof. If there is a labelling σ : U → [L], V → [K], then we can simply use the

following pricing function: for w ∈ U ∪ V , we use the price function fw(t) =

tσ(w) − q/3.

By the completeness property of Tπe , we know that such a pricing strategy will

have profit Ω(log q).

Theorem 3.4.6 (Soundness). If OptC(I) ≥ 13, then there is a labelling that

satisfies more than 1/q7 ≥ δ fraction of the edges.
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Proof. (soundness) Suppose OptC(I) ≥ 13, notice that the maximum profit is at

most
√
q with each customer, then by an average argument, we know that for 1/q

fraction of the edges (u, v) picked, we have that fu, fv has expected profit at least

13− 1/
√
q > 12. Let us call these (u, v) to be good.

Then by Theorem 3.4.2, there is way of decoding the fu, fv into coordinate iu, iv

with the promise that Pr(π(iu) = iv) ≥ 1/q6. Then if we just label each “good”

edge (u, v) with iu, iv, such a labelling will satisfy at least 1/q ·1/q6 = 1/q7 fraction

of the edges.
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Chapter 4

Integrality gap for 2-to-1 Label

Cover

In this chapter we restate and prove Theorem 1.4.6 as well as state and prove our

results about 2-to-2 Label Cover and α Label Cover.

Theorem. (Theorem 1.4.6 restated) There are instances of

2-to-1 Label Cover with alphabet size K and optimum value O(1/
√

logK) on

which the SDP has value 1. The instances have size 2Ω(K).

In Section 4.1 we describe some notation and tools that will be used throughout

the chapter. In Section 4.2 we state and prove our result for 2-to-2 Label Cover.

Section 4.3 describes the integrality gap for 2-to-1 Label Cover, Theorem 1.4.6

follows from the completeness and soundness analysis therein. In Section 4.4 we

show that every integrality gap instance for 2-to-1 Label Cover with sufficiently

many edges can be converted to an integrality gap instance for α Label Cover.

We close the chapter with some discussion in Section 4.5 about our results and

future work.
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4.1 Preliminaries and Notation

4.1.1 Label Cover Problems

Here we will use a slightly broader definition of Label Cover since Definition

1.3.2 doesn’t include one of the problems we are interested in, namely, α Label

Cover.

Definition 4.1.1. A Label Cover instance L is defined by a tuple ((V,E), R,Ψ).

Here (V,E) is a graph, R is a positive integer and Ψ is a set of constraints (re-

lations), one for each edge: Ψ = {ψe ⊆ {1, . . . , R}2 | e ∈ E}. A labeling A is

a mapping A : V → [R]. We say that an edge e = (u, v) is satisfied by A if

(A(u), A(v)) ∈ ψe. We define:

OPT(L) = max
A:V→[R]

Pr
e=(u,v)∈E

[(A(u), A(v)) ∈ ψe]

Here the probability is over the uniform distribution of edges, i.e. each edge is

equally likely to be picked.

In Figure 4.1, we write down a natural SDP relaxation for the Label Cover

problem. The relaxation is over the vector variables z(v,i) for every vertex v ∈ V

and label i ∈ [R].

Our goal in this work is to study integrality gaps for the above SDP for various

special cases of the Label Cover problem. We already discussed the Unique

Games and 2-to-1 Games conjectures on the hardness of certain very special

cases of Label Cover. We now discuss two other variants of Label Cover and

their conjectured inapproximability.

Definition 4.1.2. A constraint ψ ⊆ {1, . . . , 2R}2 is said to be a 2-to-2 constraint if
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maximize E
e=(u,v)∈E

[ ∑
i,j∈ψe

〈
z(u,i), z(v,j)

〉]
subject to

∑
i∈[R]

∥∥z(v,i)

∥∥2
= 1 ∀ v ∈ V〈

z(v,i), z(v,j)

〉
= 0 ∀ i 6= j ∈ [R], v ∈ V

Figure 4.1: SDP for Label Cover

there are two permutations σ1, σ2 : {1, . . . , 2R} → {1, . . . , 2R} such that (i, j) ∈ ψ

if and only if (σ1(i), σ2(j)) ∈ T where

T := {(2l − 1, 2l − 1), (2l − 1, 2l), (2l, 2l − 1), (2l, 2l)}Rl=1.

A Label Cover instance is said to be 2-to-2 if all its constraints are 2-to-2

constraints.

A constraint ψ ⊆ {1, . . . , 2R}2 is said to be an α-constraint if there are two

permutations σ1, σ2 : {1, . . . , 2R} → {1, . . . , 2R} such that (i, j) ∈ ψ if and only if

(σ1(i), σ2(i)) ∈ T ′ where

T ′ := {(2l − 1, 2l − 1), (2l − 1, 2l), (2l, 2l − 1)}Rl=1.

A Label Cover instance is said to be α if all its constraints are α constraints.

Conjecture 4.1.3. [DMR09] (2-to-2 Conjecture) For any δ > 0, it is NP-hard

to decide whether a 2-to-2 Label Cover instance L has OPT(L) = 1 or has

OPT(L) ≤ δ.

It was shown in [DMR09] that the 2-to-2 Conjecture is no stronger than the
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2-to-1 Conjecture.

Conjecture 4.1.4. [DMR09] (α Conjecture) For any δ > 0, it is NP-hard to

decide whether an α Label Cover instance L has OPT(L) = 1 or has OPT(L) ≤

δ.

4.1.2 Fourier Analysis

Let V := {f : Fk2 → R} denote the vector space of all real functions on Fk2, where

addition is defined as point-wise addition. We always think of Fk2 as a probability

space under the uniform distribution, and therefore use notation such as ‖f‖p :=

Ex∈Fk2 [|f(x)|p]. For f , g ∈ F , we also define the inner product 〈f, g〉 := E[f(x)g(x)].

For any α ∈ Fk2 the Fourier character χα ∈ F is defined by χα(x) := (−1)α·x.

The Fourier characters form an orthonormal basis for V with respect to the above

inner product, hence every function f ∈ V has a unique representation as f =∑
α∈Fk2

f̂(α)χα, where the Fourier coefficient f̂(α) := 〈f, χα〉.

We also sometimes identify each α with the set Sα = {i | αi = 1} and denote

the Fourier coefficients as f̂(S). We use the notation |α| for |Sα|, the number of

coordinates where α is 1.

The following well-known fact states that the norm of a function on Fk2 is

unchanged when expressing it in the basis of the characters.

Proposition 4.1.5. (Parseval’s identity) For any f : Fk2 → R,
∑

α∈Fk2
f̂(α)2 =

‖f‖2
2 = E[f(x)2].

We shall also need the following result due to Talagrand (Proposition 2.3

in [Tal94]), proven using hypercontractivity methods:
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Theorem 4.1.6. Suppose F : Fk2 → R has E[F ] = 0. Then

∑
α∈Fk2\{0}

F̂ (α)2/|α| = O

(
‖F‖2

2

ln(‖F‖2/(e‖F‖1))

)

More precisely, we will need the following easy corollary:

Corollary 4.1.7. If F : Fk2 → {0, 1} has mean 1/K, then

F̂ (0)2 +
∑

α∈Fk2\{0}

F̂ (α)2/|α| = O (1/(K logK))

Proof. We have F̂ (0)2 = E[F ]2 = 1/K2 ≤ O(1/(K logK)), so we can disregard

this term. As for the sum, we apply Theorem 4.1.6 to the function F ′ = F − 1/K,

which has mean 0 as required for the theorem. It is easy to calculate that ‖F ′‖2 =

Θ(1/
√
K) and ‖F ′‖1 = Θ(1/K), and so the result follows.

4.2 Integrality Gap for 2-to-2 Games

In this section we prove the following integrality gap for 2-to-2 Label Cover.

Theorem 4.2.1. There are instances of 2-to-2 Label Cover with alphabet size

K and optimum value O(1/logK) on which the SDP has value 1. The instances

have size 2Ω(K).

The theorem follows by the completeness and soundness analysis of the instance

described below. The instance for 2-to-1 Label Cover will be an extension of

the one below. In fact, our analysis of OPT in the 2-to-1 case will follow simply

by reducing it to the analysis of OPT for the 2-to-2 instance below.
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The vertex set V in our instance is same as the vertex set of the Unique Games

integrality gap instance constructed in [KV05]. Let F := {f : Fk2 7→ {−1, 1}}

denote the family of all boolean functions on Fk2. For f , g ∈ F , define the product

fg as (fg)(x) := f(x)g(x). Consider the equivalence relation ∼ on F defined as

f ∼ g ⇔ ∃α ∈ Fk2 s.t. f ≡ gχα. This relation partitions F into equivalence classes

P1, . . . ,Pn, with n := 2K/K. The vertex set V consists of the equivalence classes

{Pi}i∈[n]. We denote by [Pi] the lexicographically smallest function in the class Pi

and by Pf , the class containing f .

We take the label set to be of size K and identify [K] with Fk2 in the obvious

way. For each tuple of the form (γ, f, g) where γ ∈ Fk2 \ {0} and f, g ∈ F are

such that (1 + χγ)f ≡ (1 + χγ)g, we add a constraint ψ(γ,f,g) between the vertices

Pf and Pg. Note that the condition on f and g is equivalent to saying that

χγ(x) = 1 =⇒ f(x) = g(x). If f = [Pf ]χα and g = [Pg]χβ and if A : [n] → Fk2

denotes the labeling, the relation ψ(γ,f,g) is defined as

(A(Pf ), A(Pg)) ∈ ψ(γ,f,g) ⇔ (A(Pf ) + α)− (A(Pg) + β) ∈ {0, γ}.

Note that for any ω ∈ Fk2, the constraint maps the labels {ω, ω + γ} for Pf to the

labels {ω + α− β, ω + α− β + γ} for Pg in a 2-to-2 fashion. We denote the set of

all constraints by Ψ. We remark that, as in [KV05], our integrality gap instances

contain multiple constraints on each pair of vertices.

4.2.1 SDP Solution

We give below a set of feasible vectors z(Pi,α) ∈ RK for every equivalence class Pi

and every label α, achieving SDP value 1. Identifying each coordinate with an
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x ∈ Fk2, we define the vectors as

z(Pi,α)(x) :=
1

K
([Pi]χα)(x).

It is easy to check that
∥∥z(Pi,α)

∥∥2
= 1/K for each of the vectors, which satisfies

the first constraint. Also, z(Pi,α) and z(Pi,β) are orthogonal for α 6= β since

〈
z(Pi,α), z(Pi,β)

〉
=

1

K2
〈[Pi]χα, [Pi]χβ〉 =

1

K2
〈χα, χβ〉 = 0

using the fact that [Pi]2 = 1. The following claim proves that the solution achieves

SDP value 1.

Claim 4.2.2. For any edge e indexed by a tuple (γ, f, g) with f(1+χγ) ≡ g(1+χγ),

we have ∑
ω1,ω2∈ψ(γ,f,g)

〈
z(Pf ,ω1), z(Pg ,ω2)

〉
= 1.

Proof. Let f ≡ [Pf ]χα and g ≡ [Pg]χβ. Then, (ω1, ω2) ∈ ψe iff (ω1 +α)−(ω2 +β) ∈

{0, γ}. Therefore, the above quantity equals (divided by 2 to account for double

counting of ω)

1

2
·
∑
ω

(〈
z(Pf ,ω+α), z(Pg ,ω+β)

〉
+
〈
z(Pf ,ω+α+γ), z(Pg ,ω+β)

〉
+
〈
z(Pf ,ω+α), z(Pg ,ω+β+γ)

〉
+
〈
z(Pf ,ω+α+γ), z(Pg ,ω+β+γ)

〉)
=

1

2

∑
ω

〈
z(Pf ,ω+α) + z(Pf ,ω+α+γ), z(Pf ,ω+β) + z(Pf ,ω+β+γ)

〉
(4.1)

However, for each ω, we have z(Pf ,ω+α) + z(Pf ,ω+α+γ) = z(Pf ,ω+β) + z(Pf ,ω+β+γ),
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since for all coordinates x,

z(Pf ,ω+α)(x) + z(Pf ,ω+α+γ)(x) =
1

K
([Pf ]χω+α(x) + [Pf ]χω+α+γ(x))

=
1

K
(f(x) + fχγ)χω(x) =

1

K
(g(x) + gχγ)χω(x)

=
1

K
([Pg]χω+β(x) + [Pg]χω+β+γ(x)) = z(Pf ,ω+β)(x) + z(Pf ,ω+β+γ)(x).

This completes the proof as the value of (4.1) then becomes

1

2

∑
ω

∥∥z(Pf ,ω+α) + z(Pf ,ω+α+γ)

∥∥2
=

1

2

∑
ω

(∥∥z(Pf ,ω+α)

∥∥2
+
∥∥z(Pf ,ω+α+γ)

∥∥2
)

= 1.

4.2.2 Soundness

We now prove that any labeling of the instance described above, satisfies at

most O(1/ logK) fraction of the constraints. Let A : V → Fk2 be a labeling of

the vertices. We extend it to a labeling of all the functions in F by defining

A([Pi]χα) := A(Pi) + α.

For each α ∈ Fk2, define Aα : F → {0, 1} to be the indicator that A’s value is

100



α. By definition, the fraction of constraints satisfied by the labeling A is

val(A) = E
(γ,f,g)∈Ψ

∑
α∈Fk2

Aα(f)(Aα(g) + Aα+γ(g))


= E

(γ,f,g)∈Ψ

∑
α∈Fk2

Aα(f)(Aα(g) + Aα(gχγ))


= 2 · E

(γ,f,g)∈Ψ

∑
α∈Fk2

Aα(f)(Aα(g)

 (4.2)

where the last equality used the fact that for every tuple (γ, f, g) ∈ Ψ, we also

have (γ, f, gχγ) ∈ Ψ.

Note that the extended labeling A : F → Fk2 takes on each value in Fk2 an equal

number of times. Hence

E
f

[Aα(f)] = Pr
f

[A(f) = α] = 1/K for each α ∈ Fk2. (4.3)

For our preliminary analysis, we will use only this fact to show that for any α ∈ Fk2

it holds that

E
(γ,f,g)∈Ψ

[Aα(f)Aα(g)] ≤ O(1/(K logK)). (4.4)

It will then follow that the soundness (4.2) is at most O(1/ logK). Although this

tends to 0, it does so only at a rate proportional to the logarithm of the alphabet

size, which is K = 2k.

Beginning with the left-hand side of (4.4), let’s write F = Aα for simplicity. We

think of the functions f and g being chosen as follows. We first choose a function

h : γ⊥ → {−1, 1}. Note that γ⊥ ⊆ Fk2 is the set of inputs where χγ = 1 and hence
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f = g, and we let f(x) = g(x) = h(x) for x ∈ γ⊥. The values of f and g on the

remaining inputs are chosen independently at random. Then

E
(γ,f,g)∈Ψ

[F (f)F (g)] = E
γ

E
h:γ⊥→{−1,1}

[
E
f,g|h

[F (f)F (g)]

]
= E

γ
E

h:γ⊥→{−1,1}

[
E
f |h

[F (f)] E
g|h

[F (g)]

]
. (4.5)

Let us write PγF (h) for Ef |h F (f), which is also equal to Eg|h F (g). We now use

the Fourier expansion of F . Note that the domain here is {−1, 1}K instead of Fk2.

To avoid confusion with characters and Fourier coefficients for functions on Fk2, we

will index the Fourier coefficients below by sets S ⊆ Fk2. Given an f ∈ V , we’ll

write fS for
∏

x∈S f(x) (which is a Fourier character for the domain {−1, 1}K).

Now for fixed γ and h,

PγF (h) = E
f |h

[F (f)] = E
f |h

∑
S⊆Fk2

F̂ (S)fS

 =
∑
S⊆Fk2

F̂ (S) · E
f |h

[fS].

The quantity Ef |h[f
S] is equal to hS if S ⊆ γ⊥ and is 0 otherwise. Thus, using

the Parseval identity, we deduce that (4.5) equals

E
γ

E
h:γ⊥→{−1,1}

[
(PγF (h))2

]
= E

γ

∑
S⊆γ⊥

(
F̂ (S)

)2

 =
∑
S⊆Fk2

Pr
γ

[S ⊆ γ⊥] ·
(
F̂ (S)

)2

.

Recalling that γ ∈ Fk2 \ {0} is chosen uniformly, we have that

∑
S⊆Fk2

Pr
γ

[S ⊆ γ⊥] ·
(
F̂ (S)

)2

=
∑
S⊆Fk2

2−dim(S) ·
(
F̂ (S)

)2

,

where we are writing dim(S) = dim(span S) for shortness (and defining dim(∅) =
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0). For |S| ≥ 1 we have dim(S) ≥ log2 |S| and hence 2− dim(S) ≥ 1/|S|. Thus

∑
S⊆Fk2

2−dim(S) · F̂ (S)2 ≤ F̂ (∅)2 +
∑
∅6=S⊆Fk2

F̂ (S)2/|S|.

Corollary 4.1.7 shows that this is at most O(1/(K logK)). This completes the

proof:

val(A) = 2 ·
∑
α∈Fk2

E
(γ,f,g)∈Ψ

[Aα(f)Aα(g)] ≤ 2 ·
∑
α∈Fk2

2− dim(S)Âα(S)2 = O(1/ logK)

4.3 Integrality gap for 2-to-1 label cover

The instances for 2-to-1 label cover are bipartite. We denote such instances as

(U, V,E,R1, R2,Π) where R2 = 2R1 denote the alphabet sizes on the two sides. For

a bipartite instance, the label cover SDP can be written as in Figure 4.2 involving

vectors y(u,i) for each u ∈ U, i ∈ [R1] and vectors z(v,j) for each v ∈ v, j ∈ [R2].

maximize E
e=(u,v)∈E

[∑
i∈[R2]

〈
y(u,πe(i)), z(v,j)

〉]
subject to

∑
i∈[R1]

∥∥y(u,i)

∥∥2
= 1 ∀ u ∈ U

∑
i∈[R2]

∥∥z(v,i)

∥∥2
= 1 ∀ v ∈ V〈

y(u,i),y(u,j)

〉
= 0 ∀ i 6= j ∈ [R1], u ∈ U〈

z(v,i), z(v,j)

〉
= 0 ∀ i 6= j ∈ [R2], v ∈ V

Figure 4.2: SDP for 2-to-1 Games
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4.3.1 Gap Instance

As in the case of 2-to-2 games, the set V consists of equivalence classes P1, . . . ,Pn,

which partition the set of functions F = {f : Fk2 → {−1, 1}}, according to the

equivalence relation ∼ defined as f ∼ g ⇔ ∃α ∈ Fk2 s.t. f ≡ gχα. The label set

[R2] is again identified with Fk2 and is of size K = 2k.

To describe the set U , we further partition the vertices in V according to other

equivalence relations. For each γ ∈ Fk2, γ 6= 0, we define an equivalence relation ∼=γ

on the set P1, . . . ,Pn as

Pi ∼=γ Pj ⇔ ∃f ∈ Pi, g ∈ Pj s.t. f(1 + χγ) ≡ g(1 + χγ)

This is equivalent to saying:

Pi ∼=γ Pj ⇔ ∃f ∈ Pi, g ∈ Pj s.t. fg(x) = −1⇒ χγ(x) = −1 ∀x ∈ Fk2

This partitions P1, . . . ,Pn (and hence also the set F) into equivalence classes

Qγ1 , . . . ,Qγm. Here m = 2K/2+1/K (this is immediate from the second definition

and the fact that n = 2K/K) and the partition is different for each γ. The set U

has one vertex for each class of the form Qγi for all i ∈ [m] and γ ∈ Fk2 \ {0}. As

before, we denote by [Qγi ] the lexicographically smallest function in the class Qγi ,

and by Qγf the class under ∼=γ containing f . Note that if f ∈ Qγi , then there exists

a β ∈ Fk2 such that f(1 + χγ) ≡ [Qγi ]χβ(1 + χγ).

The label set R1 has size K/2. For each vertex Qγi ∈ U , we think of the

labels as pairs of the form {α, α + γ} for α ∈ Fk2. More formally, we identify it
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with the space Fk2/〈γ〉. We impose one constraint for every pair of the form (γ, f)

between the vertices Pf and Qγf . If f ≡ [Pf ]χα and f(1 + χγ) ≡ [Qγi ]χβ(1 + χγ),

then the corresponding relation ψ(γ,f) is defined by requiring that for any labelings

A : V → [R2] and B : U → [R1],

(B(Qγf ), A(Pf )) ∈ ψ(γ,f) ⇔ A(Pf ) + α ∈ B(Qγf ) + β

Here, if B(Qγf ) is a pair of the form {ω, ω + γ}, then B(Qγf ) + β denotes the pair

{ω + β, ω + γ + β}.

4.3.2 SDP Value

As before, we give a set of vectors y(Qγi ,{α,α+γ}) and z(Pi,α) in RK , identifying each

coordinate with an x ∈ Fk2. We define the vectors as

y(Qγi ,{α,α+γ})(x) :=
1

K
([Qγi ]χα(1 + χγ)) (x),

z(Pi,α)(x) :=
1

K
([Pf ]χα) (x).

We have already shown that
〈
z(Pi,α), z(Pi,β)

〉
= 0 for α 6= β and

∥∥z(Pi,α)

∥∥2
=

1/K. It again follows by the orthogonality of characters that for disjoint pairs

{α, α+γ} and {β, β+γ}, the vectors y(Qγi ,{α,α+γ}) and y(Qγi ,{β,β+γ}) are orthogonal.

It is also easy to verify that
∥∥∥y(Qγi ,{α,α+γ})

∥∥∥2

= 2/K. Hence, the vectors form a

feasible solution.

To show that the SDP value is equal to 1, we consider an arbitrary constraint

indexed by the pair (γ, f). Let f ≡ [Pf ]χα and f(1 + χγ) ≡ [Qγi ]χβ(1 + χγ).

Then for any ω ∈ Fk2, this constraint maps the label ω + α for Pf to the pair
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{ω+β, ω+ γ+β} for Qγf . Hence, the value of the SDP solution on this constraint

is given by ∑
ω∈Fk2

〈
y(Qγi ,{ω+β,ω+β+γ}), z(Pi,α+ω)

〉
We will show that for every ω, y(Qγi ,{ω+β,ω+β+γ}) = z(Pi,α+ω) +z(Pi,α+ω+γ). This will

complete the proof as the above expression then becomes

∑
ω∈Fk2

〈
z(Pi,α+ω) + z(Pi,α+ω+γ), z(Pi,α+ω)

〉
=

∑
ω∈Fk2

∥∥z(Pi,α+ω)

∥∥2
= 1

To show the vector identity, we simply note that for each coordinate x, we have

y(Qγi ,{ω+β,ω+β+γ})(x) =
1

K
([Qγi ]χβ(1 + χγ)) (x)

=
1

K
(f(1 + χγ)) (x)

=
1

K
([Pf ]χα + [Pf ]χα+γ) (x)

= z(Pi,α+ω)(x) + z(Pi,α+ω+γ)(x).

4.3.3 Soundness

We now bound the fraction of constraints satisfied by any pair of labelings A :

V → [K] and B : U → [K/2]. Let 1{E} denote the indicator of the event E ,

and N(u) denote the neighborhood of a vertex u ∈ U . Then, the fraction of

constraints satisfied by any assignments A,B, can be bound by an application of
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Cauchy-Schwarz as

val(A,B) = E
u∈U

E
v∈N(u)

[
1{πuv(A(v))=B(u)}

]
≤

(
E
u∈U

(
E

v∈N(u)

[
1{πuv(A(v))=B(u)}

])2
)1/2

=

(
E
u∈U

E
v1,v2∈N(u)

[
1{πuv1 (A(v1))=B(u)=πuv2 (A(v2))}

])1/2

≤
(

E
u∈U

E
v1,v2∈N(u)

[
1{πuv1 (A(v1))=πuv2 (A(v2))}

])1/2

Note that if πuv1 and πuv2 are 2-to-1 projections, then the inner quantity in the

last expression denotes the value of a 2-to-2 label cover instance, each of whose

constraints is defined by two 2-to-1 constraints in the original instance. For the 2-

to-1 instance described above, we will show that the inner quantity in fact denotes

the fraction of constraints satisfied by A for the 2-to-2 instance described in Section

4.2. This will show that the fraction of constraints satisfied by any assignment in

the above 2-to-1 instance can be at most O(1/
√

logK).

To see this, note that a vertex u ∈ U and a vertex v1 ∈ V can be sampled jointly

by picking a pair (γ, f) and taking u = Qγf and v1 = Pf . Sampling v2 ∈ N(u)

corresponds to choosing a class Pi such that for some β ∈ Fk2 [Pi]χβ(1 + χγ) ≡

f(1 +χγ). Thus, v2 can be sampled by choosing a random g such that f(1 +χγ) ≡

g(1 + χγ) and taking v2 = Pg.

Also, if f ≡ [Pf ]χα1 and g ≡ [Pg]χα2 , then the constraint πuv1(A(v1)) =

πuv2(A(v2)) simply requires that for some ω ∈ Fk2, A(Pf ) + α1 and A(Pg) + α2
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both lie in the set {ω, ω + γ} and hence

(A(Pf ) + α1)− (A(Pg) + α2) ∈ {0, γ}

4.4 From 2-to-1 constraints to α-constraints

In this section we show that any integrality gap instance for 2-to-1 games, with

sufficiently many edges, can be converted to an integrality gap instance for games

with α-constraints. The following theorem follows by combining Theorem 4.4.2

below and Theorem 1.4.6.

Theorem 4.4.1. There are instances of α Label Cover with alphabet size K

and optimum value O(1/
√

logK) on which the SDP has value 1. The instances

have size 2Ω(K).

Theorem 4.4.2. Let L = (U, V,E,R, 2R,Ψ) be a bipartite instance of 2-to-1

label cover problem with OPT(L) ≤ δ and SDP value 1. Also, let |E| ≥ 4(|U | +

|V |) log(R)/ε2. Then there exists another instance L′ = (U, V,E, 2R,Ψ′) of Label

Cover with α-constraints having SDP value 1 and OPT(L′) ≤ δ + ε+ 1/R.

Proof. The proof simply follows by adding R “fake” labels for each vertex u ∈ U ,

and then randomly augmenting the constraints to make them of the required form.

In particular, let the new labels we add for each u ∈ U be R + 1, . . . , 2R. Let

e = (u, v) be an edge. Since the constraints in Ψ are 2-to-1 type, there exist

permutations σ1,e : [R]→ [R] and σ2,e : [2R]→ [2R] such that after permuting the

labels on each side, the projection πe maps labels (2i− 1, 2i) to i i.e. πe(σ
−1
2,e(2i−

1)) = πe(σ
−1
2,e(2i)) = σ−1

1,e(i).
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To incorporate the new labels into the constraint, choose a random bijection

σ′1,e : {R + 1, . . . , 2R} → [R]. We now construct a new permutation σ̃1,e : [2R] →

[2R] as σ̃1,e(i) = 2σ1,e(i) − 1 if i ≤ R and σ̃1,e(i) = 2σ′1,e(i) if i > R i.e. the new

labels are mapped to the even positions 2, 4, . . . , 2R while the others are mapped

to the odd positions.

The original 2-to-1 constraints are satisfied by a labeling A iff the pair

(σ̃1,e(A(u), σ2,e(A(v))) is of the form (2i− 1, 2i− 1) or (2i− 1, 2i) for some i ≤ R.

We augment the constraint by also allowing (σ̃1,e(A(u), σ2,e(A(v))) to be (2i, 2i−1)

for some i. Note that if the constraint is satisfied in this way, then u must get one

of the new labels. Also, note that the augmentation is random as we choose the

map σ′1,e independently at random for each edge e.

Given a vector solution {y(u,i)}u∈U,i∈[R] and {z(v,j)}v∈V,j∈[2R] for Ψ, we leave the

vectors z(v,j) unchanged and for each u ∈ U , take z(u,i) = y(v,i) if i ≤ R and 0

otherwise. It is immediate that the solution is feasible. Also, the value of the

objective is the same as the value of the 2-to-1 SDP, as all the additional terms in

the objective involve some vector z(u,i) for some i > R and are hence 0. Thus, the

SDP value for the new instance is 1.

To bound the optimal value of any labeling A : U ∪ V → [2R], we split it as

E
e=(u,v)∈E

[
1{(A(u),A(v)) satisfy e}

]
= E

e=(u,v)∈E

[
1{A(u)≤R} · 1{(A(u),A(v)) satisfy e}

]
+ E

e=(u,v)∈E

[
1{A(u)>R} · 1{(A(u),A(v)) satisfy e}

]
Note that the first term is simply the number of 2-to-1 constraints satisfied by A

and it at most δ by assumption.

Also, for any fixed labeling A, the probability over the choice of the random
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maps {σ′1,e}e∈E, that (A(u), A(v)) satisfy e given that A(u) > R, is at most 1/R.

By a Chernoff bound, the fraction of edges (u, v) satisfied with A(u) > R is at

most 1/R+ ε with probability exp(−ε2|E|/3) over the choice of the random maps.

By a union bound and the condition on ε, the second term is at most 1/R + ε

for all labelings A, with high probability over the choice of {σ′1,e}e∈E. Picking an

instance with appropriate choice of maps σ′1,e gives the required instance L′.

4.5 Discussion

The instances we construct have SDP value 1 only for the most basic semidefinite

programming relaxation. It would be desirable to get gaps for stronger SDPs,

beginning with the most modest extensions of this basic SDP. For example, in

the SDP for 2-to-1 Label Cover from Figure 4.2, we can add valid nonnegativity

constraints for the dot product between every pair of vectors in the set

{y(u,i) | u ∈ U, i ∈ [R1]}
⋃
{z(v,j) | v ∈ V, j ∈ [R2]}

since in the integral solution all these vectors are {0, 1}-valued. The vectors we

construct do not obey such a nonnegativity requirement. For the case of Unique

Games, Khot and Vishnoi [KV05] were able to ensure nonnegativity of all dot

products by simply taking tensor products of the vectors with themselves and

defining new vectors y′(u,i) = y⊗2
(u,i) = y(u,i)⊗y(u,i) and z′(v,j) = z⊗2

(v,j) = z(v,j)⊗ z(v,j).

Since 〈a⊗2,b⊗2〉 = 〈a,b〉2, the desired nonnegativity of dot products is ensured.

We cannot apply this tensoring idea in our construction as it does not preserve

the SDP value at 1. For example, for 2-to-1 Label Cover, if we have y(u,i) =

z(v,j1) + z(v,j2) (so that these vectors contribute 1 to the objective value to the
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SDP of Figure 4.2), then upon tensoring we no longer necessarily have y⊗2
(u,i) =

z⊗2
(v,j1) + z⊗2

(v,j2). Extending our gap instances to obey the nonnegative dot product

constraints is therefore a natural question that we leave open. While this seems

already quite challenging, one can of course be more ambitious and ask for gap

instances for stronger SDPs that correspond to certain number of rounds of some

hierarchy, such as the Sherali-Adams hierarchy together with consistency of vector

dot products with pairwise marginals. As mentioned in Section 1.3.1, for Unique

Games such gap instances were constructed for several rounds of such a hierarchy

in [RS09, KS09].
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Chapter 5

Approximate Lasserre integrality

gap for Unique Label Cover

In this chapter we state and prove our result about an approximate Lasserre inte-

grality gap for Unique Label Cover. In Section 5.1 we describe the Lasserre

hierarchy and our results in more detail. In Section 5.2 we provide a high level

overview of our construction. The rest of the chapter is organized as described in

Section 5.2.3.

5.1 Lasserre hierarchy of SDP Relaxations

For a CSP such as Unique Games on n vertices with a label set [k], a t-round

Lasserre SDP relaxation introduces vectors xS,σ for every subset S of vertices of

size at most t and every assignment σ : S 7→ [k] of labels to the vertices in S. The

intention is that in an integral solution, xS,σ = 1 if σ is restriction of the global

assignment and xS,σ = 0 otherwise. Therefore, for a fixed set S, one adds the SDP
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constraint that the vectors {xS,σ}σ are orthogonal and the sum of their squared

Euclidean norms is 1. One may interpret the squared Euclidean norms of these

vectors as a probability distribution over assignments to S (in an integral solution

the distribution is concentrated on a single assignment). Natural consistency con-

straints satisfied by an integral solution are added as well. Specifically, for two sets

T ⊆ S, each of size at most t, and every assignment τ to T , the following natural

constaint is added: ∑
σ:S 7→[k],σ|T=τ

xS,σ = xT,τ , (5.1)

where σ|T denotes the restriction of σ to subset T . Note that in an integral solution,

both sides of the above equation are 1 if τ is restriction of the global assignment

to T and zero otherwise. The objective value of the relaxation can be written in

terms of pairwise inner products of vectors on singleton sets. The t-round Lasserre

SDP relaxation entails adding O(nt) constraints in the SDP relaxation.

We will be interested in approximate solutions to the Lasserre hierarchy. To-

wards this end, we call a vector solution δ-approximate if Equation (5.1) is satisfied

with error δ, i.e. ∥∥∥∥∥∥
∑

σ:σ|T=τ

xS,σ − xT,τ

∥∥∥∥∥∥ ≤ δ. (5.2)

We now state informally the main result of this chapter.

Theorem 5.1.1. (Informal) Let ε > 0 and k, t ∈ Z+ be arbitrary constants. Then

for every constant δ > 0, there is an instance U of Unique Games with label set

[k] that satisfies:

1. There exist vectors xS,σ for every set S of vertices of U of size at most t,

and every assignment of labels σ to the vertices in S such that it is a δ-
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approximate solution to the SDP relaxation with t-round Lasserre hierarchy.

2. The SDP objective value of the above approximate vector solution is at least

1− ε.

3. Any labeling to the vertices of U satisfies at most k−ε/2 fraction of edges.

5.2 Overview of Our Construction

Our construction relies in large part on the work of Khot and Vishnoi [KV05] who

gave SDP integrality gap examples for Unique Games and cut-problems including

Maximum Cut. We also borrow ideas from [KS09] and [RS09] who build upon

the work of [KV05] to obtain stronger integrality gap results as mentioned earlier.

Our strategy is to first construct approximate Lasserre vectors for the Unique

Games instance U presented in [KV05]. This construction is not good enough by

itself as the number of labels [N ] is too large relative to the accuracy parameter.

We therefore apply the reduction of [KKMO07] to the instance U to obtain a new

instance Ũ of Unique Games with a much smaller label set [k]. This reduction

preserves the low integral optimum, transforms the vectors corresponding to the in-

stance U into corresponding vectors for the instance Ũ , and preserves the high SDP

objective. These new vectors constitute the final δ-approximate Lasserre solution

to Ũ . Below we describe the construction of Lasserre vectors for the instance U .

In the actual construction we present, we do no explicitly construct these vectors,

but rather directly construct the instance Ũ along with its approximate Lasserre

solution. However, the description of the implicit intermediate step does illustrate

the main ideas involved.
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5.2.1 Lasserre Vectors for [KV05] Unique Games instance

We start with the Unique Games instance U along with a basic SDP solution

constructed in [KV05]. Let G(V,E) be its constraint graph and [N ] be the label

set. The SDP solution consists of (up to a normalization) an orthonormal tuple

{Tu,j}j∈[N ] for every vertex u ∈ V . A useful property of this solution is that the

sum of vectors in every tuple is the same, i.e. for some fixed unit vector T,

T =
1√
N

∑
j∈[N ]

Tu,j ∀u ∈ V. (5.3)

As observed in [KS09], one can define a single vector Tu := 1√
N

∑
j∈[N ] T

⊗4
u,j

for each tuple {Tu,j} such that the distance ‖Tu − Tv‖ captures the closeness

between the pair of tuples {Tu,j} and {Tv,j}. Roughly speaking, the edge (i.e.

constraint) set E corresponds to all pairs (u, v) such that ‖Tu − Tv‖ ≤ γ for a

sufficiently small γ > 0. For any such edge, it necessarily holds that ∀j ∈ [N ],

‖Tu,j − Tv,π(j)‖ ≤ O(γ) for some bijection π = π(u, v) : [N ] 7→ [N ]. This is

precisely the bijection defining the Unique Games constraint on edge (u, v) and

also ensures that the SDP objective is high, i.e. 1−O(γ2).

Another key observation is that in the graph G(V,E), any local neighborhood

can be given a consistent labeling; in fact, once an arbitrary label for a vertex is

fixed, it uniquely determines labels to all other vertices in a local neighborhood.

Specifically, fix a small positive constant p ≤ 0.1. A set C ⊆ V is called p-local if

‖Tu−Tv‖ ≤ p ∀ u, v ∈ C. As observed in [KS09], for any p-local set C, there is a

set L(C) of N labelings, such that each labeling τ ∈ L(C) satisfies all the induced

edges inside C. The jth labeling is obtained by fixing the label of one vertex in C

to be j ∈ [N ] and then uniquely fixing labels to all other vertices in C. This gives
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a natural way to define Lasserre vectors for all subsets S ⊆ C. Fix an arbitrary

vertex w ∈ C. Consider any subset S ⊆ C, and a labeling σ to the vertices in

S. We wish to construct a vector yS,σ. If σ is not consistent with any of the N

labelings τ ∈ L(C) then set yS,σ = 0. Otherwise, let yS,σ = 1√
N

Tw,j where the

labeling σ is consistent with a labeling τ ∈ L(C) which assigns j to w. It can be

seen that this is a valid Lasserre SDP solution for all subsets of C. All edges that

are inside C contribute well (i.e. 1−O(γ2) ) towards the SDP objective.

We now try to extend the above strategy to the whole set V . Even though the

following naive approach does not work, it helps illustrate the main idea behind

the construction. We partition V into local sets and construct Lasserre vectors

that are a tensor product of vectors constructed for each local set. Towards this

end, we think of the set of vectors {Tu}u∈V as embedded on the unit sphere

S|V |−1. Partition the unit sphere into clusters of diameter at most p. This naturally

partitions the set of vertices V into disjoint p-local subsets C1, . . . , Cm. As before,

fix wi to be any arbitrary vertex in Ci for i = 1, . . . ,m. Now consider a subset

S ⊆ V , and a labeling σ to the vertices in S, for which we wish to construct a

vector xS,σ. Suppose that there is a subset Ci such that σ|S∩Ci is not consistent

with any labeling in L(Ci); in this case set xS,σ = 0. Otherwise, construct vector

yiS,σ as follows: if |S ∩ Ci| = ∅, then let yiS,σ = T; else set yiS,σ = 1√
N

Twi,j, where

σ|S∩Ci is consistent with a labeling in L(Ci) that assigns label j to wi. Finally, let

xS,σ :=
⊗m

i=1 yiS,σ. It can be seen that this construction is a valid SDP Lasserre

solution. The tensor product is a vector analogue of assigning labeling to different

clusters independently.

However, the above construction does not work because the unit sphere has

dimension |V |−1 and partitioning such a high-dimensional sphere into local clusters
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necessarily means that almost all edges of G(V,E) will have two endpoints in

different clusters, and therefore the two endpoints get labels independently. This

results in a very low SDP objective. A natural approach is to use dimensionality

reduction that w.h.p. preserves the geometry of any set points that is not too

large.

We therefore first randomly project the vectors {Tu}u∈V onto Sd−1 for an ap-

propriate constant d. The Johnson-Lindenstrauss lemma implies that for a set

S ⊆ V of at most t vertices, w.h.p. the mapping approximately preserves all

pairwise distances between the vectors {Tu}u∈S. This is followed, as before, by a

(randomized) partition of Sd−1 into low-diameter clusters that induces a partition

of V into subsets C1, . . . , Cm. The dimension d is low enough to ensure that most

of the edges in E fall inside some cluster. However, since the projection fails to

preserve distances with some non-zero probability, the subsets Ci (1 ≤ i ≤ m) are

not guaranteed to be p-local. Nevertheless, for any set S of at most t vertices, if

the projection preserves all distances between vectors {Tu}u∈S, then each of the

sets S ∩Ci for i = 1, . . . ,m is a p-local set. For a fixed projection and a partition,

a vector xS,σ for the set S and its labeling σ can then be constructed as described

earlier, except that there is no fixed representative vertex wi for each Ci. Instead,

an arbitrary vertex is chosen from the set S ∩ Ci to serve as the representative

vertex wi, and the set of labelings L(S ∩ Ci) is used. Since the projection and

the partitioning are randomized, we implement the construction for each choice of

random string and let the final vectors to be a (weighted) direct sum of the vectors

constructed for each random string.

The above approach yields Lasserre vectors which have a good SDP objec-

tive value but only approximately satisfy the Lasserre constraints. There are two
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sources of error. One is that the random projection preserves distances within a

set S, |S| ≤ t, w.h.p. but not with probability 1. Secondly, since an arbitrary

vertex from S ∩ Ci is chosen as a representative, for T ⊆ S, the representative for

S ∩ Ci need not coincide with the representative for T ∩ Ci. Still, since S ∩ Ci

and T ∩ Ci are local sets (provided that the random projection has succeeded in

preserving distances in S), their representative vectors are close enough.

5.2.2 Obtaining a δ-approximate Lasserre solution

As stated earlier, once we have the SDP vectors to the instance of [KV05], we apply

the reduction of [KKMO07] and obtain a new instance of Unique Games with a

constant label set [k]. We also obtain vectors which constitute the δ-approximate

Lasserre solution to the new instance of Unique Games. We ensure that the

objective value of the vectors remains high.

5.2.3 Organization

In Section 5.3 we formally define a formulation of the Lasserre hierarchy for

Unique Games. In Section 5.4 we describe the basic Unique Games instance

from [KV05] along with the reduction from [KKMO07] to obtain a new Unique

Games instance with a constant label set [k]. In Section 5.3.3, we formally state

our main theorem with quantitative parameters. Finally, in Section 5.5 we con-

struct Lasserre vectors for the new Unique Games instance and prove that they

form a δ-approximate Lasserre solution.

In Section 5.8 we define another formulation of the Lasserre hierarchy which is

more standard in the literature, and prove that it is essentially equivalent to the

formulation we use.
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5.3 Preliminaries

5.3.1 Basic SDP relaxation

Let U(G(V,E), [k], {πe}e∈E) be an instance of Unique Games (Definition 1.3.3).

Note that we don’t restrict the graph G to be bipartite. Figure 5.1 gives a natural

SDP relaxation SDP-UG. The relaxation is over the vector variables xu,i for every

vertex u of the graph G and label i ∈ [k].

max
∑

e=(u,v)∈E

∑
i∈[k]

〈
xu,i,xv,πuve (i)

〉
wt(e)

Subject to,

∀u ∈ V
∑
i∈[k]

‖xu,i‖2 = 1 (I)

∀u ∈ V , i, j ∈ [k], i 6= j 〈xu,i,xu,j〉 = 0 (II)

∀u, v ∈ V , i, j ∈ [k] 〈xu,i,xv,j〉 ≥ 0 (III)

Figure 5.1: Relaxation SDP-UG for Unique Games

5.3.2 Lasserre relaxation

One can write a natural integer quadratic program for solving Unique Games,

where the set of variables is xS,σ for every S ⊆ V and every assignment σ : S 7→ [k]

to vertices in S. The solution to this quadratic program would ensure xS,σ = 1 if

the global labeling of V induces the assignment σ on S and xS,σ = 0 otherwise.

The Lasserre semi-definite relaxation of Unique Games L’-UG(t) in Figure
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5.3 (Section 5.8) is obtained by relaxing the variables of this quadratic program

to vectors instead of integers and replacing the multiplication of two numbers by

dot products of the corresponding vectors. In the t-round Lasserre relaxation, we

consider sets of size up to t. Notice that SDP-UG is contained in L’-UG(2). In this

chapter, we work with another relaxation L-UG(t) in Figure 5.2 which is essentially

equivalent to L’-UG(t), but rephrases the constraints in terms of vector sums in-

stead of dot-products. The two relaxations have the exact same objective function.

In Lemma 5.8.1, we show that the two relaxations are essentially equivalent.

We say σ|T to mean assignment σ restricted to set T . We say (S, σ) ' (S ′, σ′)

to mean that the assignments σ and σ′ are consistent i.e. σ|S∩S′ = σ′|S∩S′ . Other-

wise, we say (S, σ) 6' (S ′, σ′). Let xu,i := xS,σ for S = {u} and σ(u) = i.

max
∑

e=(u,v)∈E

∑
i∈[k]

〈
xu,i,xv,πuve (i)

〉
wt(e)

Subject to,

‖xφ‖2 = 1 (IV)

∀ S, |S| ≤ t, σ 6= σ′ 〈xS,σ,xS,σ′〉 = 0 (V)

∀ T ⊆ S, τ ∈ [k]T
∑

σ:σ|T=τ

xS,σ = xT,τ (VI)

Figure 5.2: Relaxation L-UG(t) for Unique Games

Thus, we want to construct k|S| orthogonal vectors for each set S of size up

to t, such that the vectors for different sets are consistent with each other in the

sense of Equation (VI).
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5.3.3 Main Theorem

Theorem 5.3.1. Fix an arbitrarily small constant ε > 0 and integer k ∈ Z+.

Then for all sufficiently large N (that is a power of 2), there is an instance U of

Unique Games on 2N

N
· kN−1 vertices with label set [k] such that,

1. There exist vectors xS,σ for every set S of vertices of U of size at most

t, and every assignment of labels σ : S 7→ [k] such that it is a O(t · η1/16)-

approximate solution for η := (logN)−0.99 to the SDP relaxation with t-round

Lasserre hierarchy of constraints.

2. The SDP objective value of the above approximate vector solution is at least

1−O(ε).

3. Any labeling to the vertices of U satisfies at most k−ε/2 fraction of edges.

Proof. The construction is presented in Section 5.5 and properties (1), (2) and (3)

are proved in Lemmas 5.6.2, 5.6.3, 5.4.4 respectively.

5.4 The instance

5.4.1 Basic instance

The starting point of our reduction is a Unique Games integrality gap instance

Uη for SDP-UG constructed in [KV05]. Our presentation of the Unique Games

instance Uη follows that in [KS09].

For η > 0 and N = 2m for some m ∈ Z+, Khot and Vishnoi [KV05] construct

the Unique Games instance Uη(G′(V ′, E ′), [N ], {πe}e∈E) where the number of

121



vertices |V ′| = 2N/N . The instance has no good labeling, i.e. has low optimum.

lemma 5.4.1. Any labeling to the vertices of the Unique Games instance

Uη(G′(V ′, E ′), [N ], {πe}e∈E) satisfies at most 1
Nη fraction of the edges.

In the construction of [KV05] the elements of [N ] are identified with the addi-

tive group (Fm2 ,⊕). The authors construct a vector solution that consists of unit

vectors Tu,i for every vertex u ∈ V ′ and label i ∈ [N ]. These vectors (up to a

normalization) form the solution to the Unique Games SDP relxation SDP-UG.

We highlight the important properties of the SDP solution below:

Properties of the Unique Games SDP Solution

• (Orthonormal basis) ∀ u ∈ V ′, ∀ i 6= j ∈ [N ],

‖Tu,i‖ = 1, 〈Tu,i,Tu,j〉 = 0. (5.4)

• (Non-negativity) ∀ u, v ∈ V ′, ∀ i, j ∈ [N ],

〈Tu,i,Tv,j〉 ≥ 0. (5.5)

• (Symmetry) ∀ u, v ∈ V ′, ∀ i, j, s ∈ [N ],

〈Tu,i,Tv,j〉 = 〈Tu,s⊕i,Tv,s⊕j〉 (5.6)

where ‘⊕’ is the group operation on [N ] as described above.

• (High SDP Value) For every edge e = (u, v) ∈ E ′,

∀ i ∈ [N ],
〈
Tu,i,Tv,πuve (i)

〉
≥ 1− 4η. (5.7)
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In fact, there is suve ∈ [N ] such that ∀ i ∈ [N ], πuve (i) = suve ⊕ i.

• (Sum to a Constant Vector) For every vertex u ∈ V ′,

1√
N

N∑
i=1

Tu,i = T (5.8)

where T is a fixed unit vector.

• (Local Consistency) A set W ⊆ V ′ of vertices is p-local if ||Tu − Tv|| ≤

p ≤ 0.1 for all u, v ∈ W . Here, Tu := 1√
N

∑
j∈[N ] .T

⊗4
u,j

lemma 5.4.2 ([KS09]). Suppose a set W ⊆ V ′ is p-local. Then there is

set L(W ) of N locally consistent assignments to vertices in W such that if

µ : W 7→ [N ] ∈ L(W ) then

∀u, v ∈ W :
〈
Tu,µ(u),Tv,µ(v)

〉
≥ 1−O(p2). (5.9)

The assignments in L(W ) are disjoint i.e. if µ 6= µ′ ∈ L(W ) then ∀ u ∈

W,µ(u) 6= µ′(u).

The authors in [KS09] define for every vertex u ∈ V ′ a unit vector Tu

Tu :=
1√
N

∑
i∈[N ]

T⊗4
u,i . (5.10)

and prove that that the Euclidean distances between the vectors {Tu}u∈V ′ are a

measure of the ‘closeness’ between the orthonormal tuples {Tu,i | i ∈ [N ]}u∈V ′ .
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lemma 5.4.3 ([KS09]). For every u, v ∈ V ′,

min
i,j∈[N ]

‖Tu,i −Tv,j‖ ≤ ‖Tu −Tv‖ ≤ 2 · min
i,j∈[N ]

‖Tu,i −Tv,j‖ (5.11)

5.4.2 Reduction to constant label size

In this section we transform the instance Uη(G′(V ′, E ′), [N ], {πe}e∈E′) described in

the previous section to another Unique Games instance Uε(G(V,E), [k], {πe}e∈E)

using a reduction presented in [KKMO07]. Here [k] is to be thought of as the set

{0, 1, . . . , k − 1} with the group operation of addition modulo k.

We start with the Unique Games instance Uη(G′(V ′, E ′), [N ], {πe}e∈E′) and

replace each vertex v ∈ V ′ by a block of kN−1 vertices (v, s) where s ∈ [k]N and

s1 = 0.

For every pair of edges e = (v, w), e′ = (v, w′) ∈ E ′, there are (all possible)

weighted edges between the blocks (w, ·) and (w′, ·) in the instance

Uε(G(V,E), [k], {πe}e∈E). The edge between a := (w, s) and b := (w′, s′) is con-

structed as follows:-

1. Pick p uniformly at random from [k]N and p′ ∈ [k]N such that each co-

ordinate p′i is chosen to be pi with probability 1− ε and is chosen uniformly

at random from [k] with probability ε for all i ∈ [N ].

2. Define q,q′ ∈ [k]N as q := p ◦ πwve , q′ := p′ ◦ πw′ve′

where p ◦ π := (pπ(1), . . . ,pπ(N)).

3. Define r, r′ ∈ [k]N as ri := qi−q1 and r′i := q′i−q′1 for all i from 1 through

N .
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4. Add an edge e∗ between a = (w, s) and b = (w′, s′) such that πabe∗(i) :=

(i+ q′1 − q1) for all i ∈ [k] and wt(e∗) := Pr[s = r, s′ = r′].

The third step in the construction incorporates a PCP trick called folding. To

prove that the instance constructed has low optimum, we need the property that

any labelling to vertices in Uε is balanced on every block of vertices arising out of

some vertex in Uη i.e. it assigns each label in every block equally often.

We achieve this by reducing the number of vertices in each block by a factor of

1
k
, and then extend any labelling on the reduced vertex set to a balanced labelling

on the original vertex set. In our case, we only consider strings s with s1 = 0 and

as a mental exercise we extend any labeling σ to all strings as

σ(s′1, s
′
2, . . . , s

′
N) := σ(0, s′2 − s′1, . . . , s

′
N − s′1) + s′1

The following is a reformulation of Theorem 12 and corollary 13 of [KKMO07].

lemma 5.4.4. Any labeling to the vertices of the Unique Games instance

Uε(G(V,E), [k], {πe}e∈E) satisfies at most k−ε/2 fraction of the edges provided the

optimum of the instance Uη (which is at most N−η)) is sufficiently small as a

function of ε and k.

5.5 Approximate Vector Construction

In this section we construct Lasserre vectors for the Unique Games instance

Uε(G(V,E), [k], {πe}e∈E) described in the previous section. Our construction will

be randomized, i.e. we first create vectors yrS,σ for every choice of random bits r
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and then set

xS,σ :=
⊕
r

√
Pr[r] yrS,σ (5.12)

where Pr[r] is the probability of choosing the random bit-sequence r (vectors for

different choices of randomness live in independent, mutually orthogonal spaces).

Our construction will use Theorems 5.7.1 and 5.7.3 along with corollary 5.7.2

which are stated in Section 5.7.

5.5.1 Construction

We intend to construct vectors xS,σ for every set S ⊆ V , |S| ≤ t, and every

assignment σ : S 7→ [k]. Set p = η1/16 and d = 8 ln(2t2/η)/p2.

1. Projection:

Use corollary 5.7.2 to obtain a mapping Tu 7→ T′u ∈ Sd−1 ∀ u ∈ V ′.

2. Partition:

Use Theorem 5.7.3 to randomly partition Sd−1 with diameter p. Let C1, C2,

. . . , Cm denote this partition of Sd−1 as well as the induced partition of V ′

(by a slight abuse of notation).

3. Constructing vectors for a fixed set S ⊆ V , |S| ≤ t:

Recall that every vertex of S is of the form a = (v, s) for some v ∈ V ′ and

s ∈ [k]N , s1 = 0. Let S = ∪ml=1S` be a partition of S such that

S` := {a = (v, s) ∈ S | v ∈ C`}.
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Also define for the sake of notational ease,

S ′` := {v | ∃ a = (v, s) ∈ S`} ⊆ C` and S ′ := ∪m`=1S
′
`.

Since |S| ≤ t, at most t of the sets S` (and hence S ′`) are non-empty. Let r

be the randomness used in Steps (1) and (2). If the Projection succeeds for

the entire set S ′ (see corollary 5.7.2), go to Step 4.

Otherwise set yrS,σ := 0 for all σ : S 7→ [k] and go to Step 5.

4. Since S = ∪m`=1S` is a partition, an assignment σ : S 7→ [k] can be split

into assignments σ` : S` 7→ [k] for ` = 1, . . . ,m. The construction below is

the vector analogue of choosing an assignment σ` for set S` from a certain

distribution, but independently for all ` = 1, . . . ,m.

For each ` such that S` = ∅, let yr,lS`,σ` := T.

For each ` such that S` 6= ∅, observe that the set S ′` is O(p)-local since the

projection succeeded for S ′ and since the diameter of C` is at most p. Let

L(S ′`) denote the set of N locally consistent assignments to S ′` as in Lemma

5.4.2, Equation (5.9).

We partition the set L(S ′`) of locally consistent assignments into different

classes depending on how they behave w.r.t. assignments σ` : S` 7→ [k].

Towards this end, let

Lr,`S`,σ` :=
{
µ | µ ∈ L(S ′`) such that ∀ a = (v, s) ∈ S`, sµ(v) = σ`(a)

}
.
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Now arbitrarily pick a representative element u ∈ S ′` and set

yr,`S`,σ` :=
1√
N

∑
µ∈Lr,`S`,σ`

Tu,µ(u).

Finally define,

yrS,σ :=
m⊗
`=1

yr,`S`,σ` (5.13)

5. Construct vectors xS,σ :=
⊕
r

√
Pr[r] yrS,σ as in Equation (5.12).

5.6 Analysis

We begin with the following lemma.

lemma 5.6.1. In the Step (4) of the construction in Section 5.5.1, for any fixed r

and `, ∑
σ`

yr,`S`,σ` = T.

Proof.

∑
σ`

yr,`S`,σ` =
1√
N

∑
σ`

∑
µ∈Lr,`S`,σ`

Tu,µ(u) =
1√
N

∑
µ∈L(S′`)

Tu,µ(u) = T,

from Equation (5.8).

lemma 5.6.2. The vectors xS,σ constructed in the previous section satisfy the

constraints of the SDP L-UG(t) up to the following errors:-

1. Equations (IV) and (V) are satisfied exactly
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2. Equation (VI) is satisfied up to an error of O(tp), i.e. for any sets T ⊆ S,

|S| ≤ t and an assignement τ : T 7→ [k],

∥∥∥∥∥∥
∑

σ:σ|T=τ

xS,σ − xT,τ

∥∥∥∥∥∥ ≤ O(tp). (5.14)

Proof. (1): It is clear from the construction that

xφ =
⊕
r

√
Pr[r]

m⊗
l=1

T

which is a unit vector since T is a unit vector. Hence, Equation (IV) is satisfied.

Also, it is easy to check that for a fixed set S, for every choice of the randomness,

we always assign orthogonal vectors for different assignments σ, hence Equation

(V) is satisfied.

(2): We will show that with probability (1− η) over the choice of randomness r,

∥∥∥∥∥∥
∑

σ:σ|T=τ

yrS,σ − yrT,τ

∥∥∥∥∥∥ ≤ O(tp). (5.15)

Using Equation (5.12), this implies that the desired claim that

∥∥∥∥∥∥
∑

σ:σ|T=τ

xS,σ − xT,τ

∥∥∥∥∥∥
2

≤ O(η) +O(t2p2) = O(t2p2).

Now we prove Equation (5.15). The Projection in Step 1 of the construction

succeeds for S ′ (and hence also for T ′) with probability at least 1− η by corollary

5.7.2. Now fix the randomness r such that the projection succeeded for S ′.

Let (S = ∪m`=1S`, σ = {σ`}m`=1, S
′ = ∪m`=1S

′
`) and
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(T = ∪m`=1T`, τ = {τ`}m`=1, T
′ = ∪m`=1T

′
`) be the splitting of sets and their assign-

ments respectively as described in Steps 3 and 4 of the construction in Section

5.5.1. Note that

yrT,τ =
m⊗
l=1

yr,`T`,τ` (5.16)

and ∑
σ|T=τ

yrS,σ =
∑
σ|T=τ

m⊗
l=1

yr,`S`,σ` =
m⊗
l=1

 ∑
σ`|T`=τ`

yr,`S`,σ`

 (5.17)

In the tensor product on right hand side in above Equations (5.16, 5.17), all but

at most t of the sets S` (and hence T`) are empty in which case
∑

σ`|T`=τ`
yr,`S`,σ` =

yr,`T`,τ` = T. Thus it suffices to prove that for all ` such that S` 6= ∅, we have

∥∥∥∥∥∥
∑

σ`|T`=τ`

yr,`S`,σ` − yr,`T`,τ`

∥∥∥∥∥∥ ≤ O(p).

If T` = ∅, then yr,`T`,τ` = T and
∑

σ`|T`=τ`
yr,`S`,σ` = T as well by Lemma 5.6.1, so

we are done. Assume therefore that T` 6= ∅. In that case, for some representative

vertices u∗ ∈ S ′` and v∗ ∈ T ′`, we have

yr,`S`,σ` =
1√
N

∑
µ∈Lr,`S`,σ`

Tu∗,µ(u∗), yr,`T`,τ` =
1√
N

∑
ν∈Lr,`T`,τ`

Tv∗,ν(v∗).

Since T ′` ⊆ S ′` are both O(p)-local sets, every locally consistent assignment ν
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to T ′` has a unique extension to a locally consistent assignment to S ′`. Also,

⋃
σ`|T`=τ`

Lr,`S`,σ` =
⋃

σ`|T`=τ`

{
µ | µ ∈ L(S ′`) such that ∀ a = (v, s) ∈ S`, sµ(v) = σ`(a)

}
=

{
µ | µ ∈ L(S ′`) such that ∀ a = (v, s) ∈ T`, sµ(v) = τ`(a)

}
=

{
ν | ν ∈ L(T ′`) such that ∀ a = (v, s) ∈ T`, sν(v) = τ`(a)

}
= Lr,`T`,τ` .

Hence,

∑
σ`|T`=τ`

yr,`S`,σ` =
1√
N

∑
µ ∈

⋃
σ`|T`

=τ`
Lr,`S`,σ`

Tu∗,µ(u∗) =
1√
N

∑
ν∈Lr,`T`,τ`

Tu∗,ν(v∗).

Writing L = Lr,`T`,τ` , |L| ≤ N , it follows that

∥∥∥∥∥∥
∑

σ`|T`=τ`

yr,`S`,σ` − yr,`T`,τ`

∥∥∥∥∥∥
2

=
1

N

∥∥∥∥∥∑
ν∈L

Tu∗,ν(u∗) −
∑
ν∈L

Tv∗,ν(v∗)

∥∥∥∥∥
2

≤ 2

N

∑
ν∈L

(
1−

〈
Tu∗,ν(u∗),Tv∗,ν(v∗)

〉)
≤ O(p2) using Equations (5.9) and (5.5).

lemma 5.6.3. The objective value achieved by the vectors xS,σ constructed in

the previous section for the SDP L-UG(t) is at least (1 − O(ε))|E| where |E| :=∑
e

wt(e).

Proof. Consider edges of the form e∗ = (a, b) where a := (w, s) and b := (w′, s′) as
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described in Section 5.4.2. Observe that

∑
s,s′

wt(a, b) = 1.

We will prove that

∑
s,s′

∑
i∈[k]

〈
xa,i,xb,πab

e∗ (i)

〉
wt(e∗) ≥ 1−O(ε)

which suffices to prove the lemma.

Notice that ‖Tw − Tw′‖ = O(
√
η) by Equations (5.7) and (5.11). With prob-

ability at least 1 − η, the projection in Step 1 ensures (see corollary 5.7.2) that

‖T′w − T′w′‖ = O(
√
η). Hence, by Theorem 5.7.3, the probability that the par-

titioning in Step 2 puts T′w and T′w′ in different clusters is at most O(
√
η · d/p)

which is at most O(η1/4) and our choice of parameters. Now fix a choice of ran-

domness r such that w and w′ lie in the same cluster, say the cluster C`. We will

prove that

∑
s,s′

∑
i∈[k]

〈
yra,i,y

r
b,πab

e∗ (i)

〉
wt(e∗) ≥ 1−O(ε). (5.18)

Using Equation (5.12), this implies

∑
s,s′

∑
i∈[k]

〈
xa,i,xb,πab

e∗ (i)

〉
wt(e∗) ≥ (1−O(ε))(1−O(η1/4)) ≥ 1−O(ε)

by our choice of parameters.
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It remains to prove Equation (5.18). Let

Li := Lr,`a,i = {ν | ν ∈ L({w}) and sν(w) = i}

and

L′i := Lr,`
b,πab

e∗ (i)
= {ν ′ | ν ′ ∈ L({w′}) and s′ν′(w′) = πabe∗(i)}.

Observe that the left hand side of the last equation is the same as

1

N

∑
s,s′

∑
i∈[k]

∑
ν∈Li
ν′∈L′

i

〈
Tw,ν(w),Tw′,ν′(w′)

〉
wt(e∗).

We lower bound this expression by restricting the inner summation to only those

pairs (ν, ν ′) ∈ Li × L′i for which there exists a (necessarily unique) assignement

µ ∈ L({w,w′}) such that µ(w) = ν(w) and µ(w′) = ν ′(w′). Note that since {w,w′}

is O(η1/2)-local, the set L({w,w′}) of locally consistent assignments is well-defined.

Thus a lower bound on the above expression is

1

N

∑
s,s′

∑
i∈[k]

∑
µ∈L({w,w′}),

µ|w∈Li,µ|w′∈L
′
i

〈
Tw,µ(w),Tw′,µ(w′)

〉
wt(e∗)

Noting that the inner product is at least 1−O(η) (see Equation (5.9)), and using

the definition of Li and L′i, we further lower bound the expression by

(1−O(η))
1

N

∑
s,s′

∑
i∈[k]

∑
µ∈L({w,w′})

IND
[
sµ(w) = i, s′µ(w′) = πabe∗(i)

]
wt(e∗)

where IND[·] is an indicator function. Let π := πvwe and π′ := πvw
′

e′ . Then except
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the (1−O(η)) factor, the above expression is same as,

1

N

∑
s,s′

∑
µ∈L({w,w′})

∑
i∈[k]

IND
[
sµ(w) = i, s′µ(w′) = πabe∗(i)

]
wt(e∗)

=
1

N

∑
s,s′

∑
µ∈L({w,w′})

IND
[
sµ(w) = s′µ(w′) + q′1 − q1

]
wt(e∗)

=
1

N

∑
µ∈L({w,w′})

Pr
p,p′

[rµ(w) = r′µ(w′) + q′1 − q1]

=
1

N

∑
µ∈L({w,w′})

Pr
p,p′

[qµ(w) = q′µ(w′)] =
1

N

∑
µ∈L({w,w′})

Pr
p,p′

[qπ(µ(v)) = q′π′(µ(v))]

=
1

N

∑
µ∈L({w,w′})

Pr
p,p′

[pµ(v) = p′µ(v)] ≥ 1− ε

where the second last equality uses Equations (5.7, 5.9) and the last equality uses

the definition of p and p′.

5.7 Projecting and partitioning on a unit sphere

We state the Theorems 5.7.1 and 5.7.3, and prove Corollary 5.7.2 which are used in

Section 5.5. Theorem 5.7.1 can be inferred from [[DG99], Lemma 2.2] while The-

orem 5.7.3 can be inferred from [[GKL03], Theorem 3.2] applied to the Euclidean

unit sphere.

Theorem 5.7.1 ([JL84],[DG99]). Let each entry of an d× n matrix P be chosen

independently from N(0, 1). Let Q := 1√
d
P and v = Qu for u ∈ Rn. Then for any

0 ≤ θ ≤ 1
2
,

(1− θ)‖u‖ ≤ ‖Qu‖ ≤ (1 + θ)‖u‖ (5.19)
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with probability at least 1−2e−θ
2 d
8 . We say that v ∈ Rd is the projection of u ∈ Rn.

Corollary 5.7.2. There is a randomized mapping Γ : Sn−1 7→ Sd−1 with d =

8 ln(2t2/η)/p2, such that for any set X ⊆ Sn−1, |X| ≤ t, with probability 1− η, we

have

∀x, y ∈ X, 1

32
‖Γ(x)− Γ(y)‖ ≤ ‖x− y‖ ≤ 4p+ 2 ‖Γ(x)− Γ(y)‖.

If this conclusion holds, we say that the randomized mapping (projection) succeeded.

Proof. Let Q be the random matrix as in Theorem 5.7.1, θ = p, and define Γ(x) =

Qx
‖Qx‖ . Then by a union bound, with probability 1− η, Equation (5.19) holds for all

u ∈ X ∪ {x − y|x, y ∈ X}. In that case, for any x, y ∈ X, letting a = ‖Qx‖, b =

‖Qy‖, we see that a, b ∈ [1 − θ, 1 + θ] and |a − b| ≤ ‖Qx − Qy‖ = ‖Q(x − y)‖ ≤

(1 + θ) · ‖x− y‖. Hence,

ab ·‖Γ(x)−Γ(y)‖ = ‖bQx−aQy‖ ≤ b‖Qx−Qy‖+ |b−a|‖Qy‖ ≤ 2 ·(1+θ)2‖x−y‖.

This proves the left inequality. For the right inequality, we have:

(1− θ) · ‖x− y‖ ≤ ‖Q(x− y)‖ ≤ ‖Qx− Γ(x)‖+ ‖Γ(x)− Γ(y)‖+ ‖Γ(y)−Qy‖

= |‖Qx‖ − 1|+ ‖Γ(x)− Γ(y)‖+ |‖Qy‖ − 1| ≤ 2θ + ‖Γ(x)− Γ(y)‖.

Theorem 5.7.3 ([GKL03]). Let Sd−1 = {x ∈ Rd : ||x|| = 1} denote the (d − 1)

dimensional unit sphere. For every choice of diameter p > 0 there is a randomized

partition P̃ of Sd−1 into disjoint clusters such that,
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1. For every cluster C ∈ P̃ , C ⊆ Sd−1, diam(C) ≤ p.

2. For any pair of points u, v ∈ Sd−1 such that ‖u− v‖ = β ≤ p
4
,

Pr
P̃

[
u and v fall into different clusters

]
≤ 100βd

p
.

5.8 Equivalence of Lasserre relaxations

max
∑

e=(u,v)∈E

∑
i∈[k]

〈
xu,i,xv,πuve (i)

〉
wt(e)

Subject to,

∀S ⊆ V, |S| ≤ t
∑
σ∈[k]S

‖xS,σ‖2 = 1 (VII)

∀(S, σ) 6' (S ′, σ′) 〈xS,σ,xS′,σ′〉 = 0 (VIII)

∀(S, σ) ' (S ′, σ′), (T, τ) ' (T ′, τ ′)
(S ∪ S ′, σ ∪ σ′) = (T ∪ T ′, τ ∪ τ ′) 〈xS,σ,xS′,σ′〉 = 〈xT,τ ,xT ′,τ ′〉 (IX)

Figure 5.3: Relaxation L’-UG(t) for Unique Games

lemma 5.8.1. The constraints of the semi-definite program (SDP) L’-UG(t) imply

the constraints of the SDP L-UG(t) and the constraints of the SDP L-UG(2t) imply

the constraints of the SDP L’-UG(t).

Proof. Let xS,σ be vectors satisfying L’-UG(t). We will show that they satisfy

Equation (VI) of L-UG(t). Note that Equation (V) is contained in Equation (VIII)

for S = S ′ and Equation (IV) is contained in Equation (VII) with S = φ.
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As a first step, we prove Equation (VI) for T = φ. Fix a set S then 〈xφ,xS,σ〉 =

〈xS,σ,xS,σ〉 by Equation (IX) which means

〈
xφ,

∑
σ∈[k]S

xS,σ

〉
=
∑
σ∈[k]S

〈xφ,xS,σ〉 =
∑
σ∈[k]S

〈xS,σ,xS,σ〉 = 1

by using Equation (VII). Also, note that
∑
σ∈[k]S

xS,σ is a unit vector by Equations

(VII) and (VIII) and so is xφ. Since the dot products of these two unit vectors is

1 it must be that they are equal which proves Equation (VI) for T = φ.

Now we prove Equation (VI) for |T | = |S| − 1 and it is easy to see that

this implies Equation (VI) for all T ⊆ S by repeated application. So fix S, T as

described, fix τ ∈ [k]T and let σi, i ∈ [k] be the k assignments on S which are

consistent with τ . We know that

∑
σ∈[k]S

xS,σ = xφ

Taking the dot product of xT,τ with both sides of the previous equation and using

Equations (VIII) and (IX) gives us 〈xT,τ ,xT,τ 〉 =
N∑
i=1

〈xS,σi ,xS,σi〉 and it is also

similarly easy to see that

〈
xT,τ ,

N∑
i=1

xS,σi

〉
=

N∑
i=1

〈xS,σi ,xS,σi〉

Thus, xT,τ and
N∑
i=1

xS,σi are vectors of norm
N∑
i=1

〈xS,σi ,xS,σi〉 whose dot product is

also equal to the same number which means they must be equal. This proves the

first part of the lemma.
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Conversely, let xS,σ be a solution for L-UG(2t). We will show that it satisfies

Equations (VII),(VIII) and (IX) of SDP L’-UG(t).

To prove Equation (VII), fix a set S ⊆ V . We have,

1 = 〈xφ,xφ〉 =

〈 ∑
σ∈[k]S

xS,σ,
∑
σ∈[k]S

xS,σ

〉
=

∑
σ,σ′∈[k]S

〈xS,σ,xS,σ′〉 =
∑
σ∈[k]S

〈xS,σ,xS,σ〉 ,

where second equality uses Equation (VI) with T = φ and the the fourth equality

uses Equation (V).

To prove Equation (VIII), fix S, S ′, σ, σ′ such that (S, σ) 6' (S ′, σ′). Then,

〈xS,σ,xS′,σ′〉 =

〈 ∑
τ∈[k]S∪S′

τ |S=σ

xS∪S′,τ ,
∑

τ ′∈[k]S∪S′

τ ′|S′=σ
′

xS∪S′,τ ′

〉
= 0

where the last equality uses Equation (V) and the fact that the two summations

consist of disjoint assignments since (S, σ) 6' (S ′, σ′).

To prove Equation (IX), fix S, S ′, T, T ′ ⊆ V of size at most t and their corre-

sponding assignments σ, σ′, τ, τ ′ respectively such that (S, σ) ' (S ′, σ′), (T, τ) '

(T ′, τ ′), (S ∪ S ′, σ ∪ σ′) = (T ∪ T ′, τ ∪ τ ′). Now,

〈xS,σ,xS′,σ′〉 =

〈 ∑
σ′′∈[k]S∪S′

σ′′|S=σ

xS∪S′,σ′′ ,
∑

σ′′∈[k]S∪S′

σ′′|S′=σ
′

xS∪S′,σ′′

〉
= 〈xS∪S′,σ∪σ′ ,xS∪S′,σ∪σ′〉

where the first equality uses Equation (VI) and the second equality uses Equation

(V) combined with the observation that σ ∪ σ′ is the only assignment appearing

in both the summations.
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Similarly,

〈xT,τ ,xT ′,τ ′〉 = 〈xT∪T ′,τ∪τ ′ ,xT∪T ′,τ∪τ ′〉

and since (S ∪ S ′, σ ∪ σ′) = (T ∪ T ′, τ ∪ τ ′) Equation (IX) is proved as desired.
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