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Abstract 

Different fracture patterns can be observed because of different material properties, even the 

geometry and loading are the same. However, most of the known phase-field fracture models have 

only considered the tensile failure and may not be directly applicable to the shear fracture. In this 

paper, a phase-field model for mixed-mode fracture is proposed based on a unified tensile fracture 

criterion. The proposed model is developed from the unified phase-field theory and the original 

unified phase-field model can be recovered as a particular case. General softening laws for cohesive 

zone models can also be considered. The unified tensile fracture criterion is embedded in the 

proposed mixed-mode phase-field model and different fracture patterns can be obtained in the 

simulation according to the material properties, including failures based on both maximum normal 

stress and maximum shear stress criteria. The crack propagation direction can be easily determined 

by the unified tensile fracture criterion. Compared with the classical phase-field model, two 

additional material parameters are needed, i.e., the failure tension strength and the ratio of the critical 

shear failure stress to the critical normal fracture stress. Numerical examples have shown that the 

proposed model has the ability to model mixed-mode fractures, and can also be applied to rock-like 

brittle materials under compression. 

Keywords: phase-field fracture model; shear fracture; mixed-mode fracture; unified tensile fracture 

criterion. 

 

1. Introduction 

Many numerical methods have been developed for modeling the crack propagation in solids, 

such as the extended finite element method (XFEM) [1, 2], the meshfree methods [3], the 

peridynamics [4, 5], the cracking particle method (CPM) [6, 7], the screened Poisson equation [8, 

9], the cellular automaton method [10, 11] and the phase-field models [12-15]. The phase-field 



models have attracted much attention recently. In the phase-field models, a new variable called the 

phase-field is introduced to represent the damage of the material [16], and the discontinuity and 

singularity caused by the crack can be avoided in simulations. The phase-field distribution can be 

obtained by solving a multi-physics problem and the crack propagation can be tracked automatically. 

The phase-field models are mainly based on the Landau-Ginzburg phase transition in physics 

communities [17-22] and Griffith’s theory in mechanics communities [16, 23-25]. The phase-field 

models based on Griffith’s theory are derived from the regularized form [16] of the variational 

formulation [25] from Griffith’s theory. There are two functions, crack surface density function and 

degradation function, in the phase-field models. The crack surface density function controls the 

distribution of the phased-field in the domain and the degradation function characterizes the energy 

transfer between the phase-field and the displacement field. Different crack surface density 

functions and degradation functions result in different phase-field models. Recently, a unified phase-

field theory [26] was proposed and most of the known phase-field models can be recovered as its 

special cases. Most importantly, general softening laws can be implemented in the unified phase-

field theory and the length scale has little influence on the global responses. Another important 

function in phase-field models is the energy density function, which controls the bulk energy of the 

solid, and some decompositions of the energy density function were proposed to avoid damage in 

the compressive state [23, 27-31]. 
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(a) Crack obtained by most phase-field models:

(b) Crack angle observed in physical experiment: 
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Figure 1. Fracture angle for the long bar under tensional loading 

The phase-field models have been applied in many areas, such as dynamic analysis [12, 32-

37], fractures in thin shells [38, 39], fracture in heterogeneous structure [40], cohesive fracture [26, 

41-46] and brittle-ductile dynamic failure [47]. In the phase-field models, the fracture criterion is 

embedded implicitly and no additional criterion is needed. In most phase-field models based on 

Griffith’s theory, the G-criterion is embedded and only the fracture energy cG   is used. The 



fracture energy cG  used in most of these phase-field models is the mode-I fracture energy or 

fracture energy for a tensile failure. Thus, these phase-field models cannot be applied to shear failure, 

or mixed-mode fracture mainly based on Mode-II fracture. This G-criterion is more like the 

maximum tensile strain criterion or maximum normal stress criterion, and only the fracture angle 

= / 2T   can be obtained for a long bar under tensional loading (see Figure 1(a)). However, the 

fracture behavior may differ widely for different materials. For example, the fracture angle 
T  is 

between / 4  and / 2  for many different metallic glasses in physical experiments (see Figure 

1(b)) [48]. Especially, the shear fracture will occur at = /4T   according to the maximum shear 

stress criterion (Tresca criterion). 

To consider the mixed-mode crack propagation in rock-like materials, a modification of the 

classical phase-field model [49] was proposed by decomposing the history variable into two 

components, and a modified G-criterion [50] is applied, in which two fracture energies IG  and 

IIG  are considered. Another important phase-field model for mixed-mode fracture based on the 

modified G-criterion and consistent kinematic modes was proposed for anisotropic rocks [51]. In 

this model, the crack propagation direction and the kinematics modes are determined by a local 

maximization problem.  

In this work, a new mixed-mode phase-field fracture model is proposed by considering the 

unified tensile fracture criterion [48]. The classical four failure criteria, i.e., maximum normal stress 

criterion, Tresca criterion, Mohr-Coulomb criterion, and von Mises criterion are special cases of the 

unified tensile fracture criterion. Thus, the proposed phase-field model can simulate mode-I, mode-

II, and mixed mode-I/II fractures according to the material property. The crack propagation direction 

can be determined easily by the unified tensile fracture criterion. Compared with the classical phase-

field model, two additional material parameters, i.e. the failure tension strength and the ratio of the 

critical shear failure stress to the critical normal fracture stress, are needed. The proposed model is 

derived in the framework of the unified phase-field theory [26], and general softening laws for 

cohesive zone models can be implemented [52]. The original unified phase-field model can be 

recovered as a particular case of the proposed model and an analytical solution for a 2D long bar 

under tensional loading is provided. Numerical examples have shown that the fracture angle 

/ 4T   can be observed for the long bar under tensional loading by the proposed phase-field 

model according to the Tresca criterion. The proposed model can also be applied for simulating 

rock-like materials under compression. 



    This paper is organized as follows. In Section 2, the phase-field model based on the unified 

phase-field theory is introduced. The mixed-mode phase-field model based on the unified tensile 

fracture criterion is proposed in Section 3, followed by the analytical solution for a 2D long bar 

under tensional loading in Section 4. Then the numerical implementation and numerical examples 

are presented in Sections 5 and 6, respectively. 

 

2. The phase-field model 

2.1  The governing equations of the phase-field model 

In this section, the phase-field model based on the variational approach of Griffith’s theory [16, 

53] is introduced. The total energy function without the body force can be written as 
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where    is a bounded domain with boundary   , c     is the crack set, u   is the 

displacement, t  is the prescribed surface traction, ε  is the strain tensor, cG  is the material 

fracture toughness or energy, and 0  is the initial energy density function defined as 

 
2 2

0

1
tr [ ] tr[ ]

2
   ε ε  (2) 

where   and   are the Lame constants.  

The regularized form of Equation (1) can be obtained by introducing a variable s   called 

phase-field as 
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where ( , )s s    is the surface density function expressed in terms of the crack surface field 

[0,1]s   , and 0( ( ), ) ( ) ( ( ))s s  ε u ε u   is the modified energy density function, in which 

( ) [0,1]s   is the degradation function. 

The problem is reduced to finding both phase-field and displacement field on the solid and the 

variation of Equation (3) can be written as 
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where the stress tensor ( , )sσ u  is defined as 
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By applying the divergence theorem, Equation (4) will be 



 

( , ) div ( ) d ( ) d d

( , ) ( , ) ( , ) ( , )
[ ( ) ] d dc c c

s

s s s s s s s
G G s G s

s s s s

   

   
 

  

 

          

      
        

   

  

 

u σ u u σ u n u t u

ε
n

 (6) 

where n  is the unit outward normal at the boundary  . Then the governing equation for the 

phase-field model can be expressed as 

 div σ 0  (7) 
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with boundary conditions 
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where u   is the prescribed displacement, u t     , u   and t   are the 

displacement and traction boundaries, respectively. Equations (7) and (8) can be called the 

equilibrium equation and the evolution equation, respectively. 

2.2 The surface density function and the degradation function 

The generic form of the crack surface density function proposed in the unified phase-field 

theory [26] is considered in this paper and it can be written as 
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where ( )s  is the geometric crack function and 0l  is the length scale regularizing the crack. In 

this paper, the following geometric crack function is applied 
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and 0c  . In the classical phase-field model, 
2( )s s   and 0 2c   are applied. 

The degradation function ( )s  has the following properties [54] 
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and in the unified phase-field theory, it is defined as 
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where 0p  , ( ) 0Q s   and 
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in which 
2

i

j

i jb a


   are coefficients calibrated from material properties or cohesive models, and 

some details can be found in the unified phase-field theory [26]. 

Using Equation (11), Equation (8) can be written as 
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3. The mixed-mode phase-field model based on unified tensile fracture criterion 

In this section, the phase-field model for mixed-mode fracture is proposed in the 2D case. 

Equation (18) can be rewritten as 
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3.1 Phase-field model based on the maximum normal stress criterion 

Take the plane stress problem as an example, and assume that the material will fail only when 

the first principal normal stress exceeds the critical normal fracture stress. The energy density can 

be decomposed as 

 
0 0( )I I IIs      (20) 

where I   is a degradation function defined as 1/ [1 ( )]I I s    , 0I   and 0 II   are 

defined as 
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where E  is the elasticity modulus, v  is the Poisson’s ratio, The direction n  is perpendicular 



to the crack surface and the direction m    is parallel to the crack surface.  nn
 ,  mm

  and 

 nm
 are components of the effective stress tensor σ  in the local coordinate system LCS 

( ,n m ) constituted by directions n   and m . The effective stress tensor σ  is defined as 

 σ Λε   (23) 

where Λ  is the standard elasticity tensor [31]. 

The effective constitutive matrix in LCS ( ,n m ) can be computed by 
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The relation between σ  and σ  can be obtained as 
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Then Equation (21) can be written as 
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Consider a sufficiently long 2D bar loaded at both ends by a uniform tension (see Figure 2), 

and assume n  is the direction of the first major principle stress of the stress tensor, i.e., 
1 nn
, 

2 0  mm
, where 1  and 2  are the first and second major principle stresses, respectively. 

Then for the case 0s  , Equation (19) can be rewritten as 
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or, equivalently, 
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where cIG  is the fracture energy for the Mode-I fracture. 

The crack initiation is assumed at the middle point, then the stress 
1  at the middle point 

can be computed by 
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where 
*s  is the maximum phase-field and the condition 0s   at the middle point is applied.  

In the unified phase-field model, the critical normal tensile fracture stress 
t  can be evaluated 

by setting 
* 0s   and 
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where the L’Hoptial’s rule is applied because (0) (0) 0I   , and the Mode-I fracture energy 

can be computed by 
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Substituting Equations (21) and (31) into Equation (19), one can obtain 
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where 
1  is the first major principle value of the effective stress tensor σ . It can be indicated 

that Equation (32) or (33) is similar to the maximum normal stress criterion. 

 

Figure 2. The long bar under tensile loading 

3.2 Phase-field model based on the maximum shear stress criterion 

Similarly, one can assume that the material will fail only when the shear stress exceeds the 

critical shear fracture stress. The energy density can be decomposed as 
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where 
0I   and 0 II   are defined in Equations (21) and (22), respectively, and 

1/ [1 ( )]II II s   . 

    In this case, the effective constitutive matrix in LCS ( ,n m ) can be computed by 
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and one can obtain 
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    Then 0 II  in Equation (22) can be computed as 
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Substituting Equation (37) into Equation (19) for the case 0s   leads to 
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where 0  and cG  are replaced by 0 II  and cIIG , respectively. 

Similarly, consider a long bar with loading shown in Figure 2, and assume that m  is the 

direction of the maximum shear stress. Also assume that the crack initiates at the middle point, then 

the maximum shear stress can be computed by 
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and the critical shear failure stress s  is 

 

0 0

2 (0)

(0)

cII
s

II

G

c l

 








 (40) 

where cIIG  can be computed by 
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in which /s t    can be considered as a material parameter. 

Finally, for a model-II fracture, Equation (19) can be rewritten as 
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One can find out that Equation (42) or (43) is similar to the Tresca criterion. 

3.3 Phase-field model based on the unified failure criterion 



To obtain the mixed-mode phase-field model, the energy density can be decomposed as 
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and the relation between σ  and σ  can be obtained as 

 

1
0 0

( )

1
0 0

( )

1
0 0

( )

I

I

II

s

s

s


 

 


 



 
 
    
    

     
    

    
 
 

nn nn

mm mm

nm nm

  (46) 

    The decomposition in Equation (44) cannot avoid the crack propagation under compressive 

stress, thus, a modified decomposition can be defined as 
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where 
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0 0 0 0= I II        (50) 

In Equation (48), it is assumed  nn mm
, and in Equation (49), 

1  is the first major 

principle value of the effective stress tensor σ . 

Now Equation (19) can be rewritten as 
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By substituting Equations (48), (49), (31), and (41) into Equation (51), and only 

considering the tensional-shear state, one can have 
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where   nn
, and   nm

. 

If ( ) ( )I IIs s  , Equation (52) will be similar to the unified failure criterion [48], or called 

as the “ellipse criterion”, expressed as 

 

2 2

2 2
=1

t s

 

 
  (53) 

For a tensile fracture, the well-known four criteria are special cases of this unified failure 

criterion: 

(i) the Tresca criterion: / 0s t    ; 

(ii) the maximum normal stress criterion: / 2 / 2s t    ; 

(iii) the Mohr-Coulomb criterion: / 2 / 2s t    ; 

(iv) the von Mises criterion: / 3 / 3s t    . 

There are also some other generic failure criteria for fracture. For example, a more generic 

failure criterion of either elliptic, parabolic, or hyperbolic type has been analyzed in a unified 

manner [55-57]. 

In this paper, the crack propagation direction will be determined based on the unified failure 

criterion, i.e., Equation (53). 

3.4 The crack direction  

To determine the direction of the crack based on the unified criterion, one can define a function 
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where 1 2( ) / 2r    , 1 2( ) / 2a    , and   is the angle between   and the effective 

first major principle stress 1  (see Figure 3). Suppose that the fracture occurs at the stress state 

[ , ]  , then the fracture direction is perpendicular to the direction of stress  , and the fracture 

angle is / 2T    . 
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Figure 3. The crack propagation direction based on unified failure criterion 

In the unified failure criterion, the fracture will occur if the function (2 ) 1f    and the value 

of   can be computed by 

 
[0, /4]

arg max (2 )f
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 
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  (55) 

To obtain the value of  , one can define a function f   as 
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Then one can obtain   for different cases as: 

(i) 1 2 0    and 
2

1 2 1( ) / (2 )      (see Figure 3(a)) 

In this case, 0f    if 
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, thus, 
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(ii) 1 2 0    and 
2

1 2 1( ) / (2 )       (see Figure 3(b)); 

In this case, 0f   , thus 0  . 

(iii) 1 2 0    and 
2

1 2 1( ) / (2 )      (see Figure 3(c)); 

In this case, 0f   , thus 
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(iv) 1 2 0    and 
2

1 2 1( ) / (2 )      (see Figure 3(d)); 

In this case, 0f     if 
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thus, 
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(v) 1 0  ; 

In this case, the material is under compressive stress and no damage will be considered, i.e., 

0 0I    and 
0 0II   .  

One should note that we can redefine the values of   and 
0 II 

 for the case 1 0   to 

consider the compressive-shear fracture, which allows the proposed method to model rock-like 

brittle materials under compression, and the numerical examples are shown in Section 6.4. 

3.5 The history fields 

In the original unified phase-field model, if the geometric crack function in Equation (14) is 

used, the distribution of the phase-field is in a finite bounded domain and the boundedness condition 

of the phase-field cannot be ensured automatically. In this paper, we introduce two history fields to 

overcome this problem. 

Equation (28) always holds if 0s   and it also holds when 
* 0s s  , thus, we can have 

the following equation for Equation (51) 
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Equation (60) holds for 0s   and 
* 0s s  . The functions ( )I s  and ( )II s  can 

be defined as 

 ( ) ( ), ( ) ( )I I II IIs b s s b s      (61) 

where Ib  and IIb  are coefficients needed to be determined. Then Equation (60) can be rewritten 

as 
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when 
* 0s s  , and 
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Then one can define two history fields 
I
 and 

II
 at step m  as 
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 (65) 

where 0 0
min

(0) (0)
(0)+ (0)= max[ , ]I II

I II

cI cIIG G

  

  for the initial step 0. With Equation (65), 

the irreversibility for the crack phase-field evolution can be handled [27]. 

Finally, the evolution Equation (51) can be rewritten as 
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For the case =0  , it has =0II   and Equation (66) becomes the evolution equation in the 

original unified phase-field theory. 

4. Analytical solution for the 2D long bar under tension 

The analytical solution for the 1D problem under tension has been proposed in [26] and the 

parameters in Equation (17) are obtained according to a given softening curve. In this section, we 

will extend the solution to the 2D case for mixed-mode fracture by considering Equation (51). 

Considering a 2D long bar with boundary conditions shown in Figure 2, and 

1 2 1/ ( ) / (2 )s t         is assumed, where 1  and 2 0   are the first and second 

major principal stress. 
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Figure 4. Stress state under tensile loading 

According to Equation (57), it has 
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which means that the angle   is constant during the loading procedure (see Figure 4). For the 

case 0s  , one can write Equation (52) as 
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Equation (68) can be simplified to  
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where 
2

1 2 1k    . 

Substituting Equation (30) into Equation (69) leads to the following equation 
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or, equivalently, 
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Since 0s   holds at the middle point, the stress can be computed at this point by 
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where 
*s  is the maximum value of s . The failure tension strength tf  (see Figure 4) can be 

determined upon the instant of damage initiation, and 
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It can be seen that Equation (71) will be similar to the corresponding equation obtained in [26] 

if letting 
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c cIG G k  (74) 

where 
t

cG  can be considered as the fracture energy obtained from the tensile loading test. Once 

t

cG   is obtained, the fracture energy 
cIG   and 

cIIG   can be computed by Equations (74) and 

(64). 

Thus, most of the results obtained in [26] can be used in the proposed model directly, such as 

the parameters for different softening laws. For example, 1a  in Equation (17) can be computed 

from Equation (73) by 
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which is similar as in [26], and E  should be replaced by 
2/ (1 )E v  for plane strain problems. 

For general cases, 1k  is defined as 

 

2

1

2 1 , 1/ 2

1

if
k

otherwise

    
 


 (76) 

The other parameters in Equation (17) can be obtained by [26]: 
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where 0k  and cw  are the initial slope and the ultimate crake opening, respectively, which can 

be obtained from given softening laws. In the linear softening law, the other parameters are  
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2
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    Note that the parameters 1k , 
cIG  and 

cIIG  are independent of the softening law, thus, other 

geometric crack functions and degradation functions can also be applied in the proposed model, 

such as the geometric crack function 
2( )s s   and the degradation function 

2( ) (1 )s s    

in the classical model. 



 

5. Numerical implementation  

5.1 Calculation parameters 

The proposed method can be easily incorporated into the finite element method (FEM). 

Compared with the classical phase-field model, besides the elasticity modulus E , the Poisson’s 

ratio v , the fracture energy 
t

cG ,  two additional parameters are needed, i.e., the failure tension 

strength 
tf  and the ratio /s t    (see Figure 4). Based on these parameters, the parameter 

1k  can be computed by Equation (76), and 
t , 

s  can be obtained by 

 1/ ,t t s tf k     (80) 

The fracture energy 
t

cG  can be measured from the tension test, then 
cIG  and 

cIIG  can be 

obtained by 
2

1/t

cI cG G k   and 
2 /cII cIG EG   . Note that both 

cIG   and 
cIIG   are 

independent of the parameters Ib  and IIb . 

The parameters Ib  and IIb  will influence the fracture angle in the mixed-mode fracture. 

From the derivation in Section 3, one can observe that if 1I IIb b  , the proposed model will be 

simplified and the resulting model can be called a hybrid model, in which the effective constitutive 

matrix (45) can be written as 

 ( )sD D  (81) 

where D  is the original constitutive matrix. This hybrid model is similar to the hybrid formulation 

proposed in [58]. However, this model cannot obtain the correct fracture angle / 4  for the long 

bar under tensional loading if the maximum shear stress criterion is applied (i.e., 0  ). Thus, 

the following Ib  and IIb  can be used: 

 (cos 2 ) , (sin 2 )n n

I IIb b    (82) 

where   is the angle obtained in Section 3.5. Our simulations show that Ib  and IIb  may have 

influence on the fracture angles for some examples. An analytical solution for /I IIb b  may exist 

but is not easy to be obtained. 

Similarly, the coefficients Ib  and IIb  at step m  can be defined by 
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 (83) 

5.2 FEM formulations 



In the final model proposed for mixed-mode fracture problems, one needs to solve two sub-

problems controlled by Equations (7) and (66), respectively. Using FEM, the weak form for 

Equations (7) and (66) can be written as 
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where û   and ŝ   are the nodal displacement and nodal phase-field, D̂   is the effective 

constitutive matrix in the global coordinate system (GCS), and 
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where  ( )j j   x  is the shape function and N  is the total number of discrete nodes. 

    The whole loading procedure is discretized into M   loading steps. In each loading step, 

Equations (84) and (85) can be solved by monolithic or staggered schemes [24, 27, 54]. In this 

paper, the staggered scheme is employed, i.e., in each step, the displacement field is solved by 

Equation (84) with the fixed phase-field, and then the phase-field is solved by Equation (85) with 

the fixed displacement field. Iterations between these two equations can be performed until the 

prescribed criterion is reached, which is also known as the alternate minimization algorithm [16]. 

Equation (84) will result in a non-linear system of equations, which can be solved by direct 

iteration methods, and in each iteration step, D̂  in GCS can be computed by 

 
Tˆ [ ( )] ( , ) ( )i i i i iD M n D n m M n  (90) 

where ( , )i i
D n m  is the effective constitutive matrix in LCS ( ,i i

n m ) and can be computed by 

Equation (45). ( )i
M n  is the transform matrix corresponding to the direction 

i
n  and 

 
1= +(1- )i i i  

n n n  (91) 



where 
i

n   is the direction computed by the unified failure criterion at iteration step i  , and 

(0,1]    is a weight parameter. In this paper, 1    is applied in most cases. However, 

Equation (84) may not converge to a given residual if 
2  is close to 0.5 in some cases. In this 

situation, a smaller (0,0.5]   can be implemented to improve the convergence. 

The non-linear system of equations obtained by Equation (85) can be solved by Newton’s 

method. In the real implementation, we have found out that both inner iterations for solving 

Equations (84) and (85) are not needed in most cases.  

 

6. Numerical examples 

In this section, some numerical examples are proposed to show the ability of the proposed 

model in mixed-mode fracture modeling. Plane stress states and the linear softening law are assumed 

in the examples if not specified, and the direct displacement control is applied in the simulation. 

The initial crack is modeled as discrete discontinuity in the geometry. In all the examples, the 

staggered scheme with iterations, i.e., the alternate minimization algorithm [16] is applied to solve 

the model if not specified. Both inner iterations for solving Equations (84) and (85) are not 

performed in the alternate minimization algorithm, i.e., only the outer iterations between Equations 

(84) and (85) are performed and the scheme will be stopped if the L2-norm of the phase-field 

between two consecutive iteration steps is below 
510

. 

6.1 2D bar under tensional loading 

A 2D bar with length 4L  mm and height 1H  mm under tensional loading shown in 

Figure 5 is tested and the material properties are Young’s modulus 200E  GPa, Poisson’s ratio 

0.3v  , fracture energy 10t

cG  N/mm, and failure tension strength 0.25tf   GPa. A total of 

40,000 uniform structured quadrilateral elements (the mesh size is 0.01mm) are used to discretize 

the domain and two length scales 0 0.05l   mm and 0 0.10l   mm are applied in all the 

examples. The crack path may form at the left boundary edge because the stresses at points near the 

left edge are higher than those near the right edge since the left edge is fully fixed. Thus, the Dirichlet 

condition 0s    is imposed on both left and right edges [26, 52], and no initial defects are 

introduced in the simulation. 

 

Figure 5. The bar under tensional loading: Geometry and boundary conditions 



 
Figure 6. Crack initiations for the bar under tensional loading (l0=0.05mm, n=0.5) 

 

Several different values of /s t    are considered in the simulation. The displacement 

increment u  is 0.004 mm in the first step, and 
410u   mm is used for the 2nd to 100th steps, 

then 
310u   mm is applied for the rest steps. Different values of n  in functions Ib  and IIb  

shown in Equation (82) are tested, and the crack initiations for length scales 0 0.05l  mm with 

n=0.5, i.e., 
0.5cos (2 )Ib  , 

0.5sin (2 )IIb   are shown in Figure 6. All the cracks initiate near 

the left edge since the left edge is fully fixed. The final crack paths at displacement u=0.2 mm are 

shown in Figure 7, Figure 8, Figure 9, and Figure 10 for   =0.01, 0.3, 0.55, and 10.0, respectively. 

It can be observed that different fracture angles are obtained by changing  . In the special cases 

0    and 
2 0.5   , the fracture angles are / 4T    and / 2T   , respectively, 



which can be reproduced by the proposed numerical model (see Figure 7 and Figure 10). The hybrid 

model with 1.0I IIb b   can also obtain / 2T   for the case 
2 0.5  (see Figure 10). 

However, it cannot obtain  / 4T    for the case 0    in this numerical example (see 

Figure 7(d) and Figure 7(h)). The fracture angle 
T  increases as the values of n  in both 

Ib  and 

IIb  decrease, and the hybrid model can be considered as 0n  . One can also observe that the 

length scale has little influence on the crack paths for all the examples, except that the crack 

bandwidth is wider when 0 0.10l  mm. 

 

Figure 7. Crack paths for the bar under tensional loading (  =0.01) 

 

Figure 8. Crack paths for the bar under tensional loading (  =0.3) 



 

Figure 9. Crack paths for the bar under tensional loading (  =0.55) 

 

Figure 10. Crack paths for the bar under tensional loading (  =10.0) 

One can also observe that the directions of crack paths for some cases are distinct from others, 

for example, the crack path shown in Figure 7(h) is from the left upper corner to the right lower 

corner, while the others in Figure 7 are from the left lower corner to the right upper corner. The “X” 

shape crack path can be observed at the beginning of crack initiation (see Figure 6(a)), and one crack 

will become the major crack because of the computational error in the simulation. Thus, both the 

crack directions shown in Figure 7(d) and Figure 7(h) may be observed. The load-displacement 

curves are shown in Figure 11, and all the maximum loadings are close to 0.25 kN because the given 

failure tension strength is fixed. Actually, both the mesh size and length scale have very little 

influence on the load-displacement curves [52].  



 

Figure 11. Load-displacement curves for the bar under tensional loading 

6.2 Single-edge notched plate under shear 

A plate with a notch shown in Figure 12 is considered in this example. The lengths of the plate 

and notch are 1.0mm and 0.5mm, respectively. The bottom edge is fixed and a horizontal 

displacement is imposed on the upper edge. Especially, the vertical displacements are fixed to zero 

on all the boundaries. The material properties are [27, 52]: Young’s modulus 210E   GPa, 

Poisson’s ratio 0.3v   , fracture energy 2.7t

cG   N/mm, and failure tension strength 

2445tf  MPa. Four different 0.0001  , 0.3, 0.6, and 1.0 are tested. In all the simulations, 

158, 404 uniform structured quadrilateral elements (the mesh size is about 0.0025mm) are applied 

to discretize the domain and the length scale is 0 0.01l  mm. The displacement increment u  is 

10-4 mm and four different functions of Ib  and IIb  are tested. 



 

Figure 12. Single-edge notched plate under shear (unit: mm) 

The crack paths obtained by the proposed phase-field model are shown in Figure 13(a-d), 

Figure 14(a-d), Figure 15(a-d), and Figure 16(a-d). It can be observed that the crack paths for the 

case 0.0001   are close to horizontal lines, which are close to the theoretical results of the 

pure shear test. However, this crack path is still an inclined line (see Figure 13(a-d) and Figure 14(a-

d)), and the main reason is that some elements may be under compression, i.e., 1 2 0   , 

because of the computational round-off error. Thus, a modified crack direction search algorithm can 

be applied for the case 1 2 0    as:  

(i) If 1 2 0    and 1 1 2/ ( ) / (2 )t s      , 0   (see Figure 17(a)); 

(ii) If 1 2 0    and 1 1 2/ ( ) / (2 )t s      , / 4   (see Figure 17(b)). 

(iii) if 1 0  , / 4  , 
2

0 / (2 )II    . 

The original crack direction search algorithm is called method 1, and the modified crack 

direction search algorithm can be called method 2. The crack paths obtained by the modified crack 

direction search algorithm (method 2) are shown in Figure 13(e-h), Figure 14(e-h), Figure 15(e-h), 

and Figure 16(e-h). It can be observed that the crack path for the case 0.0001   is a horizontal 

line now, which is closer to the theoretical result. The crack paths for the case 0.3   are also 

flatter than those obtained by the original direction search algorithm (i.e., method 1). One can also 

observe that different Ib  and 2b  have very little influence on the crack paths in this example. 

 The load-displacement curves are shown in Figure 18. The peak force increases with the 

increase of   
 
for cases 0.0001  , 0.3 and 0.5, and the peak forces obtained by method 1 

are close to those obtained by method 2, especially for cases 0.0001   and 1.0. One can also 

observe that different values of n used in Ib   and IIb   have no much influence on the load-



displacement curves. 

 
Figure 13. Crack paths for the single-edge notched plate under shear (  =0.001) 

 

 
Figure 14. Crack paths for the single-edge notched plate under shear (  =0.3) 



 
Figure 15. Crack paths for the single-edge notched plate under shear (  =0.6) 

 

 
Figure 16. Crack paths for the single-edge notched plate under shear (  =1.0) 



(b)
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Figure 17. The modified crack direction search algorithm for 1 2 0   . 

 

Figure 18. Load-displacement curves for the single-edge notched plate under shear 

6.3 Single-inclined notched plate under tension 

A single-inclined notched plate under tension shown in Figure 19 is studied in this example. 

The length of the plate is 1.0mm and the notch is located in the center of the plate (see Figure 19(a)). 

A total of 122,606 triangular elements are used to discretize the domain with fine meshes (the mesh 

size is about 0.003mm) assigned to the critical zones (see Figure 19(b)) and two length scales 0l

=0.006 and 0.012 mm are applied. The material properties are Young’s modulus 210E  GPa, 

Poisson’s ratio 0.3v  , fracture energy 5.0t

cG  N/mm, and failure tension strength 2000tf   



MPa. Four different  =0.1, 0.25, 0.4, and 10 are considered. The displacement increment u  is 

410
mm in all the examples. 

The crack paths obtained by different   are shown in Figure 20, Figure 21, Figure 22, and 

Figure 23, respectively. As expected, different crack paths are obtained according to the mixed-

mode phase-field model. One can also observe that different Ib  and IIb  have a slight influence 

on the crack paths, and the length scale only influences the crack bandwidth. The load-displacement 

curves are shown in Figure 24. One can also find out that the peak force decreases with the increase 

of   in this example. The mesh size h =
1 1

( )
4 2 0l  is used in these examples and the desired crack 

patters can be obtained. To obtain more accurate results, such as the fracture surface energy, the 

mesh size h  should be sufficiently small compared to the length scale 
0l , and h =

1 1
( )
10 5 0l  is 

suggested in the unified phase-field theory [26, 52]. 

 

Figure 19. Single-inclined notched plate under tension (unit: mm) 



 

Figure 20. Crack paths for the single-inclined notched plate under tension ( =0.1 ) 

 

Figure 21. Crack paths for the single-inclined notched plate under tension ( =0.25 ) 



 

Figure 22. Crack paths for the single-inclined notched plate under tension ( =0.4 ) 

 

Figure 23. Crack paths for the single-inclined notched plate under tension ( =1.0 ) 



 

Figure 24. Load-displacement curves for the single-inclined notched plate under tension 

6.4 A rock plate with two inclined notches under uniaxial compression 

 

Figure 25. A rock specimen with two notches under uniaxial compression (unit: mm) 



To further show the advantage of the proposed model, a rock specimen with two pre-existing 

notches under uniaxial compression conducted by Bobet et al. [59] is simulated. The geometry and 

boundary conditions are shown in Figure 25(a). The height and width of the specimen are 152.4mm 

and 76.2mm respectively, and all the notches have a length of 12.7 mm. The crack paths observed 

in the experiment are shown in Figure 25(b). 

The material properties used in the simulation are Young’s modulus 5.96E   GPa, 

Poisson’s ratio 0.24v  , fracture energy 50t

cG  N/m, and failure tension strength 2.3tf 

MPa. Four values of  =0.5, 2.0, 4.0, and 6.0 are considered, and the modified crack direction 

search algorithm is implemented, especially, / 4   and 
2

0 / (2 )II     are adopted for 

the case 1 0   , i.e., the material is allowed to damage under compressive-shear stress. The 

geometric crack function 
2( )s s   , degradation function 

2( ) (1 )s s    , and 1I IIb b   

are implemented in this example. 

Triangular elements are used to discretize the domain with fine meshes (the mesh size is about 

0.1mm) assigned to the critical zones and the length scale is 0 0.59l   mm. The displacement 

increment u  is 10-3 mm and the staggered algorithm without iteration [27] between Equations 

(84) and (85) is applied in this example. 

The crack paths obtained by the proposed model are shown in Figure 26, Figure 27, Figure 28, 

and Figure 29 for different  . It is indicated that no wing crack is obtained for the case  =0.5, 

and shearing cracks are appeared because of the critical shear failure stress is small. On the contrary, 

four wing cracks are observed for the case  =6.0, and no shearing crack is obtained, which is 

because the critical shear failure stress is much greater than the critical normal fracture stress, and 

the wing cracks emerge because of the tensile stress. For the cases  =2.0 and 4.0, four wing cracks 

emerge first, then shearing cracks initiate at the tips of the pre-existing cracks, and finally grow to 

a coalescence crack between the two pre-existing cracks, which have good agreements with the 

experiment result shown in Figure 25(b).  



(a) u=0.147 mm (b) u=0.154 mm (c) u=0.160 mm
 

Figure 26. Crack paths for a rock plate under uniaxial compression (  =0.5) 

(a) u=0.4 mm (b) u=0.5 mm (c) u=0.511 mm
 

Figure 27. Crack paths for a rock plate under uniaxial compression (  =2.0) 



(a) u=0.600 mm (b) u=0.940 mm (c) u=0.950 mm
 

Figure 28. Crack paths for a rock plate under uniaxial compression (  =4.0) 

(a) u=0.800 mm (b) u=1.230 mm (c) u=1.235 mm
 

Figure 29. Crack paths for a rock plate under uniaxial compression (  =6.0) 

7. Conclusions 

In this paper, a phase-field model for mixed-mode fracture is proposed. The unified tensile 

fracture criterion is embedded in the unified phase-field theory. Two additional material parameters 



are introduced in the proposed model, i.e., the failure tension strength and the ratio of the critical 

shear failure stress to the critical normal fracture stress. This ratio controls the crack propagation 

direction. Failure modes based on both maximum normal stress criterion and maximum shear stress 

criterion are only two special cases in the proposed model. 

Several numerical examples have been presented to verify the proposed model. As expected, 

different failure patterns can be obtained by changing the material property   (the ratio of the 

critical shear failure stress to the critical normal fracture stress). For example, a fracture angle close 

to /4  can be obtained if 0   for a bar under tensile loading. Numerical results have shown 

that the proposed model can also be applied to rock-like materials under compression. 

The influence of different functions of Ib  and IIb  on the crack paths are also investigated 

in this paper. It has been found that different Ib   and IIb   influence the crack paths in some 

examples, especially when    is very small (numerical example 1 and numerical example 3). 

However, the influence is not very much in most examples and the case 1.0I IIb b   can also 

obtain similar results, which can simplify the model since it results in a linear system of equations 

while solving Equation (84). 

 Appling the proposed phase-field model to dynamic problems is on-going. Adaptive 

refinement can be implemented to save computational resources. 
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