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1. THE ACKERMANN HIERARCHY.

Let f:Z+ into Z+ be strictly increasing.  Define f':Z+ into Z+

by f'(n) = f...f(1), where there are n f's.

Define A1(n) = 2n. For each k ≥ 1, define Ak+1 = Ak'. Finally,
define A(k,n) = Ak(n), and A(k) = A(k,k).

We can equivalently present this by the recursion equations
f1(n) = 2n, fk+1(1) = fk(1), fk+1(n+1) = fk(fk+1(n)), where k,n ≥
1. We define A(k,n) = fk(n).

A(3,5) = 265,536. A(4,3) = 65,536. A(4,4) = E*(65,536). And
A(4,5) is E*(E*(65,536)).

It seems safe to assert, e.g., that A(5,5) is incomprehen-
sibly large. We propose this number as a sort of benchmark.

The following facts about A are useful, and are easily proved
in the order stated.

THEOREM 1.1. For all k,n ≥ 1, n < Ak(n) < Ak(n+1). For all k ≥
1 and n ≥ 3, Ak(n) < Ak+1(n). For all k,n ≥ 1, Ak(n) £ Ak+1(n).
For all k ≥ 1, Ak(1) = 2, Ak(2) = 4, and Ak(3) ≥ 2k+1. For all
k ≥ 3, Ak(3) ≥ Ak-2(2

k) > Ak-2(k-2). If k ≥ n+5 then Ak(3) >
An(k).

Ackerman's original definition is similar but is ternary. The
growth rates are the same.



2

1. FULL SUBIDEALS.

Here we take the degree of an ideal in a polynomial ring over
a field is the least d such that the ideal has a set of
generators all of which have degree at most d. When we
discuss algebraic sets, we will consider the usual notion of
degree in algebraic geometry.

Let k ≥ 0 and I be an ideal in the polynomial ring
F[x1,...,xk], F a field. I has finite degree by the Hilbert
basis theorem. We write d(I) for the degree of I.

For each n ≥ 0, we let I*n be the ideal generated by the
elements of I of degree n. We call these the full subideals
of I.

We let I*£n be the ideal generated by the elements of I of
degree £ n.

THEOREM 1.1. Let F be a field, k ≥ 1, and I be an ideal in
F[x1,...,xk]. For all n ≥ 0, I*n = I*£n. I*0 Õ ... Õ I*d(I) =
I = I*d(I)+1 = ... . For all n ≥ 0, I*n = I*d(I*n). Any two
full subideals with the same degree are equal. If I ≠
F[x1,...,xn] then I*0 = {0}.

Proof: For the first claim, let P in I have degree < n. By
multiplication, let Q in I have degree n. Then Q+P in I has
degree n. Hence P lies in I*n.

Now suppose I*n has degree d. Let K be a set of generators of
I each of degree £ d. Then I*n Õ I*d. Also d £ n since I*n is
generated by the elements of I of degree £ n. Hence I*d Õ
I*£n = I*n.

From the first claim, clearly the full subideals of I are the
ideals I*£n, which form a chain under inclusion of length at
most d(I)+1.

I*n is generated by its elements of degree £ d(I*n). Since
I*n is also generated by its elements of degree £ n (which
are all polynomials of degree £ n), we have d(I*n) £ n. Hence
I*n is generated by the set of polynomials of degree £
d(I*n). Therefore I*n = I*d(I*n).
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The next claim is immediate. For the final claim, note that
if I ≠ F[x1,...,xn] then I cannot contain any constants. Hence
I*0 is generated by 0, and hence is {0}. QED

We say that I is perfect if and only if I*0,I*1,...,I*d(I)
are distinct. By Theorem 1.1, I is perfect if and only if the
full subideals form a chain of length deg(I)+1 if and only if
the full subideals have degrees 0,1,...,d(I).

THEOREM 1.2. Every full subideal of every perfect ideal is
perfect. The presentation degrees of perfect ideals in
F[x1,...,xk] form an initial segment of the nonnegative
integers.

Proof: Let I be a perfect ideal and J = I*n be given. Then
I,J both have the same elements of degree £n. Hence
J*0,...,J*n is the same as I*0,...,I*n. Since I is perfect, J
is perfect. The second claim follows immediately. QED

THEOREM 1.3. The degrees of the perfect ideals of F[x1,...,xk]
form a finite initial segment of the nonnegative integers.
The union of these finite initial segments over all fields F
is still finite.

Proof: This follows from the results in section 5 on
ascending chains of ideals, originally due to A. Seidenberg.
QED

Upper bounds for Theorem 1.3 follow from upper bounds in
section 4.

Lower bounds for Theorem 1.3 are obtained by the following
construction, even for monomial ideals in any F[x1,...,xk].

Let z1,...,zt be elements of N
k, where

1) for each i, the sum of the coordinates of zi is i;
2) for all i < j, it is not the case that zi £ zj
coordinatewise.

For each z Œ Nk, let M(z) be the monomial x1
z1 x2

z2 ... xk
zk.

Let I be the ideal in F[x1,...,xk] generated by
M(z1),...,M(zt).

LEMMA 1.4. Let k ≥ 1 and F be a field. The ideal I Õ
F[x1,...,xk] generated by M(z1),...,M(zt) is perfect. In
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particular, for all 0 £ n £ t, In is the ideal generated by
M(z1),...,M(zn).

Proof: Let k,F,I be as given. Let 1 £ i £ t. Then the
polynomials in I of degree i must be generated by
M(z1),...,M(zi). To see this, let f Œ I have degree i, and
write f as a sum of multiples of M(z1),...,M(zt). Every
monomial in f must be a multiple of one of the z1,...,zt.
Hence every monomial in f must be a multiple of one of the
z1,...,zi. Hence f is generated by M(z1),...,M(zi).

Also clearly I contains no nonzero constants, and hence I*0 =
{0}.

It remains to verify that for all 0 £ n £ t, M(zn) is not in
the ideal generated by M(z1),...,M(zn-1). This is clear since
all monomials in all polynomials generated by M(z1),...,M(zn-
1) must be variablewise ≥ some M(zi), 1 £ i £ n-1, and hence
cannot be M(zn). QED

For k ≥ 1 let F(k,n) be the longest length of a sequence
z1,...,zt from N

k, where

1) for each i ≥ 1, the sum of the coordinates of zi is n+i-1;
2) for all i < j, it is not the case that zi £ zj
coordinatewise.

LEMMA 1.5. For each k,n ≥ 1, F(k,n) exists.

Proof: Fix n ≥ 1. Consider the tree of all of the relevant
finite sequences. This tree is finitely branching. It cannot
have an infinite path, since in any infinite sequence from Nk,
some term is coordinatewise £ some later term. Hence the tree
is finite. QED

LEMMA 1.6. F(2,n) ≥ 2n.

Proof: (n,0),(n-1,2),...,(0,2n),(0,2n-1),...,(0,0). QED

LEMMA 1.7. F(k+1,n) ≥ FkFk...Fk(1), where Fk(n) = F(k,n), and
there are n Fk’s.

Proof: First write down an appropriate sequence of elements
of Nk of length Fk(1). Then write down an appropriate sequence
of elements of Nk of length FkFk(1). Continue this process for
n steps. Then extend each k-tuple by another coordinate,
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where in the first sequence, the new coordinate is n-1, and
n-2 in the second sequence, and so forth down to 0. QED

LEMMA 1.8. For k,n ≥ 1, F(k+1,n) ≥ A(k,n).

THEOREM 1.9. Let k ≥ 1 and F be a field. There exists perfect
ideals in F[x1,...,xk] of every presentation degree £ A(k,n).

2. ALGEBRAIC APPROXIMATIONS VIA PRESENTATIONS.

In this section, we will take the presentation approach. In
the next section, we will reconcile it with the algebraic
approach, at least in the case of algebraically closed
fields.

Let F be a field and k ≥ 1. An algebraic subset of Fk is the
set of simultaneous zeros of a nonempty finite set of
polynomials in k variables with coefficients from F. The
degree of an algebraic set A Õ Fk is the least d such that it
is the set of simultaneous zeros of a nonempty finite set of
polynomials in k variables each of which have degree at most
d. We write this as d(A).

Let A be any subset of Fk. For each n ≥ 0, we let A*n be the
intersection of all algebraic subsets of Fk of degree n that
contain A. If there are no such subsets then we take A*n = Fk.

We henceforth assume that F is an infinite field and k ≥ 1.

LEMMA 2.1. Every polynomial over F that vanishes everywhere
is the zero polynomial.

Proof: By induction on the number of variables in the
polynomial. Write P as a polynomial in the last variable xk
with coefficients from the polynomial ring F[x1,...,xk-1]. For
any choice of x1,...,xk-1, the polynomial in the one variable
xk vanishes everywhere, and hence has infinitely many roots
(we are using that F is infinite), and therefore must be the
zero polynomial. So all of the polynomial coefficients must
vanish everywhere. QED

LEMMA 2.2. Let P be a polynomial over F in k variables, where
for all x1,...,xk-1 in F, {xk: P(x1,...,xk) = 0} is infinite.
Then P is the zero polynomial.
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Proof: Again, write P as a polynomial in the one variable xk
with coefficients from F[x1,...,xk-1]. Then for all choices of
x1,...,xk-1 in F, P is the zero polynomial. Hence all of these
polynomial coefficients vanish everywhere. By Lemma 2.1, they
must be the zero polynomial. Hence P is the zero polynomial.
QED

LEMMA 2.3. If A is an algebraic set such that Fk\A is finite,
then A = Fk.

Proof: Suppose Fk\A is finite. Let P be a polynomial which is
zero on all of A. Then by Lemma 2.2, P must be the zero
polynomial. So A must be the simultaneous zeros of only the
system of polynomials consisting of just the zero polynomial;
i.e., A = Fk. QED

LEMMA 2.4. Let A be an algebraic set of degree d, B an
infinite subset of F\A, and r ≥ d. We can add finitely many
elements of B to A to obtain a algebraic set of presentation
degree r.

Proof: Successively add elements of B one at a time to A.
Every time we add an element of B we get an algebraic set
whose degree is at most 1 higher. It suffices to show that
this process produces algebraic sets whose degrees are
arbitrarily large. This is clear, for otherwise we would get
arbitrarily long finite chains of algebraic sets of a given
degree, which violates linear algebra. QED

LEMMA 2.5. Let A be an algebraic set of degree d, and r > d.
Then A*r = A*£r = A. Also A*d = A*£d = A.

Proof: Suppose Fk\A is infinite. Let B,B' be disjoint infinite
subsets of Fk\A. By Lemma 2.4, we can add finitely many
elements of B to A and finitely many elements of B' to A to
obtain algebraic sets of degree r. By taking their
intersection, we see that A*r = A, and hence A*r = A*£r = A.
By Lemma 2.3, if Fk\A is finite then A = Fk, in which case we
are done. The final statement is obvious. QED

THEOREM 2.6. Let A be an algebraic subset of Fk, F infinite.
For all n ≥ 0, A*n = A*£n.

Proof: Let the degree of A be d. By Lemma 2.5, we assume that
n < d. We need to show that A*n Õ A*£n. It suffices to show
that A*n is included in every algebraic superset B of A of
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degree < n. Fix B to be an algebraic superset of A of degree
< n.

If Fk\B is infinite then choose C,C' to be disjoint finite
subsets of Fk\B such that B union C and B union C' have degree
n, by Lemma 2.4. Their intersection is included in A*n but is
simply B. If Fk\B is finite then by Lemma 2.3, B = Fk, and we
are done. QED

THEROEM 2.7. Let A be an algebraic subset of Fk, F infinite.
A*n = A*d(A*n). A*0 ⊇ ... ⊇ A*d(A) = A = A*d(A)+1 = ... . Any
two algebraic approximations with the same degree are equal.

Proof: For the first claim, let A*n have degree d. Now A*n
has degree £ n since it is an intersection of algebraic sets
of presentation degrees £ n. Hence d £ n. Now A*d is the
intersection of all supersets of A of degree d, and hence A*d
Õ A*n. On the other hand, A*n = A*£n is the intersection of
all supersets of A of degree £ n, and so A*n Õ A*d. Hence A*n
= A*d.

From Theorem 2.6, we see that the algebraic approximations of
A form a chain under inclusion of length at most deg(A)+1.
Let A*n and A*m have the same degree d. Then A*n = A*m = A*d.
QED

We say that A is perfect if and only if A*0,A*1,...,A*deg(A)
are distinct. By Theorem 2.7, A is perfect if and only if its
approximations form a chain of length deg(A)+1 if and only if
the approximations have degrees 0,1,...,d(A).

THEOREM 2.8. Every algebraic approximation of every perfect
algebraic set is perfect. The degrees of perfect algebraic
subsets of Fk form an initial segment of the nonnegative
integers.

Proof: For the first claim, let A be a perfect algebraic set
and B = A*n be a algebraic approximation. Then B*n has degree
n. We claim that B*0,...,B*n is the same as A*0,...,A*n. To
see this, note that every superset of A of degree £ i £ n is
a superset of B of degree £ i because B is an intersection of
the supersets of A of degree £ n.

The second claim follows since the algebraic approximations
of A have every degree £ deg(A) represented. QED
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THEOREM 2.9. The degrees of perfect algebraic subsets of Fk

form a finite initial segment of the nonnegative integers.
The union of these finite initial segments over all fields F
is still finite.

Proof: The first statement is by Theorem 2.8. The second
statement is by Theorems 1.3, which in turn follow from the
statements about strictly ascending sequences of ideals in
section 5. Also any upper bound for Theorem 1.3 or statements
in section 5 are also upper bounds for Theorem 2.10. QED

3. ALGEBRAIC APPROXIMATIONS IN ALGEBRAICALLY CLOSED FIELDS.

If F is algebraically closed and k ≥ 1 then the algebraic
subsets of Fk defined in the previous section are the same as
the algebraic subsets of Fk in the sense of algebraic
geometry. However, the degree defined in the previous section
are not the same as the usual algebraic degree used in
algebraic geometry.

We now show that for algebraically closed fields, we arrive
at the same notions of algebraic approximations and perfect
algebraic sets using algebraic degrees.

We write deg(A) for the algebraic degree. We will use only
two facts about deg(A) in Fk, F algebraically closed.

a. The zero set of any polynomial of degree p is of algebraic
degree £ p.
b. Every set of algebraic degree p is the set of simultaneous
zeros of a set of polynomials of degree £ p.

THEOREM 3.1. Let k ≥ 1, n ≥ 0, A Õ Fk be algebraic, where F
be algebraically closed. Then A*n is the same as the
intersection of all algebraic supersets of A of algebraic
degree £ n.

Proof: Let this second intersection be A**n. Obviously A*n is
the intersection of zero sets of polynomials of degree £ n.
By a, this is the intersection of algebraic supersets of A of
algebraic degree £ n. Hence A**n Õ A*n. On the other hand, by
b, every superset of A of algebraic degree £ n is of
presentation degree £ n. Hence A*£n Õ A**n, and so A*n Õ
A**n. QED
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For a general field F, algebraic geometers will view F as a
subspace of its algebraic closure F#. Thus the algebraic
subsets of Fk are the intersections of algebraic subsets of
F#k with Fk. Also, the algebraic degree of an algebraic subset
A of Fk is the least d such that A is the intersection of an
algebraic subset of F#k of algebraic degree d with Fk.

For our purposes, this amounts to using only algebraically
closed fields F, and studying algebraic approximations of
subsets of Fk and perfect subsets of Fk which are not
necessarily algebraic. For example, we might require that the
subsets of Fk be subsets of Gk for a given subfield G of F.

The results of the next section can be adapted to this point
of view.

4. LOWER BOUNDS FOR ALGEBRAIC APPROXIMATIONS.

Lower bounds for degrees of perfect algebraic sets require a
new construction which we give here. The lower bounds given
here depend on F being an infinite field, which we fix.

An interesting aspect of these lower bounds is that we obtain
them by considering finite sets only. Finite sets are
automatically algebraic, but their degree is generally an
intricate matter.

For A Õ Fk+1 and z Œ F, let A<z> = {y Œ Fk: (y,z) Œ A}.

We say that A is good for (k,n,m) if and only if

i) 0 £ n < m;
ii) A is an algebraic subset of Fk;
iii)i A*n,...,A*m are distinct;
iv) A*n = Fk.

LEMMA 4.1. Let n,k,p ≥ 1 and A1 Õ ... Õ An be finite subsets
of Fk.  Let a1,...,an be distinct elements of F. Let B = A1 x
{a1} » ... » An x {an}. Let 1 £ i £ n £ r. Assume that for all
j in (i,n], Aj*p+j-n = F

k. Then B*p<ai> = Ai*p+i-n.

Proof: We claim that Ai*p+i-n x {a1,...,ai} » Fk x
{ai+1,...,an} is a degree £ p superset of B. To see this,
first note that the first term is Ai*p+i-n x F intersect F

k x
{a1,...,ai}, and so has degree £ max(p+i-n,i) = p+i-n. The
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second term has degree £ n-i. Hence the union has degree £ p
as claimed. Hence B*p<ai> containedin Ai*p+i-n.

Now let E be a degree £ p superset of B. It suffices to show
that E<ai> contains Ai*p+i-n x {ai}. Let P be a polynomial in
a defining set of polynomials for E of degrees £ p. It
suffices to show that for all z in Ai*p+i-n, P(z,ai) = 0.

Formally write P(z,w) = (xk+1 - an)Q(z,w) + R(z), where z is
the first k variables x1,...,xk and w is the variable xk+1. It
is important that xk+1 does not appear in R. Now for all z in
An, P(z,an) = 0. Hence R vanishes on An. But R has degree £
deg(P) £ p. Since An*p = F

k, we see that R vanishes on Fk, and
hence must be zero. So P(z,w) = (xk+1 - an)Q(z,w). Note that
deg(Q) £ p-1. Clearly Q vanishes on all elements of A1 x {a1}
» ... » An-1 x {an-1}.

We can repeat the above argument for Q, using An-1*p-1 = F
k,

writing Q(z,w) = (xk+1 - an-1)R(z,w). We continue in this way
until we arrive at the factorization Q(z,w) = (xk+1 - an)(xk+1
- an-1)...(xk+1 - ai+1)T(z,w), where deg(T) £ p+i-n. Now Q(z,ai)
vanishes on Ai, and hence T(z,ai) vanishes on  Ai. Since
T(z,ai) has degree £ p+i-n, we see that T(z,ai) vanishes on
Ai*p+i-n. Hence P(z,ai) vanishes on Ai*p+i-n. QED

We put Lemma 4.1 in a more directly useable form.

LEMMA 4.2. Let k,n ≥ 1 and 0 = r1 < ... < rn+1. Let A1 Õ ... Õ
An be finite subsets of F

k. Let a1,...,an be distinct elements
of F. Assume that for all 1 £ i £ n, Ai is good for
(k,ri,ri+1). Let B = A1 x {a1} » ... » An x {an}. Let 1 £ i £ n
£ p £ ri+1 -i-1+n. Then B*p<ai> = Ai*p+i-n. Also B*rn+1<an> =
An*rn+1.

Proof: Assume hypotheses. We first verify that for all j in
(i,n], p+j-n £ rj. Let j Œ (i,n]. This is clear for j = i+1.
But at j moves up by one, rj moves up by at least one. We now
see that for all j in (i,n], Aj*p+j-n = Fk.

By Lemma 4.1, we see that for all 1 £ i £ n, B*p<ai> = Ai*p+i-
n. If i = n then this equation holds for all p ≥ 1. QED

LEMMA 4.3. Let k,n ≥ 1 and 0 = r1 < ... < rn+1. Let A1 Õ ... Õ
An be finite subsets of F

k. Let a1,...,an be distinct elements
of F. Assume that for all 1 £ i £ n, Ai is good for
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(k,ri,ri+1). Let B = A1 x {a1} » ... » An x {an}. Then B is
good for (k+1,n-1,rn+1).

Proof: Assume hypotheses. We will show that
i) for all p in [n,rn+1-2], there exists i such that 1 £ i £ n
£ p £ p+1 £ ri+1 -i-1+n, and ri £ p+i-n < ri+1;
ii) B*rn+1-1 ≠ Brn+1;
iii) B*n ≠ B*n-1 = F

k+1.

We then conclude that B is good for (k+1,n-1,rn+1) as follows.
Let p in [n,rn+1-2]. Let 1 £ i £ n £ p £ p+1 £ ri+1 -i-1+n, and
ri £ p+i-n < ri+1. By Lemma 3.2, B*p<ai> = Ai*p+i-n and
B*p+1<ai> = Ai*p+1+i-n. Since Ai is good for (k,ri,ri+1), we
have B*p<ai> ≠ B*p+1<ai>. This shows that B*n,B*n+1,…,B*rn+1-1
are distinct. By ii),iii), B is good for (k+1,n-1,rn+1).

For i), let p in [n,rn+1-2]. If i = n then 1 £ i £ n £ p £ p+1
£ ri+1 -i-1+n. Choose i to be least such that 1 £ i £ n £ p £
p+1 £ ri+1 -i-1+n. Then p+1+i+1-n £ ri+1, and so p+i-n+1 < ri+1.
If i = 1 then ri £ p+i-n. So we can assume i > 1. Then 1 £ i-1
£ n £ p £ p+1 £ ri -(i-1)-1+n is false. Hence p+1 > ri -i+1-
1+n = ri +n-i. Hence ri < p+1-n+i, and so ri <= p+i-n as
required.

For ii), by Lemma 3.2 with i = n and p = rn+1 -1, we have
B*p<an> = An*p. Also by Lemma 3.2, B*p<an> = An*p holds for p
= ri+1.

For iii), note that B*n ≠ Fk+1 since Fk x {a1,...,an} is a
degree £ n superset of B. On the other hand, B*n-1 = Fk+1 by
the following argument. Let P be a polynomial of degree £ n-1
whose zero set contains B*. Write P = (xk+1 - a

2)Q + R, where
xk+1 œ R, and R has degree £ n-1. The zero set of R contains
A2, and hence must be F

k. So R is the zero polynomial, and we
write P = (xk+1 - a2)Q.

Similarly, P is divisible by each (xk+1 - ai), 2 £ i £ n. So we
can write P = (xk+1 - a2)...(xk+1 - an)T, where T is a constant.
Since A1 is nonempty, we see that T must be 0, and hence P
must be zero. QED

It is a little more convenient to have this in slightly
altered form.

LEMMA 4.4. Let k ≥ 1, n ≥ 0, and 0 = r0 < ... < rn+1. Let A0 Õ
... Õ An be finite subsets of F

k. Let a0,...,an be distinct
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elements of F. Assume that for all 0 £ i £ n, Ai is good for
(k,ri,ri+1). Let B = A0 x {a0} » ... » An x {an}. Then B is
good for (k+1,n,rn+1).

Proof: Let k,n,r0,...,rn+1,A0,...,An,F,a0,...,an be as given.
Let n' = n+1, r1',...,rn+2' = r0,...,rn+1, A1',...,An+1' =
A0,...,An, and a1',...,an+1' = a0,...,an. Then for all 1 £ i £
n, Ai' is good for (k,ri-1,ri), and hence good for
(k,ri',ri+1'). By Lemma 3.3, A1' x {a1'} union ... union An'' x
{an''} is good for (k+1,n'-1,rn'+1'), and hence good for
(k+1,n,rn+2'). I.e., A0 x {a0} » ... » An x {an} is good for
(k+1,n,rn+1). QED

LEMMA 4.5. Let k,m ≥ 1 and A,B be finite subsets of Fk,Fq

respectively. For all r ≥ 0, (AxB)*r[1] = A*r, and (AxB)*r[2]
= B*r.

Proof: Note that A*r x Fq is a degree £ r superset of AxB.
Hence (AxB)*r is contained in A*r x Fq, and so (AxB)*r[1] is
contained in A*r.

Let w Œ B. We claim that A*r x {w} Õ (AxB)*r. To see this,
let P be a degree £ r polynomial whose zero set contains AxB.
Then {z: P(z,w) = 0} is a degree £ r superset of A, and hence
contains A*r. So A*r x {w} is contained in the zero set of P.

It is now obvious that A*r Õ (AxB)*r[1], using w. The two
conclusions are symmetric. QED

LEMMA 4.6. Let k,m ≥ 1 and A,B be finite subsets of Fk,Fq

respectively. Assume A is good for (k,n,m) and B is good for
(q,m,r). Then AxB is good for (k+q,n,r).

Proof: Let n £ p < m.  By Lemma 4.3, AxB*p[1] = A*p,
AxB*p+1[1] = A*p+1. Hence AxB*p ≠ AxB*p+1. Let m £ p < r. By
Lemma 4.3, we also see that AxB*p ≠ AxB*p+1. It suffices to
prove that AxB*n = Fk+q. Let P = P(x1,...,xk,y1,...,yk) be a
polynomial of degree £ n whose zero set contains AxB. Now A,B
are nonempty. Let w = (w1,...,wk) Œ B. Then
P(x1,...,xk,w1,...,wk) is a degree £ n polynomial whose zero
set contains B. Hence P(x1,...,xk,w1,...,wk) is the zero
polynomial. It is easy to see that {(w1,...,wk):
P(x1,...,xk,w1,...,wk) is the zero polynomial} is a degree £ n
finite set which contains B. Hence it must be Fq. Therefore
the set of zeros of P must be Fk+q. QED
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We fix a0,a1,... to be distinct elements of F.

LEMMA 4.7. There exist finite subsets A0 Õ A1 Õ ... of F such
that each Ai is good for (1,i,i+1).

Proof: Let Ai = {a0,...,ai}. QED

LEMMA 4.8. There exist finite subsets B0 Õ B1 Õ ... of F2 such
that each Bi is good for (2,i,i+2).

Proof: Let the A’s be as given by Lemma 4.7. Let Bi = Ai x
Ai+1. By Lemma 4.6, Bi is good for (2,i,i+2). QED

LEMMA 4.9. There exist finite subsets C0 Õ C1 Õ ... of F3 such
that each Ci is good for (3,i,2i+2).

Proof: Let the B’s be as given by Lemma 4.7. Let Ci = B0 x
{a0} » B2 x {a1} ... » B2i x {ai}. Note that B0 is good for
(2,0,2), B2 for (2,2,4), ..., B2i for (2,2i,2i+2). By Lemma
4.4, Ci is good for (3,i,2i+2). QED

We can restate this using the Ackermann function as follows.

LEMMA 4.10. There exist finite subsets C0 Õ C1 Õ ... of F3

such that each Ci is good for (3,i,A1(i+1)).

LEMMA 4.11. Let k ≥ 3. There exists finite subsets C0 Õ ...
of Fk such that each Ci is good for (k,i,Ak-2(i+1)).

Proof: By induction on k. Let k ≥ 3 and C0 Õ ... be finite
subsets of Fk such that each Ci is good for (k,i,Ak-2(i+1)).

Let i ≥ 0. We define Di as follows. Consider the sequence of
pairs

0,Ak-2(1)
Ak-2(1),Ak-2Ak-2(1)
...
Ak-1(i),Ak-1(i+1)

There are i+1 pairs. Note that C0,C_Ak-1(1),C_Ak-1(2),...,C_Ak-
1(i) are good for these pairs, respectively.

Set Di = C0 x {a0} » C_Ak-1(1) x {a1} » ... » C_Ak-1(i) x {ai}.
By Lemma 4.4, Di is good for (k+1,i,Ak-1(i+1). QED
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LEMMA 4.12. Let k ≥ 1. There is a finite set which is good
for (k+6,0,Ak(k)).

Proof: By Lemma 4.8, let A be a finite subset of F2 which is
good for (2,0,2). By Lemma 4.11, let B be a finite subset of
Fk which is good for (k+4,2,Ak+2(3)). Since k ≥ 1, B is good
for (k+4,2,Ak(k)). By Lemma, AxB is a finite subset of F

k+6

which is good for (k+6,0,Ak(k)). QED

THEOREM 4.13. Let k ≥ 1 and F be an infinite field. There is
a perfect finite subset of Fk+6 of degree Ak(k).

Proof: By Lemma 4.12, let B be a finite subset of Fk+6 such
that B*0,...,B*Ak(k) are distinct. Set C = B*Ak(k). Then C has
degree Ak(k) and is perfect. QED

THEOREM 4.14. Let k ≥ 1 and F be a sufficiently large finite
field. There is a perfect subset of Fk+6 of degree Ak(k).

In fact, the finite field need only be a little bit larger
than A(k), which we will eventually take the trouble to make
precise.

5. ASCENDING CHAINS OF IDEALS - HISTORICAL NOTES.

The results here about ascending chains of ideals were
obtained in the 80's and discussed here in postings #40 and
#43.

Seidenberg had earlier intensively investigated the same
statement about ascending chains of ideals in the following
papers:

A. Seidenberg, An elimination theory for differential
algebra, Univ. Calif. Pubs. Math. 3 (1956), 31-65.

A. Seidenberg, On the length of a Hilbert ascending chain,
Proc. AMS, Vol. 29, No. 3, August 1971, 443-450.

A. Seidenberg, Constructive proof of Hilbert's theorem on
ascending chains, Trans. AMS, Vol. 174, December 1972, 305-
312.

The first paper is quoted in the last two and has a partial
result.
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Actually, his is more general in that he considers arbitrary
bounds on the degrees of the ideals. I had also dealt with
this formulation but did not report it in #40 and #43. Of
course, my work is all after Seidenberg.

Seidenberg proves no lower bounds. Also, he states a multi
recursive bound in each dimension k, rather than my primitive
recursive bounds. He states only primitive recursive bounds
in dimension £ 2, and states that primitive recursivity for
dimension ≥ 3 is "doubtful." Also, Seidenberg does not
consider corresponding statements about algebraic sets, which
of course follows from these statements about ideals.

Seidenberg also discusses these chains in

A. Seidenberg, Survey of constructions in Noetherian rings,
Univ. of Cal. Berkeley.

A. Seidenberg, Constructions in algebra, Trans. AMS, Vol.
197, 1974, 273-313.

I think he also discusses it in a fifth paper and probably
others, entitled "What is Noetherian" but I haven't got a
hold of a copy of that paper.

Seidenberg's theorem can be viewed as a kind of finite form
of the Hilbert basis theorem. He himself viewed it as a
constructive form of the Hilbert basis theorem.

**Our original finite forms of Kruskal's theorem in 1981-82
are to Kruskal's theorem as Sidenberg's theorem is to the
Hilbert basis theorem. Bounds on the degrees become bounds on
the number of vertices of the trees. It is interesting to
note that Seidenberg and I had the same idea for getting
finite forms in the two contexts - Hilbert's basis theorem
and Kruskal's theorem - namely to look at finite sequences
with bounds placed on the terms. **

Yet we searched hard for a good finite form of Kruskal's
theorem involving a single tree rather than a sequence of
trees. We were quite successful with this, and reported the
results in posting #27, together with sketches of the proofs.
After some experience with lecturing on this, my favorite is:

1) if T is a sufficiently tall thin tree, there exists 1 £ i
< j £ hgt(T) and an inf preserving embedding from T[£i] into
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T[£j] which maps T[i] into T[j]. I.e., if T is a sufficiently
tall tree of valence £ k, then there exists ... .

It can be stated for arbitrary finite trees as follows.

2) for all k there exists n such that if T is any finite tree
of valence £ k, there exists 1 £ i < j £ n and an inf
preserving embedding from T[£i] into T[£j] which maps T[i]
into T[j].

So it makes sense to search for theorems about a single
ideal. We have found such a theorem. See section 1. We have
also found theorems about a single algebraic set. See section
2.

6. ASCENDING CHAINS OF IDEALS.

We take an ideal (in a commutative ring with unit) to be any
subgroup which is closed under multiplication by any ring
element. Thus the smallest ideal is {0}. The ideal {0} is
generated by the empty set (and also by {0}).

The degree of an ideal in a polynomial ring is the least d
such that the ideal has a set of generators all of which have
degree at most d.

Here is Seidenberg's theorem on ascending chains:

THEOREM 5.1. For all k,p ≥ 1 there exists n ≥ 1 such that the
following holds. For any field F, there is no strictly
ascending sequence of ideals in F[x1,...,xk] of length n,
where the i-th ideal has degree at most p+i (i.e., a set of
generators each of which has degree at most p+i).

Actually, Seidenberg states this for any bound on the degree
of the i-th ideal. Exactly analogous results hold. We prefer
to state this as above because of our interest in lower
bounds and the elementary nature of the result.

Seidenberg established a primitive recursive bound only for k
£ 2, and doubted whether a primitive recursive bound exists
for even k = 3.

We first wish to reduce this to a more manageable form. It is
easy to see that Theorem 5.1 follows from the following.
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LEMMA 5.2. For all k,p ≥ 1 there exists n ≥ 1 such that the
following holds. For any field F and polynomials P1,...,Pn
from F[x1,...,xk], where each Pi has degree £ p+i, some Pi is
in the ideal generated from P1,...,Pi-1.

Proof of Lemma 5.2: Fix k,p ≥ 1. Let n ≥ 1. We define the
theory T[k,p,n] in first order predicate calculus with
equality as follows.

i) field axioms;
ii) by introducing constants for all relevant coefficients,
state that we have polynomials Pi, where 1 £ i £ n, of degree
at most p+i, which cannot be written as an ideal element from
the Pj, j < i, using polynomial coefficients of degrees at
most n.

We now apply the compactness theorem. Suppose each T[k,p,n],
n ≥ 1, has a model. Then the union of the T[k,p,n] has a
model, which consists of a field F and an infinite sequence
of ideals presented by generators, which are strictly
ascending. But this contradicts the Hilbert basis theorem.
Hence some T[k,p,n] does not have a model. The Lemma follows
immediately. QED

It is interesting to also consider

THEOREM 5.3. For all k,p ≥ 1 there exists n ≥ 1 such that the
following holds. For any field F, there is no strictly
ascending sequence of ideals in F[x1,...,xk] of length n,
where the i-th ideal has degree p+i.

Upper bounds for Theorem 5.2 give upper bounds for Theorem
5.3 and for Theorem 5.1. However, the lower bound for Theorem
5.3 needs to be rethought a bit.

We now give primitive recursive bounds for each k, in Theorem
5.2, using more logic.

Consider the P0
2 sentence

*for all k,p ≥ 1 there exists n ≥ 1 such that T[k,p,n] is
inconsistent.*

Fix k. For any p, the least size of an inconsistency in
T[k,p,n] is clearly an upper bound on the relevant number in
Theorem 1.1, because already n is such an upper bound. But
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that least size is a primitive recursive function of p
because the above statement is provable in WKL0 for any given
k. This is because the compactness theorem, the completeness
theorem, and the Hilbert basis theorem are all provable in
WKL0.

7. CHAINS OF ALGEBRAIC SETS - PRIMITIVE RECURSIVE BOUNDS.

Let F be a field and k ≥ 1. An algebraic subset of Fk is the
set of simultaneous zeros of some finite set of polynomials
in k variables over F. The degree of an algebraic set is
taken here to mean the least d such that it is the set of
simultaneous zeros of some finite set of polynomials in k
variables of degree at most d.

THEOREM 6.1. For all k,p ≥ 1 there exists n ≥ 1 such that the
following holds. For any field F, there is no strictly
decreasing sequence of algebraic sets in Fk of length n, where
the i-th algebraic set has degree at most p+i (i.e., is the
zero set of a finite system of k variable polynomials over F
of degree at most p+i).

Theorem 6.1 follows immediately from Theorem 5.1, and our
upper bounds for Theorem 5.1 also serve as upper bounds for
Theorem 6.1.

It is interesting to also consider

THEOREM 6.2. For all k,p ≥ 1 there exists n ≥ 1 such that the
following holds. For any field F, there is no strictly
ascending sequence of ideals in F[x1,...,xk] of length n,
where the i-th algebraic set has degree p+i.

Upper bounds for Theorem 6.2 obviously give upper bounds for
Theorem 5.3.

Lower bounds for Theorem 6.2 follow immediately from those
given in section 3.


