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Abstract 

Modern cities depend on energy systems to deliver a range of services such as 

heating, cooling, lighting, mobility, communications, and so on.  This article 

examines how these urban energy systems came to be, tracing the major transitions 

from the earliest settlements through to today’s fossil-fuelled cities.  The underlying 

theme is “increasing efficiency under constraints” with each transition marked by 

increasing energy efficiency in service provision, increasing per capita energy use, 

increasing complexity in the energy system’s structure, with innovations driven by a 

strategic view of the overall system, and accompanied by wider changes in 

technology and society.  In developed countries, the future of urban energy systems 

is likely to continue many of these trends, with increased efficiency being driven by 

the constraints of climate change and rising fuel prices.  Both supply and demand 

side technologies are discussed as potential solutions to these issues, with different 

impacts on the urban environment and its citizens.  However in developing 
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countries, rising urban populations and access to basic energy services will drive the 

next transition.  
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1. Introduction 

Urban energy systems represent the “the combined processes of acquiring and using 

energy” to meet the energy service demands of an urban population (after Jaccard, 

2005: 6). Historically these needs were relatively simple, comprised largely of space 

heating and cooking requirements.  However the activities of a modern city are 

supported by a diverse range of energy services: heating and cooling for buildings, 

lighting of both indoor and outdoor spaces, electric power for appliances, mobility 

services, communications, and so on.  Recent research has demonstrated that cities 

account for two-thirds of global primary energy demand, a figure expected to rise to 

73% by 2030, and in turn, these demands account for over 70% of global CO2 

emissions (IEA, 2008).  Cities are therefore integral parts of the modern energy 

system and at the forefront of efforts to shift from fossil fuels to a more sustainable 

footing. 

The story of how modern cities came to be powered largely by fossil fuels is 

instructive for understanding future transitions.  Briefly, the earliest urban energy 

systems developed from the need to supply settlements with food and fuel. Prior to 

settled living, itinerant hunter-gatherers collected food and fuel as they travelled 

over large areas, moving as necessary to find these materials. Even small settlements 

of a few inhabitants would have had little impact on the capacity of the surrounding 

environment. However larger populations would have eventually exhausted the 

ability of the immediate environment to supply sufficient food and fuel. For 

example, Johnson et al. (2004) and Samuels & Betancourt (1982) estimate that the 
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low density woodland in parts of the Southwest USA would have been completely 

depleted in a few generations by the pre-Hispanic villagers. The fact that many 

successful early towns and cities were located on navigable rivers or coasts suggests 

that overcoming such constraints was vital to the development of urban energy 

systems. By collecting food and fuel from a large hinterland and transporting it 

affordably to the city, local production constraints could be overcome and this 

system, based primarily on manual and animal power, was at the heart of all urban 

energy systems from 3000 BC to the advent of the railways and canals in 18th 

century Europe. However as Industrial Age cities grew into their millions, the 

manual distribution of sufficient energy supplies to individual urban households and 

establishments became difficult, opening the way for early experiments with locally-

produced and distributed gas and electricity, often using imported feedstocks.  By 

the 20th century, these local energy solutions were unable to service the scale of 

energy consumption and urban development, and cities gradually became linked 

together in national gas and electricity grids to overcome these inefficiencies.   

These shifts, their drivers and their consequences, are summarized in Table 

1.  It suggests that past energy transitions have been slow, taking decades or even 

centuries (Fouquet, 2010), and that in the urban environment, they seem to follow a 

pattern of “increasing efficiency under constraints”.  In other words, as the 

consumption patterns of one energy system begin to create substantial 

environmental, social or financial burdens, market and government pressure has 

motivated a switch to more efficient technologies and new alternatives.  In this 

article, we examine these transitions by providing a short history of urban energy 
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systems to date.  While other researchers have considered this issue from a national 

perspective (Smil, 1994; Fouquet and Pearson, 1998), we adopt an urban viewpoint 

in order to assess the interactions between highly-concentrated local energy demands 

and often diffuse energy supplies.  Although the focus is largely upon Western 

Europe, and London in particular, a range of examples from different countries and 

energy sectors will be used.  Finally, we discuss the key themes driving these 

historic transitions and evaluate their relevance to the future ambitions for low-

carbon energy-efficient cities.   

2. The transition from hunter gatherer to settler 

Urbanisation is a relatively recent phenomenon that did not occur until 40,000 years 

or so had elapsed since our immediate ancestors, Homo sapiens, migrated out of the 

African continent and into Asia. As the climate warmed, the ice receded and the 

human population increased. A hunter-gatherer group requires a large range to 

supply it with food, with each individual needing several square kilometres of land 

depending upon the availability of game. Food supply may have been supplemented 

by the development of cultivation amongst foraging hunter-gatherers and herding 

amongst hunting cultivators (Tudge, 1998; Fuller, 2006). According to Keeley 

(1997), as the available hunter-gatherer range diminished due to the increasing 

population, frequent skirmishing occurred between family groups and tribes 

resulting in significant mortality amongst adult males.  

Coincidently perhaps, archaeologists date the first permanent settlements to this 

period. The transition from hunter-gatherer to urbanite was likely to have been a 

gradual process, perhaps beginning with summer and winter camps. It has also been 
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suggested that hunter-gatherers and settlers coexisted for a time, although as Keeley 

also points out it is unlikely that relations between the two were peaceful. 

Settlements appeared at different times in the five separate cradles of civilisation: the 

Fertile Crescent, Egypt, the Yellow River basin, Meso-America and Peru. Settled 

communities were able to devote time to domesticating herd animals and to tend 

gardens containing favoured crops. Settled communities also had children more 

frequently since they were not constantly on the move (Diamond, 1998). The 

advantages of living in permanent settlements soon outweighed the old hunter-

gatherer way of life and the transition from nomad to settler spread.  

The first formal energy systems likely co-evolved over this period with changes 

in diet and agricultural practice.  Possibly as early as 2 million years ago, our 

ancestors advanced from simply using fire to keep warm, to cooking food 

(Wrangham et al., 1999). This enabled them to increase their diet to include roots 

and vegetables that were otherwise unpalatable or even toxic and tenderising meat 

that would have been at best indigestible and at worst poisonous. Fire also gave our 

ancestors the ability to convert dried biomass at will into the means of keeping 

warm, providing light, clearing scrubland to improve pasture for the grazing animals 

they hunted, hardening wooden spears and eventually converting clay into a hard 

material that would hold liquids.  This required a basic energy system to be put in 

place, consisting of fuel gathering and storage together with simple hearth 

technology to ensure that the heat from burning fuel could be used effectively. 

Although recent research has reduced the estimated time between early human use 

of natural fire and their ability to make fire at will by producing sparks from flint 
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(Alperson-Afil, 2008), it is likely that considerable efforts were taken to ensure that 

a fire once lit, or collected from a natural source such as a lightning strike, did not go 

out. 

3. Early urbanisation 

About 10,000 years ago life in early settlements, such as Catalhoyuk in Anatolia and 

Abu Hureya in Syria, was not very different from that of the hunter-gatherers. There 

was little cooperation between family groups; each hunted and gathered 

independently and tended their gardens for the few fruit and nuts that they had 

learned to grow by observing the plants that appeared in their old campsites. The 

population grew rapidly since women could have children more frequently, even 

though infant mortality probably increased due to infectious diseases that would 

have spread more easily through settled communities.  

Successful settlements require sustainable sources of water, food and fuel for 

cooking and warmth.  Management of the amount of land allocated to food and fuel 

production with a growing population was challenging, exacerbated in many cases 

by the impact of forest clearance on water catchment and drainage. Gradually 

however, the weight of numbers would have had an impact on the surrounding 

environment. Wood and combustible biomass would have been increasingly difficult 

to find close to the settlement. Timber for building huts would also have become 

scarce and would have needed to be transported over increasing distances. 

Archaeologists and historians list many examples of once powerful settlements and 

even cities that fell into ruin because of the denuded land’s inability to sustain the 

population (e.g. Diamond, 2005). 
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Around 5,000 years ago (3000 BC) large towns and cities such as Ur, Uruk 

and Lagash appeared in Mesopotamia, the strip of land between the rivers Indus and 

Euphrates in modern Iraq. These drew upon the surrounding villages for food and 

fuel, which were either traded for manufactured goods made in the cities or paid as 

tribute. Importantly, most of these cities were located on navigable rivers that 

provided a low cost method of bringing bulky fuel wood from the surrounding 

countryside. More than 4,000 years later, in 13th century London, this critical part of 

the energy system remained unchanged as fuelwood was gathered from estates 

surrounding the Thames, both upstream and downstream, loaded into barges and 

brought into London to be sold on wharves that still bear the names of their old 

trade. Rome depended upon a similar system some thousand years earlier and it is 

reasonable to suppose that a city such as Ur, which Gates (2003) estimates to have 

had a population of 12,000 people some 4,000 years ago, employed the same energy 

supply logistics. Various estimates exist for the amount of wood required for heating 

and cooking per person per year. At the time of Ur a reasonable estimate might be 

0.75 m3 compared to 1.5 m3 in 13th century London (Galloway et al. 1996) and 1 to 

1.5m3 in 4th century Rome (Williams 2003).  It is estimated that wood use in 

communities which still depend upon biomass for domestic heating and cooking 

falls between 0.5 and 2 m3 per person per year depending upon factors such as 

climate.  A village field plan proposed for Ur by Postgate (1994) suggests that the 

raised dykes along the river Euphrates would have been used to grow sustainable 

fuelwood possibly through coppicing (there is evidence for this which dates back to 

4000 BC in Britain (Rackham, 2010)), whilst the easily irrigated land below the 
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dykes would have been devoted to crops. Harvested wood and possibly other 

biomass, for example, reeds or straw would have been loaded into boats and 

transported by river to be unloaded at the wharves in Ur. A simple calculation 

suggests that managed woodland extending 28 km along a strip ½ km wide on both 

sides of the river in both directions would have been sufficient to supply the 8,000 

people of Ur. For 13th century London, estimates by Galloway et al (1996) show that 

there was more than enough sustainable woodland in the home counties to supply 

the population of 40,000. 

Whilst combustible biomass provided heat, humans and animals were the 

predominant sources of mechanical power. The prehistoric earthworks and stone 

monuments and the great Mediterranean, Asian, African, North and South American 

cities of the ancient world were all constructed using human or animal muscle 

power.  Innovative machines designed to assist muscle power, such as the shaduf for 

lifting water and the rotary quern, began to appear in 1600 BC. The Romans used 

human and animal treadmills extensively and similar machines were still operating 

as recently as the 19th century in London’s docklands (Smil, 1994). Land transport 

depended upon draft animals or humans. The great trade empires of the Anazazi in 

the Four Corners region of the USA used human runners since even pack animals 

were unknown. The Inca empire stretching more than 3,500 km down the west coast 

of South America was served by a network of roads designed for humans and llama 

used solely as pack animals (Parry, 2005).  

Although the scale of energy consumption and associated technologies 

improved, urban energy systems consisted largely of biomass either burned in a 
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hearth or fed to animals as food up until the 13th century.  However to complement 

biomass resources, cities and their economies were also turning to other renewable 

energy sources such as wind and water.  Sails had been known since 4,000 BC 

(Egypt) and were used extensively on the Nile. The use of sails to capture the power 

of the wind accelerated trade round the Mediterranean basin and also facilitated 

invasion and war. Water power was harnessed in this area around 500 BC and was 

rapidly brought into use for grinding cereals eliminating many thousands of painful 

repetitive human hours of toil. Water power also powered a variety of machines 

used, for example, in blacksmithing, tanning, fulling, and wood turning. The first 

wind turbines were probably invented around AD 900 in the Middle East but it was 

not until the 14th century that windmills began to be widely used in Europe. 

Although water wheels and eventually windmills were capable of providing about 

25 times more power than a horse or 50 times more than a man, they provided less 

than 10% of the total power capacity available from humans and animal muscles 

until about 1800 when steam began to dominate inanimate sources of power (Smil, 

1994; Wrigley, 2010). 

Whilst many aspects of 13th century life in London would have seemed 

extraordinary to a visitor from 2000 BC Ur, the energy system would have been 

familiar. For about 3,500 years very little had changed in the urban energy system.  

Life in these cities moved slowly and depended upon what resources could be grown 

and harvested over a limited number of years, and what could be carried on a 

person’s back, by horse and cart or by boat from local hinterlands.  Improvements in 

technology and the increased use of renewables meant that the energy consumed per 
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capita doubled from 15 GJ per capita per year in 1500 BC Egypt (Smil, 2010) to 

about 30 GJ per capita per year in 17th century (Malanima, 2006) based on food for 

human beings, fodder for animals and firewood. However this was to change 

radically as Europe emerged from the horrors of the Plague during the 14th and 15th 

centuries. 

4. Biomass to coal 

The next major transition was from local resources harvested instantaneously or 

within a few years to the use of vast reserves of fossil fuels, representing hundreds of 

years of equivalent energy in a compact form.  Coal was the first fossil fuel to enter 

the urban energy system in significant quantity.  By 1450 London was a rapidly 

growing cosmopolitan city drawing its wealth from England’s wool trade. Small 

amounts of coal had been in use in London since 1100 and perhaps earlier. Known 

as ‘Sea-coles’ it was used to provide the high temperatures needed in forging iron, 

lime manufacture and evaporating sea water to prepare salt. The name referred not 

only to the fact that it was imported by sea from the Tyne, but also because it was 

often found washed up on the beaches of Northumberland. Indeed fossil fuels were 

reasonably well-known and used where they could be easily gathered or seeped 

above ground. The Chinese are credited with the first use of natural gas which was 

piped from natural outlets using hollowed out bamboo for use in the production of 

salt. Even though the amount of coal burned in the late 13th century London was 

relatively small, the smell still incurred the wrath of Edward I who banned its use, 

threatening to confiscate the forges where it was used. The use of coal in London 
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persisted however, causing a second monarch, Elizabeth I to complain nearly 300 

years later.  

Between 1520 and 1550 London’s population grew from 55,000 to 120,000. 

This rate of growth put such a strain on the previously sustainable fuel wood supply 

that it began to fail and the price of wood at the London wharves increased sharply. 

The Domesday Book estimated that about 15 per cent of Britain was covered in 

forest in the 11th century, but by the end of 16th century this had diminished to about 

6% (Allen, 2010). This was largely due to woodland clearance around large towns 

and cities to produce agricultural land for the growing population. The issue was 

particularly acute in the case of London where the increase in distance required to 

carry wood overland from the ring of woodland that was now 20 to 40 miles away 

resulted in a doubling of the price of wood by 1550 and a trebling to 12 grams of 

silver per GJ one hundred years later (Allen, 2010).  

The price of coal however, remained low at between two to four grams of 

silver for the same heating value. This discrepancy was almost entirely due to the 

cost of transport. The weight of wood that could be cut by a woodsman in one year 

was similar to the amount of coal that could be dug by a coal miner (Rackham, 

2010). The difference in calorific value coupled to the fact that coal was only 

transported a short distance from the mines on the Tyne to ships that took it to 

London meant that, by the time both fuels reached the wharves in London, the cost 

of fuel wood was much higher than that of coal per GJ.  

Whilst the cost differential made coal an attractive option there was 

considerable resistance to its use. It took time for builders to develop the chimneys 
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and grates that enabled coal to be burned without filling rooms with smoke. Most of 

this experimental work was done in London before the Great Fire of 1666 but much 

of the knowledge gained must have been put to good use during the subsequent 

rebuilding and by 1700, over half of Britain’s coal consumption was for domestic 

heating (Allen, 2010). The commercial use of coal also increased as bakers and 

brewers developed technology to prevent their products being tainted by coal smoke. 

Fears of impaired quality caused glass manufacturers to continue to burn wood in 

their furnaces until its use was banned by Parliament in 1615. This caused Sir Robert 

Mansell to move his glass manufacturing plant to Newcastle and perfect a new 

covered crucible (Godfrey, 1975). Requiring about the output of approximately one-

seventh of English woodlands, the ‘iron masters’ came under considerable pressure 

to limit the amount of wood they consumed for charcoal from a statute of 1580 

which prohibited ironworks using charcoal made within 22 miles of outer London 

(Rackham, 2010)  but it took a further century for iron manufacture to turn to coal 

when Abraham Derby developed a coke smelting process and another 50 years or so 

of improvements before coke iron production started to replace charcoal.  

The move away from relatively short rotation biomass fuels (e.g. a two-year 

rotation willow for kindling, eight to ten-year rotation coppiced poles, together with 

wood residues from the construction industry) to coal took even longer in 

continental Europe. Whilst there had been relatively little government intervention 

in controlling fuel prices in London, the situation in Berlin was different. When that 

city’s population began to grow rapidly at the end of the 17th century, wood prices 

increased and supplies became scarce. State edicts enacted between 1691 and 1693 
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to lower wood prices were ineffective and a central firewood administration was 

established in 1694 to regulate the private wood trade (Sieferle, 2001).  In 1702 in 

Konigsburg, firewood was rationed according to the ‘rank’ of the household. Wood 

conserving stoves were known as early as 1325 but in 1763 an official contest took 

place in Prussia to design a domestic stove that consumed minimum quantities of 

wood. Iron production had enjoyed the use of dedicated wood supplies in parts of 

Germany but this privilege was removed in 1783 with disastrous results on their 

ability to export cheap iron. By the end of the 18th century the state authority that 

maintained the cheap price of fuel wood in Berlin allowed the price to rise and also 

began to sell coal at a loss to promote its use. In Silesia the use of coal was also 

increasing rapidly in spite of the widespread propaganda against the use of coal 

during the first half of the 18th century. Authoritative articles and pamphlets had 

been published in Germany and France describing the health hazards of burning 

coal. One claimed that one-third of all the inhabitants of London died of wasting 

disease and lung ailments caused through the corrosive effects of smoke from coal 

fires. Another obstacle to the widespread use of coal was the inland location of the 

coal pits and commercial centres and the lack of good navigable waterways.  This 

meant that the price of coal was relatively high and as late as 1886 in Hamburg, 

Ruhr coal could not compete with imported coal from England. 

Meanwhile in Britain by 1800 the consumption of coal had risen to 15 

million tonnes per annum providing both domestic and industrial heat (Allen, 2010). 

However the English pits had a problem and, by the end of the 17th century, many 

were suffering from flooding. Draining the mines was expensive and tunnelling 
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drainage channels was dangerous. Many solutions were offered but most proved 

unworkable. In the late 1600s Denis Papin demonstrated a device to the Royal 

Society consisting of a piston inside a brass cylinder that was made to move by 

heating water in one end of the cylinder. Thomas Savery invented a device that used 

a vacuum created by condensing steam for draining mines. He called it ‘the miner’s 

friend’ and demonstrated it before the Royal Society in 1699. However it had a 

number of practical disadvantages and was not commercially successful.  Barbara 

Freese (2006) notes that one observer complained in 1708, “every year more mines 

are left unwrought or drowned for want of such noble engines or methods that are 

talked of or pretended to”. The stage was set for Thomas Newcomen, who built a 

much larger piston with a separate steam boiler and was able to convince the mine 

owners that steam power was a practical proposition. His first ‘fire’ engine was 

installed in a mine in 1712 and was much cheaper to run than the 50 horses it 

replaced even though it was extraordinarily inefficient. Newcomen’s engines proved 

popular and although one was built to pump water from the Seine to supply Paris, in 

practice it was uneconomic to operate them anywhere except coal mines where coal 

was cheap and unmarketable ‘small coal’ was abundant. The increase in coal 

production made possible by Newcomen’s engine resulted in considerable expansion 

of mining infrastructure including the double track system to carry coal more 

efficiently. At the same time Darby’s process which substituted coal for charcoal in 

iron smelting allowed the use of cast iron to replace brass and copper in the 

manufacture of cylinders and boilers reducing the cost of Newcomen’s engines. The 

decisive shortcoming of Newcomen’s engine was that it only produced power on the 
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downstroke which seriously limited its use.  This was remedied in 1775 when Watt 

designed an enclosed cylinder in which steam could be admitted not only to power 

the downward stroke but also the upward stroke; a patent was granted to Watt in 

1782.   

Experiments using steam engines to power ships had begun in 1778 in 

France and a steamboat service linking Philadelphia to Trenton in New Jersey along 

the Delaware river was established by John Fitch in 1790.  The use of steam to 

power vehicles on land however, was a more serious challenge. The best any 

atmospheric steam engine could do even with iron rails was to move along a level 

trackway. Watt had already realised that high pressure steam was the answer but was 

inhibited by the potential danger of exploding boilers. It was left to Trevithick to 

bring together all the improvements in valves, boiler construction, and cranks to 

produce a working prototype steam powered road vehicle which he demonstrated 

just outside his home town of Cambourne in Cornwall, on Boxing Day 1801. The 

following year he was granted a patent entitled, ‘Steam engines – improvements in 

the construction thereof and Application thereof for driving carriages’ (Crump, 

2007). Stephenson’s Rocket appeared in 1825 and was operated on the Stockton to 

Darlington railway and a new age for transport began which was to have a 

resounding impact on city life as passengers could now travel further for the same 

time commitment (or rather, physical energy expenditure (Kölbl and Helbing, 

2003)). 

Although wind and water played an important role in the early industrial age, for 

example by providing the means to mechanise textile manufacture and move it from 
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rural cottages to the factories of the Lancashire and Derbyshire dales, these sources 

had relatively little impact on the overall urban energy supply. Water power in 

particular was only possible where there was a reliable supply of flowing water of 

sufficient volume to turn the water wheels. Steam does not suffer from such 

constraints and allowed factories to be located in large population centres with 

access to navigable waterways or later on, to railways.   

5. The rise of networked energy systems in urban Britain 

The impact of the Industrial Revolution spread throughout Europe, the New World 

and eventually more widely, with each region developing its own route and pace 

towards what we now recognize as a modern city. A comparative study of the rates 

of penetration of energy technologies and the consequent changes on society cannot 

be dealt with here; instead we will focus on the development of complex networked 

energy systems in Britain as an example of at least one route to the modern urban 

environment.  In this case, the social and economic changes brought about by the 

Industrial Revolution led to a need to restructure the provision of urban energy 

services, specifically via the use of network infrastructures. 

The 18th century saw an explosion in population and city growth in Britain. 

With the exception of London, the cities of the south and east that had enjoyed a 

dominant position due to trade with the northern European states declined in 

importance and the ports and cities of the industrial north and west increased in size 

and wealth. In 1835, Manchester was described by Alexis de Tocqueville, the 

French commentator as having “a sort of black smoke which covers the city. Under 

this half daylight, 300,000 human beings are ceaselessly at work. The homes of the 
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poor are scattered haphazardly around the factories. From this filthy sewer pure gold 

flows. In Manchester civilised man is turned back almost into a savage” (Freese, 

2006). England and Wales were ahead of the rest of Europe in the pace of 

urbanisation. By 1860 about 50% of the population was urbanised compared to 

about 25% of the populations of the Netherlands, Belgium and Italy with France at 

around 18% (Malanima and Volckart, 2007). 

The industrialisation of the growing towns and cities was greatly facilitated 

by improvements in methods of transport, notably the railway network. The railways 

revolutionised land transport and allowed fresh food, fuel and people to be brought 

into the centre of cities on a daily basis at a relatively low cost. London’s Euston 

station was opened in 1837. Mainline stations operating from London were 

prohibited from the centre of the city because Parliament was concerned about the 

disruption their construction would cause to the city but even so, at least 100,000 

Londoners had their homes destroyed. By 1850 in addition to commuters brought 

into London by train, at least 15,000 people travelled to work in London by paddle 

steamer along the Thames. The centre of London became so congested in that 

Charles Pearson, a City of London solicitor, set out plans in 1845 for an 

underground railway to alleviate the problem. After a number of false starts, in part 

due to reluctant investors, construction began in 1860.  Sadly Pearson died in 1862 a 

year before the first underground railway was opened between Farringdon and 

Paddington (Wolmar, 2004). This relied on steam engines for motive power with 

chimneys to allow smoke and steam to escape from the tunnels. These technological 

innovations naturally increased the demand for transportation energy, but also had a 
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significant impact on the energy demands of other sectors.  Commuters were able to 

move out of the crowded cities into suburban homes, which were often larger 

requiring greater heating and lighting demands and needed to be filled with new 

manufactured goods (Kennedy, 2011). 

The growth of urban populations also highlighted the health hazards of urban 

living and Parliament responded by passing a number of Town Improvement Acts 

during the 18th and early 19th centuries. These compelled towns to provide clean 

water and to clean, pave and light the streets. Lighting in particular was an important 

application that helped establish networked urban energy services. 

Better street lighting was needed to improve the safety of people commuting 

in and out of the city and to effectively lengthen the working day. Initially streets 

were lit by means of ‘parish lamps’ consisting of a small tin vessel half filled with 

fish oil containing a piece of cotton twist as a wick (Ackroyd, 2000). Lamplighters 

were employed to light, trim and fill the lamps. By the end of the 17th century oil 

lamps were the dominant form of street lighting but increasing demand for higher 

quality lighting stimulated research into better forms of illumination and from the 

1770s, the Royal Society handed out many prizes and awards for lighting 

improvements (Fouquet and Pearson, 2006).  By the early 19th century there were 

35,000 lamps lighting the streets of London utilising a lighting system that had 

changed little for perhaps a thousand years. However, a new energy system was 

about to appear that was particularly suited to the urban environment. 

At the end of the 18th century, William Murdoch in Britain and Philip Lebon 

in France were independently experimenting with the gases that were produced by 
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heating coal or wood under controlled conditions. In 1798 Murdoch used coal gas to 

light a room in a house in Cornwall and in 1801 Lebon staged a demonstration of 

gas lighting in Paris (Williams, 1981).  Albrecht Winzer, a German professor of 

commerce, was quick to realise that this provided the potential for a new method of 

lighting and began public demonstrations of gas lighting in London in 1804. 

Increasing public interest encouraged Boulton and Watt, together with Murdoch, to 

install six cast-iron retorts to provide the gas for lighting a cotton mill in Manchester 

in 1806. In the same year, Winzer who realised the commercial advantages of 

centrally manufactured gas that could be piped to many customers anglicised his 

name to Frederick Winsor and attempted to gain a government charter allowing him 

to form a commercial gas lighting company. His first attempt failed but in 1812 he 

started the Gas Light and Coke Company that would eventually control most of the 

London gas market.  Gas lighting received Royal patronage in 1821 when the Prince 

Regent introduced gas for lighting the music room and banqueting hall of his 

pavilion at Brighton. By 1829 some two hundred gas companies had been formed 

and gas lighting had been installed many of the larger cities in Britain (Williams, 

1981). However, there were some setbacks to the fledgling industry. An experiment 

with gas lighting in the newly built Houses of Parliament in 1838 was abandoned 

since the cost was nearly four times that of traditional wax candles (Barty-King, 

1984). But in spite of early difficulties by 1849, gas lighting provided by local gas 

works had been installed in 700 large towns in the UK but both the growing 

domestic and commercial markets for lighting were about to undergo further change.  
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The domestic market was still largely dependent upon oil lamps that burned 

expensive whale oil, tallow candles, or rushlights, which were smelly and gave a 

poor light. Technical improvements to oil lamps improved their efficiency and the 

cost of oil lighting fell by two thirds between 1750 and 1820. The price of lighting 

continued to fall but by the middle of the 19th century whales were becoming 

increasingly difficult to find. There was also an increasing demand for lubricants for 

the growing number of industrial machines. There was a clear opportunity for the 

development of a new source of light oil. In 1837, Baron Karl von Reichenbach and 

Abraham Gesner in 1847 showed that as well as gas, paraffin and other oils and 

chemicals could be extracted from organic solids such as coal, wood, tar and shale. 

Natural oil and gas seeps had been known and used for centuries so when the young 

chemist James Young was told about an unusual underground spring near a coal 

mine in Alfreton in Derbyshire that produced about 300 gallons a day of a thin 

treacly liquid, he had the presence of mind to carry out an analysis and discovered 

that it contained paraffin, naptha, light oil and a heavier lubricating oil. It also 

burned “with a brilliant illuminating power”. Following his discovery, he patented a 

process in 1850 describing how to extract coal oil and ‘crack’ it into its component 

substances (MSSO, 2012). A year later, James ‘Paraffin’ Young opened what was 

probably the world’s first oil refinery at Inchgate on the outskirts of Bathgate in 

central Scotland.   These innovations soon spread beyond the lighting sector, and 

paved the way for oil-based transport of many modern cities. 
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6. The electric age 

Lighting produced by either a gas or oil flame had improved considerably 

since the days of candles and rushlights but suffered from a number of 

disadvantages. It was a potential fire hazard, the flames produced soot, and light 

levels were low especially outside. Gas was expensive and slow to penetrate the 

domestic market and by the end of the 19th century, it was to be challenged by 

electricity.  In contrast to gas, electric lighting offered convenience and cleanliness, 

features which combined with its versatility as a power source, enabled electricity to 

become the major urban energy source of the twentieth century. 

Inventors were quick to understand and utilise the connection between 

magnetism and electricity demonstrated by Faraday in 1831. The first electric 

motors appeared in 1837 and the electric telegraph was commercialised in 1844.  

The first practical electric lighting system was demonstrated by Jablochkoff in Paris 

and London in 1878. This consisted of an electric arc struck between two carbon 

electrodes. 1878 also saw the first floodlit football match when Sheffield Football 

Association played the first evening match under 8,000 candle power provided by 

two Siemens generators (IET, 2012). After a demonstration of the Jablochkoff 

‘candle’ in a concert hall in New York, the New York Times of 10 November 1880 

proclaimed that one candle can replace six gas burners and yield five times more 

light. However, in common with other electrical devices of the time the lighting 

system required its own generating system, in this case consisting of a steam engine 

and two generators. Edison had already worked on a number of electrical devices 

and had sufficient wealthy backers and valuable patents to finance his extensive 
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workshop and laboratory at Menlo Park, New Jersey. He realised the advantages of 

Winzer’s central gas production system and set about designing an equivalent 

electrical generating system, which provided electricity to customers through copper 

wires (Patterson, 1999). Edison also attempted to develop an electric light source 

that could be used in enclosed spaces more easily than the electric arc. Both he and 

the English physicist Swan arrived at a practical solution to the problem 

independently in 1878 and by 1881 twelve hundred of Swan’s bulbs were used to 

light the Savoy theatre in London. Edison in turn, exhibited his lighting system at the 

Paris exhibition in 1881 and at Crystal Palace in London a year later.  It was the 

success of his ‘electric bulb’ that enabled Edison to commercialise his integrated 

power and lighting systems by building power stations at Holborn in London and 

Pearl Street in Manhattan. The Pearl Street station fed steam from coal-fired boilers 

to six generating sets each producing 1000 kilowatts, enough to light the one square 

mile of New York City. The British electricity industry boomed between 1870 and 

the early 1880s with many entrepreneurs entering the business and considerable 

investment attracted by new companies formed to supply electrical equipment and 

power (Shiman, 1993). 

The UK government both encouraged and hindered the development of the 

fledgling gas and electricity industries. In 1860 the Metropolis Gas Act allowed 

existing gas companies to have monopolies in the districts where they operated and 

in 1882 the Electric Lighting Act gave similar monopolies to electricity companies, 

only this time a so-called ‘scrap-iron’ clause was included. This allowed the 

companies to have the monopoly supply for a specific district for 21 years after 
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which the company would be subjected to compulsory purchase at a value based on 

its material assets.  Hughes (1983) argues that, in the opinion of private enterprise, 

the 1882 Act stifled the development of the British electricity supply companies.  

However Hannah (1979) states that investors were deterred by exaggerated claims 

for both arc lighting and incandescent lighting, pointing out that at least one and a 

half million pounds had been subscribed by a prematurely enthusiastic investing 

public, mostly on worthless patent fees for often fraudulent inventions, legal 

expenses and promoters’ profits.  In spite of the frantic activity in the 1880s the 

electricity boom soon turned to bust and Britain fell far behind the USA in installing 

and using electric power for lighting and other purposes. In 1890 there were 235,000 

arc lights in use in the US, and streets in virtually every American city were lit with 

bright lights whereas in Britain there were only 700 arc lights on the streets (Shiman, 

1993). 

The gas industry put up a spirited fight to retain its position in the lighting 

market helped by the invention of the incandescent mantle by Auer von Welsbach 

which tripled the efficiency of gas lighting and improved its quality (Fouquet and 

Pearson, 2003). However, Winzer’s original patent had envisaged the use of gas for 

both heating and cooking as well as lighting but it was not 1879 that in evidence to a 

House of Commons Committee, Magnus Ohren of the Crystal Palace District Gas 

Company testified “new firms are embarked in this business and all sorts of gas 

apparatus are now made by the thousand.” These included gas cookers, and gas 

boiling rings. Persistent fears (reminiscent of coal) that cooking with gas might taint 

food and injure health were refuted in The Lancet and London Hospital adopted gas 
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cooking for both patients and staff (Williams, 1981).  The reluctance of British 

towns and cities to adopt electric lighting seemed to be based primarily on cost and 

fears about the implications of granting a monopoly to an electric company. One 

local authority in London announced it was taking bids for electric lighting in order 

to force gas prices down (Shiman, 1993) but in the US, there seemed to be more 

public interest in getting bright electric lighting for their urban centres than cost.  

The next century saw both the gas industry and the electricity industry 

diversify from their primary market of lighting. But first substantial rationalisation 

took place in both industries. This was to have a considerable impact on the way the 

urban energy supply system was both managed and configured. At the beginning of 

the 20th century there were over 800 gas businesses supplying the UK market and 

by 1935 the gas supply industry provided employment for about 230,000 people, 

supplied about a quarter of the population, and had capital assets worth about £200 

million (Williams, 1981: 68). By 1950 about 80% of British dwellings were 

connected to a gas supply (Fawcett et al., 2000) but the industry encountered strong 

competition from electricity until its fortunes recovered with the discovery of natural 

gas in the North Sea.  Similarly, by 1920, the UK electricity system consisted of 

over 600 suppliers owned both by local authorities and private companies acting 

independently resulting in about 75% more generating plant throughout the country 

than was required to supply peak demand. As an example of the extraordinary 

diversity that had grown in the industry, by 1918 in London alone there were 70 

authorities, 50 different types of system, 10 different frequencies and 24 different 

supply voltages (Butler, 2001).  
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These infrastructures were no longer fit for purpose and in 1925 a 

government report produced by Lord Weir recommended that electricity generation 

should be restricted to a limited number of power stations connected to a national 

grid. This resulted in the 1926 Electricity Supply Act and the formation of the 

Central Electricity Board (CEB). By 1935 nearly 3000 miles of primary transmission 

lines and 1200 miles of secondary lines had been built. The grid finally reached all 

parts of the country by 1945. One of the functions of the post-war CEB, nationalised 

under the Electricity Act of 1947, was to accelerate the use of electricity in industry.   

It took much longer to nationalize the gas industry. The Gas Regulation Act 

of 1920 was the first to allow the exchange of gas from one undertaking to another 

but this was complicated by the demand pattern for gas such that by 1938 only 0.4% 

of all gas sold was via this type of exchange. However, the implied threat of 

nationalization accelerated the amalgamation of undertakings into holding 

companies. The 1939–45 War caused valve systems to be installed between adjacent 

undertakings in London, Liverpool and Manchester so that supply could be 

continued and sections of main isolated for repair. The UK gas industry was finally 

nationalized in 1948. However, the story was not over. Britain converted its gas 

supply from coal gas to natural gas between 1967 and 1977 at a cost of £563 million, 

equivalent to approximately £5-6 billion today. One of the consequences of the 

conversion to natural gas was that the coal-fired municipal gas works, often located 

within urban centres, were no longer required. Natural gas was largely drawn from 

the gas fields of the North Sea and provided through a national gas grid, completed 

in 1978. 
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By the mid 1960s, the demand for electricity for both domestic and industrial 

use was expanding at 7% per annum. Much larger power stations were required 

which consumed millions of tons of coal per annum (a 1 GW station burns about 3 

million tons of coal a year) and an enormous amount of cooling water that could 

only be drawn from major rivers or the sea. The grid allowed these stations to be 

built away from urban centres close to sources of fuel and water (Patterson, 1999).  

The natural gas and electricity grids marked a radical change in the UK 

urban energy system. The only substantial import of fuel that now needed to be 

transported by road or rail into the urban centres was petrol or diesel, largely for 

transport. In a sense this has taken the place of the oats required for the horses and 

the coal for the power stations dedicated to providing electricity for the trams and 

underground. The energy demands for the domestic, commercial and industrial 

sectors of urban communities are now largely met by electricity and natural gas 

brought in through the wires and pipes of national grids.  This has the advantage of 

physically removing many of the externalities of the energy system from the city 

(e.g. pollutants from combustion in electricity generation). However this shift also 

changed the ‘urban-ness’ of these energy systems. Whereas before energy resources 

were imported to each individual city from its hinterland or wider markets on an ad-

hoc basis, cities were now stitched together as part of national energy systems  

7. The future of urban energy systems 

The transitions described so far are summarized in Table 1 and Figure 1, and they 

share four common features.  First, each of the fuel transitions represent an 

intensification of energy use (Smil, 1994).  Early biomass systems enabled societies 
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to access energy reserves accumulated over hours, days or perhaps years in the form 

of animal power, wind and water renewables, and woody biomass.  However fossil 

fuel energy systems take advantage of thousands or millions of years of concentrated 

solar energy, thus enabling the system to overcome the physical constraints of 

increasing biomass consumption (i.e. larger collection areas, longer supply chains).  

Each period also showed increases in per capita energy use despite technological 

innovations, for example through more efficient heating or lighting technologies.  A 

good example of this is the introduction of commuting in London, which increased 

the demand for transport energy and also changed patterns of domestic energy 

consumption. 

The second trend is the increasing complexity of urban energy systems.  As 

Tainter (1988) notes, societies often solve their problems through increased 

organizational and technological complexity and this can be observed in the case of 

urban energy systems as well.  Early systems relied upon biomass gathered from the 

local area, necessitating small supply lines and crop management strategies.  The 

transition to coal, particularly the differences between the English experience, with 

its sea and canal transport, and that of continental Europe, illustrates the need to 

expand the physical reach of the energy system into the city’s wider regional and 

national hinterland, requiring increased organization and coordinated supply chains.  

Modern electricity and gas networks take this further still, knitting cities together 

into a national energy system that, in the case of electricity in particular, must be 

managed on a near-real time basis.   
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Third, urban energy system transitions often benefitted from policies to 

promote innovation, motivated by a strategic view of the overall system and the 

constraints of existing system configurations.  The Royal Society lighting prizes, the 

Prussian competition for more efficient stoves, and the ‘scrap iron’ clause all 

demonstrate how governments and private-sector actors engaged with the energy 

system to ensure that it would meet their perceived long-term requirements while 

mitigating the downsides of current system configurations.  These interventions 

were not always positive as established stakeholders were often reluctant or outright 

hostile, to shift to new technologies.  Such patterns are well described in the 

literature on technological transitions (Geels, 2002; Verbong and Geels, 2007). 

Finally, each transition of the core structure of the urban energy system did 

not evolve in isolation but in parallel with wider changes in society and technology.  

Examples of this include increased transportation speeds and rail networks 

facilitating urban growth, the development of steam engines for enhanced coal 

extraction but also motive power for factories, the use of whale oils for lubricants as 

well as lighting, and the role of electricity in providing enhanced communication 

networks in addition to more traditional energy services like heating and lighting. 

These highlight the importance of studying urban energy systems specifically, as 

cities represent the centres of social and economic change.   

A final observation, clearly visible in Figure 1, is that these transitions have 

been occurring with increasing rapidity.  As described above, 13th century London 

looked remarkably similar to the earliest cities, but then the pace picked up: the 

transition to coal had begun in earnest by the 18th century, the oil economy 
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beginning in the late 19th century, and the modern national grids evolving since the 

Second World War.  As noted by Bettencourt et al. (2007), this pattern emerges 

because each system configuration eventually exhausts its available resources or the 

capacity of its supporting infrastructure and, whether through the resulting price 

signals or political decisions and market interventions, this scarcity facilitates the 

shift to a new technological system.  However to date, each new energy system has 

been more energy intensive than the last (although drawing on a different fuel 

source), creating additional new pressures and suggesting that the overall pace of 

innovation must accelerate.  

Given these observations on historical trends, what might we conclude about 

the future of urban energy systems?  As in past systems, we can identify a number of 

constraints and drivers for future change.  In developed countries, such as the UK, 

current challenges include the increasing scarcity of traditional fossil fuels, aging 

energy infrastructures, and concerns about climate change.  Improved efficiency in 

the urban energy system offers one solution to this problem.  Recent research on the 

optimized design of urban energy systems suggests that significant energy and 

carbon emissions savings of approximately 20% are possible with existing 

technology (Sugihara et al., 2004; Keirstead et al., 2011; Weber and Shah, 2011).  

Smart grid technologies will allow energy producers and consumers to be linked 

more closely, allowing the maximum value to be extracted from existing assets (for 

example, by carefully managing times of peak demand) and improved energy 

efficiency in the home also offers a way to improve the financial and environmental 

efficiency of energy service provision, provided that appropriate policy incentives 
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can be identified (see, for example, the recent debate over the UK’s ‘Green Deal’ 

(Carrington, 2012)).  However, entirely new supply side technologies may also be 

needed. Just as in previous transitions, where the difficulties of biomass energy 

supply eventually led to a shift to fossil fuels, the current cost and environmental 

impacts of fossil fuels may lead to the increased adoption of alternative technologies 

like renewable energy, nuclear fission, and in the long-term perhaps nuclear fusion. 

To some extent, changing cost structures are already being seen with the cost of 

solar photovoltaics, for example, having fallen 17% between 2009 and 2010 even 

when excluding government support programmes (Barbose et al., 2011). 

Arguably the key question is how these innovations might affect the fabric of 

urban energy systems and the societies and economies they support.  On the one 

hand, the increased use of nuclear power and large-scale renewable energy would fit 

well with the existing system of centralized supply, simply substituting for existing 

fossil fuel power sources and leaving cities in their current roles as largely passive 

centres of demand.  On the other hand, innovations like smart grid technologies and 

combined heat and power must be embedded directly within the urban fabric, 

suggesting a return to the late 19th century model of “local” utilities (i.e. the utility 

companies themselves may be national for economies of scale, but operating with a 

greater awareness of local energy geography).  Energy service companies, which 

provide consumers with end services such as heating and lighting rather than raw 

fuels, are a potentially significant part of this shift and are actively promoted by 

policy makers in Europe and elsewhere (Bertoldi et al., 2006).  Information and 

communication technologies (ICT) might also offer opportunities for new modes of 
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service provision, such as integrated mobility services and online access to goods 

and services, potentially reducing the energy intensity of these activities but also 

changing the way in which people move about the city in performing their daily 

activities. 

In contrast, the cities of developing nations are experiencing many of the 

same drivers seen in 18th and 19th century Europe.  Specifically, these countries are 

seeing rapidly urbanizing populations, which leads to the increased demand for 

energy services that come with rising standards of living.  Existing biomass-based 

energy systems will struggle to cope with these demands, and there will be a need to 

access new more efficient modern energy services such as electricity and fossil fuels 

(Leach, 1992; Chancel, 2010; Nissing and Blottnitz, 2010).  A recent report by the 

World Energy Council (WEC, 2010) notes that many of the technologies needed for 

such a shift are already known; the question is how to ensure their adoption and 

successful use.  This suggests that, in addition to the lifestyle changes that one might 

expect to occur with improved access to modern energy services, the institutional 

and market changes necessary to introduce commercial energy services and related 

infrastructure may have the greatest effect on these cities in general, for example, by 

helping to bring residents into the formal economy.  For example, an electrification 

project in Kibera, Kenya (a large informal settlement in Nairobi) found that the 

installation of pre-paid meters helped to make connection fees affordable for 

individual households and reduce reliance on stolen electricity supplies 

(Mohammad, 2009). 
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Looking beyond these next transitions, at least two issues must be considered 

when assessing the long-term futures of urban energy systems.  The first is the 

warning of some systems analysts that increased complexity and integration may 

create sustainability risks in the long run (Fisk and Kerherve, 2006).  Managing 

complexity requires resources and these flows can be difficult to maintain over time 

(Tainter, 1988).  The second related point is whether or not energy systems 

innovation will continue to happen quickly enough to support the needs of a larger, 

wealthier global urban population in a climate-constrained environment. Each of the 

transitions described here have led to higher per capita rates of energy consumption, 

as improvements in efficiency are outstripped by increases in levels of activity and 

production.  The question is therefore whether or not society can keep up this 

frenetic pace. 
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 Table 1: Significant urban energy system transitions in the UK.  Data from Raleigh (2000) and Gibbons (2010). 

Transition Approx. date Approx. global 
population 

Driver Technology Consequence 

Raw to cooked 
food 
 

1.2–2 million 
years ago  

20,000 Food supply Fire Population increase 

Nomadic to settled 
lifestyle 
 

10,000 BC 10 million Food security Horticulture Population increase 

Settled to Urban 3000 BC 50 million Food security, trade and 
defence 
 

Agriculture, wheel and sail City states and trade 

Biomass to coal 1650 AD 500 million Transport cost of wood fuel 
 

Chimneys and steam Rapid urban 
industrialization 
 

Early urban 
networks  

1850 AD 1.2 billion Effective street lighting  Incandescent light bulb; gas cooker; 
railways 

Better energy services.  
Suburbs and 
commuting. 
 

National grids 1950 AD 3 billion Efficiencies of scale and 
natural gas discoveries 
 

Electricity and gas grids, automobiles Low energy prices, 
reduced dependence on 
coal 
 

Integrated energy 
services? 

? ~ 9 billion? System efficiency, resource 
availability, climate 
constraints 

Highly efficient use, integrated energy 
systems, secure low emission supplies 

? 
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Figure 1: The rise in energy demand per capita as communities urbanized and then 

industrialized, switching from a biomass-fuelled energy system to fossil fuels around 400 

years ago. Data from Smil (1994), Grübler (2011), and Sorensen (2011). 

 


