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Influenza is a disease of the respiratory system caused by single stranded RNA viruses with varying
genotypes. Immunopathogenesis to influenza viruses differs based on virus strain, dose, and mouse
strain used in laboratory models. Although effective mucosal immune defenses are important in early
host defense against influenza, information on the kinetics of these immune defense mechanisms during
the course of influenza infection is limited. We investigated changes to antimicrobial peptides and pri-
mary innate immune cells at early time points after infection and compared these variables between two
prominent H1N1 influenza A virus (IAV) strains, A/CA/04/2009 and A/PR/08/1934 in C57BL/6 mice.
Alveolar and parenchymal macrophage ratios were altered after IAV infection and pro-inflammatory
cytokine production in macrophages was induced after IAV infection. Genes encoding antimicrobial
peptides, b-defensin (Defb4), bactericidal-permeability increasing protein (Bpifa1), and cathelicidin
antimicrobial peptide (Camp), were differentially regulated after IAV infection and the kinetics of Defb4
expression differed in response to each virus strain. Beta-defensin reduced infectivity of A/CA/04/2009
virus but not A/PR/08/1934. Beta defensins also changed the innate immune cell profile wherein mice
pre-treated with b-defensin had increased alveolar macrophages and CD103þ dendritic cells, and
reduced CD11bþ dendritic cells and neutrophils. In addition to highlighting that immune responses may
vary based on influenza virus strain used, our data suggest an important role for antimicrobial peptides
in host defense against influenza virus.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Influenza is an infectious disease of the pulmonary system
caused by viruses of the Orthomyxoviridae family. Influenza A virus
(IAV) can undergo changes over a period of time in the form of
gradual mutations (antigenic drift) or abrupt changes in surface
proteins (antigenic shift) which may render the virus highly in-
fectious and/or transmissible thereby reducing the efficacy of vac-
cines. IAV infections have resulted in four pandemics since 1900, of
which the 1918 pandemic alone claimed over 50 million lives
worldwide (Taubenberger and Morens, 2006).

Influenza pathogenesis is a combination of viral virulence and
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host responses. Early defenses in the lung after virus infection have
a strong influence on host protection and antiviral immunity. Pri-
mary immune defense strategies in the lungs against environ-
mental pathogens are multilayered, consisting of a physical barrier
(epithelial cells), mucosal liquid containing antimicrobial peptides
(AMPs), and immune cells (macrophages and neutrophils) (Nicod,
2005). Antimicrobial peptides are an important primary host de-
fense mechanism in the respiratory mucosa and are generally
classified by the presence or absence of disulfide bonds. Most AMPs
found in the lung mucosa are produced by epithelial and innate
immune cells, and their functions are better characterized in de-
fense against bacteria than viruses wherein AMP-induced clumping
and trapping of bacteria abrogate their ability to invade host cells
(Boyton and Openshaw, 2002). Epithelial AMP expression is regu-
lated by pathogen exposure and innate mediators (Tecle et al.,
2010). Defensins, AMPs that contain three disulfide bonds, are
produced by epithelial cells and leukocytes in the mucosa (Risso,
2000) and are increased during acute inflammation (Bals et al.,
2001). Beta-defensins can activate immature DCs (Biragyn et al.,
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2002) and inhibit Haemophilus influenzae infections (Moser et al.,
2002), and recently shown to inhibit IAV (Zhao et al., 2016). As
one of the most abundant proteins in the airways, bactericidal-
permeability-increasing (BPI) proteins inhibit bacteria and fungi
from colonizing the lungs (Britto and Cohn, 2015; Seshadri et al.,
2012). BPI family member SPLUNC can inhibit the growth of bio-
film forming bacteria (Gally et al., 2011; Lukinskiene et al., 2011).
Cathelicidin antimicrobial peptide (CAMP) deficient mice have
increased susceptibility to skin infections (Nizet et al., 2001), and
human cathelicidin, LL-37, inhibits IAV infectivity by damaging the
viral envelope (Tripathi et al., 2013), and pre-treatment of mice
with LL-37 resulted in lower lung viral burden and pro-
inflammatory cytokines (Barlow et al., 2011). Since AMPs may
have therapeutic potential against viral disease, understanding
how they regulate early immune responses is important.

Macrophages play important roles in host defense against
inhaled pathogens through phagocytic clearance and production of
mediators that enhance immune responses. Numerous studies
have established that IAV infects macrophages by binding to lectin-
type receptors (Reading et al., 2000; Upham et al., 2010) although
effective viral replication does not occur within these cells (Rodgers
and Mims, 1981; Tate et al., 2010). Pro-inflammatory cytokines
produced by macrophages during IAV infection (Lee et al., 2012)
may promote inflammation and help control viral replication and
clearance. IAV can directly impact macrophage function by altering
the expression of SOCS-1 and RIG-I and these responses differ by
IAV strain (Ramirez-Martinez et al., 2013). Alveolar macrophage
depletion in swine prior to IAV infection resulted in blunted
adaptive immune responses (Kim et al., 2008), and alveolar mac-
rophages are reduced during IAV infection of mice (Ghoneim et al.,
2013). The reduction of macrophage populations in the lungs and
associated alterations of functional capacity may significantly
impair host defenses.

We hypothesized that mouse-adapted (A/PR/08/1934) and non-
adapted (A/CA/04/2009) H1N1 strains of IAV differentially induce
primary mucosal defense mechanisms in the lungs. Early markers
of inflammation and AMP expression were regulated during IAV
infection, and mouse b-defensin 4 (MBD4) had an impact on viral
replication and early immune cell regulation. Taken together, our
data show that early immune defenses differ by IAV strain and
AMPs alter IAV pathogenesis. This has important ramifications both
for our understanding of host immunity and for IAV strain selection
in immunological studies.

2. Materials and methods

2.1. Ethics statement

All experiments were approved by the Institutional Animal Use
and Care Committees at St. Jude Children's Research Hospital and
the University of Tennessee Health Science Center.

2.2. Viruses

A comparison of published protein sequences between the
laboratory strain A/PR/08/1934 (PR8) and the 2009 pandemic
influenza strain A/CA/04/2009 (CA4) suggested that virus virulence
and replication within hosts, and immune responses to these IAV
strains may differ (Supplementary Fig. 1). The CA4 strain obtained
from Dr. Richard Webby at SJCRH was propagated in Madin-Darby
canine kidney (MDCK.2, ATCC, Manassas, VA) cells while our PR8
strainwas cultured in embryonated chicken eggs. Both strains were
sequence verified to be void of anymutations in hemagglutinin and
neuraminidase genes. Effects of virus propagation methods have
been extensively investigated and are not the focus of this work.
2.3. Animals

Seventeen-week-old C57BL/6 female mice from Jackson Labo-
ratories (Bar Harbor, ME) were acclimatized for oneweek in specific
pathogen-free ABSL2 facilities with ad libitum access to food and
water in a 12-h light:dark cycle.

2.4. Influenza model

Both these virus strains can induce severe morbidity and mor-
tality in mice. Since the focus of this study was to investigate innate
immune responses to disease, we selected a non-lethal dose of
virus to perform the model. Mice were infected intranasally with
1000 TCID50 of either CA4 or PR8 virus in 50 mL. In our hands,
C57BL/6 mice infected with CA4 at this dose have a weight loss
nadir at ~12e15% while PR8 induces a nadir at ~25e27% and no
death (cut off set to 30% weight loss or other signs of severe
morbidity). Mice in the mock-treated group were administered PBS
in place of virus. All animals were weighed prior to infection and
every day thereafter until sacrifice. Animals were euthanized by
CO2 asphyxiation followed by cervical dislocation at predetermined
time points after infection.

2.5. Sample harvest

Euthanized mice were tracheostomized and bronchoalveolar
lavage (BAL) was performed twice with 1 mL of sterile PBS and
stored in ice. The middle and accessory lobes of the right lung were
snap frozen in liquid nitrogen for RNA analyses. Left lobes were
harvested and fixed ex vivo by injecting 1 mL of 10% neutral buff-
ered formalin for histological analysis. Whole lungs were harvested
and snap frozen in liquid nitrogen from mice for viral titer deter-
mination. All samples were stored at �80 �C until use.

2.6. Virus titration

Lungs collected and stored at �80 �C were placed in ice and
homogenized in the presence of 1 mL of sterile PBS. Homogenates
were centrifuged at 600�g for 10 min at 4 �C and supernatants
were stored in aliquots at �80 �C. Thawed aliquots were serially
diluted at 1:10 and used to infect MDCK.2 cells grown to confluence
in 96-well plates. Cells were washed one hour later and incubated
in media containing 1 mg/mL TPCK-trypsin (Worthington
Biochemical, Lakewood, NJ) at 37 �C/5% CO2. Viral titers were read
72 h later by hemagglutination assay in the presence of 0.5%
chicken red blood cells and calculated by the Reed-Muench
method.

2.7. BAL cell analysis

BAL contents were centrifuged at 600�g for 10 min at 4 �C and
supernatants stored at �80 �C. BAL cells were re-suspended in
0.2 mL of PBS and cytospun onto a glass slide. Slides were differ-
entially stained (Quik-Dip, Mercedes Medical, Sarasota, FL) for
morphometric analyses. Slides were observed under high power
magnification (1250�) of a light microscope to enumerate ciliated
epithelial cells in five randomly selected fields by an investigator
blinded to the study groups.

2.8. Histological analysis

Formalin fixed left lungs were paraffin embedded and 4 mm
sections were affixed onto glass slides, de-paraffinized and stained
with Hematoxylin and Eosin. Slides were observed under low po-
wer magnification (200�) in a light microscope and peribronchial
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and perivascular inflammation was scored by an investigator
blinded to the study groups. Mean values were reported for each
group. Photomicrographs were obtained with a camera attached to
a Nikon (Eclipse, 50i) light microscope using Nikon Elements
software.

2.9. Quantitative real time PCR

Middle and accessory lobes of the right lungs stored at �80 �C
were used to harvest RNA using TRIzol® (Invitrogen, Grand Island,
NY) and chloroform (IBI Scientific, Peosta, IA). One microgram of
RNA was converted into cDNA with iScript™ (Bio-Rad, Hercules,
CA) and used to quantify changes in gene expression by quantita-
tive real-time PCR with RNA-specific QuantiTect primer assays
(Qiagen, Valencia, CA) for Defb4, Bpifa1, and Camp. Data were ac-
quired with the ABI-7500 machine (Applied Biosystems, Carlsbad,
CA) and relative fold change in gene expression was determined
using the 2�DDCt method normalized to the internal housekeeping
gene Hprt.

2.10. ELISA

The amount of IFNg and TNFa (BD Biosciences, San Jose, CA) in
undiluted BAL fluid was measured by ELISA according to manu-
facturer's recommended protocols.

2.11. Virus infection assays with recombinant mouse beta defensin
4 (MBD4)

Log105 TCID50/mL of each virus strain was incubated for one
hour at 37 �C with known concentrations of MBD4 recombinant
protein (MyBioSource, San Diego, CA) following which a hemag-
glutination assay was performed to determine the HA titer. Alter-
natively, virus incubated with MBD4 was used to inoculate
confluent MDCK.2 cells and viral titers were determined at 48 hpi.

2.12. Mouse treatment with MBD4

Anesthetized mice were administered 100 mg of MBD4 intra-
nasally in 20 mL and immediately infected with 1000 TCID50 of
either PR8 or CA4 virus in 50 mL. Samples (BAL and lungs) were
harvested for viral titers and immune cell analyses at 48 hpi.

2.13. Flow cytometric analysis

Following BAL, whole lungs were harvested from euthanized
mice infected with each strain of virus, or neither at 48 hpi. BAL
cells were recovered from centrifugation of BAL at 600�g, while
immune cells in lung were recovered by gentleMACS (Miltenyi
Biotec, San Diego, CA) lung dissociation isolation protocol per
manufacturer's guidelines. Cells were enumerated by Trypan Blue
dye exclusion and non-specific binding sites were blocked by in-
cubation in human gammaglobulin (Sigma-Aldrich, St. Louis, MO)
for 30 min in ice. Washed cells were then incubated in fluorescent-
tagged antibodies for 30 min in ice in the dark. In studies utilizing
cells for determination of cytokine production, harvested cells from
the BAL or lungs were incubated in protein transport inhibitor (BD
Biosciences GolgiPlug) for 6 h, and intracellular staining for cyto-
kines was performed following fixation and permeabilization (BD
Biosciences) using fluorescently labeled antibodies against IFNg
and TNFa. Controls included unstained cells, single color and iso-
type controls. Data were acquired with an LSRFortessa (BD Bio-
sciences, San Jose, CA) and analyzed with FlowJo (Ashland, OR)
software. See Supplementary Table for antibodies and
Supplemental Figs. 2 and 3 for gating strategies.
2.14. Statistical analysis

Each group consisted of at least five animals. The mean and
standard deviation were calculated for each group. Studies were
repeated for reproducibility and data are representative of one
experiment. Data were compared between groups with non-
parametric one-way or two-way ANOVA or Student's t-test with
alpha set to 0.05. Post-hoc tests were performed and indicated in
Figure Legends. Significant (p < 0.05) differences were denoted by
asterisk (*), delta (D), or pound (#) symbols.

3. Results

Influenza viruses infect host cells and replicate rapidly causing
disease that manifests partially due to direct cellular damage and
partially due to the host's immune response to replicating virus.
Immediate host immune responses to IAV infection are important
to neutralize and limit the viral burden. These responses may differ
based on genetic differences between H1N1 IAV strains
(Supplemental Fig. 1). Therefore, we investigated the innate im-
mune responses against two H1N1 IAV strains, the mouse-adapted
laboratory strain PR8 and a clinical strain from the last pandemic,
CA4.

3.1. PR8 induced rapid weight loss despite similar replication
kinetics

Weight loss is a marker of influenza morbidity in mice. While
both IAV strains caused weight loss at the dose used for infection,
changes in weight loss kinetics were apparent early during infec-
tion after PR8 (Fig. 1A) although viral replication kinetics were
similar (Fig. 1B).

3.2. Kinetics of pulmonary inflammation differed between PR8 and
CA4 viruses

We used histopathology to determine the structural changes
induced by the viruses during infection. Representative images of
left lung sections stained with H&E and observed by light micro-
scopy and semi-quantitative analyses thereof at 48 hpi are shown
in Fig. 2. Peribronchial and perivascular inflammatory foci were
visible as early as 3 hpi (data not shown), prominent at 48 hpi
(Fig. 2A), and severe by 120 hpi (data not shown). Early peri-
bronchovascular inflammation in response to PR8 was more robust
than that induced by CA4 (Fig. 2B). Damage to the bronchial
epithelial cells was apparent after infection (insets, Fig. 2A) and the
number of ciliated epithelia in the airways increased with signifi-
cantly more cells shed after PR8 infection (Fig. 2C).

3.3. Macrophage responses differed by IAV strain

Since macrophage populations are dynamically regulated
during virus infection (Ghoneim et al., 2013), we aimed to
determine if the intracellular cytokine profile also differed be-
tween the alveolar and parenchymal macrophages during IAV
infection (Fig. 3). Live singlets in each compartment were gated
on Mac3 as a pan-macrophage marker prior to identification of
populations based on CD11b and CD11c (Supplemental Fig. 2).
Macrophage populations changed in the BAL and lungs after
infection (Fig. 3A and D). The percentages of alveolar
(CD11b�CD11cþ) and parenchymal (CD11bþCD11c�) macrophages
were calculated in the Mac3þ cells in the BAL and lungs to
determine changes in the ratio of these two populations. Alveolar
macrophages dominate the airways and lungs in mock-treated
mice while these cells are decreased in both compartments as
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Fig. 2. Inflammatory cell recruitment into the airways differed between the two virus strains. The presence of inflammatory cells around the airways was observed as early as
48 h after infection with each virus as was damage to the bronchial epithelia (insets) compared to mock-infected controls (A). Peribronchovascular inflammation scores were
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parenchymal macrophages increase after infection (Fig. 3B and E).
Both types of macrophages in the airways produced pro-
inflammatory cytokines, TNFa and IFNg, while macrophages in
the mock-treated animals did not have measurable levels of these
cytokines (Fig. 3C). However, IFNg production was significantly
lower in alveolar macrophages after PR8 infection compared to
these cells in mice infected with CA4 (Fig. 3C). Unlike in the BAL,
alveolar macrophages in the lungs did not alter IFNg and TNFa
production in response to IAV. Parenchymal macrophages pro-
duced less IFNg after infection although TNFa production
remained unaffected by infection (Fig. 3F).

3.4. Antimicrobial peptides were differentially expressed in
response to the PR8 and CA4 viruses

Differences in the inflammatory profile between the two IAV
strains tested may be influenced by primary mucosal defenses in
the host. The airway surface is bathed in mucosal liquids which
contain AMPs that can initiate an inflammatory cascade. Therefore,
we measured changes in AMP gene expression in the lungs. Influ-
enza virus infection led to differential expression of AMPs in the
lungs with variations between the two IAV strains (Fig. 4). Mouse b-
defensin-4 gene (Defb4) was regulated in response to both viruses
in a bimodal pattern compared to mock-treated mice although not
all peaks reached statistical significance. Gene expression of Bpifa1
peaked at 3 h after CA4 infection, and was significantly down-
regulated at late time points. Bpifa1 expression pattern was slightly
different after PR8 infection wherein it was significantly increased
over baseline at 1 hpi, and remained elevated until it was signifi-
cantly downregulated at 120 hpi. Camp expressionwas upregulated
in response to both strains of IAV, but was significantly higher in
CA4 at 3 hpi compared to PR8.



Fig. 3. Macrophage populations changed in response to virus. Live singlets were pre-gated on expression of Mac3 as a pan-macrophage marker and then by subtype of
macrophage (A). Virus infection resulted in a change in ratio of macrophages wherein CD11b�CD11cþ cells decreased and CD11bþCD11c� population increased in the in the
bronchoalveolar lavage (BAL) compared to mock-infected controls (B). Both populations of macrophages in the BAL produced IFNg and TNFa in response to infection (C). While the
total number of live CD11b�CD11cþ cells decreased in the lung after infection, the number of CD11bþCD11c� increased (D). Similar to the BAL compartment, the ratio of macrophage
subtypes changed in the lungs wherein CD11b�CD11cþ macrophages decreased while the CD11bþCD11c� population increased after infection compared to mock-infected controls
(E). Cytokine production in these cells was similar to that in mock-infected animals except IFNg production which was significantly reduced in the CD11bþCD11c� population after
infection (D). Data are represented as the mean and standard deviation with n¼ 10 animals at 48 hpi. Asterisks (*) represent p < 0.05 by nonparametric one-way ANOVA and Dunn's
multiple comparisons test. Please see Supplemental Fig. 2 for detailed gating strategy.
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Fig. 4. Early mucosal immune defense genes were upregulated after influenza A
virus infection. Defb4 expression had a bimodal pattern with early expression in
response to CA4 and delayed expression after PR8. Additionally, Defb4 was undetect-
able at some timepoints after both strains (ND, not detected). More Bpifa1 was
expressed in response to CA4 compared to PR8, but this gene was significantly
downregulated at later timepoints after both viruses. While elevated in expression
compared to mock-infected controls, Camp levels were more stable after PR8
compared to CA4 peaking at 120 hpi. An additional peak in Camp expression occurred
after CA4 at 3 hpi. Graphs represent the mean and standard error of the mean of n ¼ 5
mice per timepoint each with a technical replicate and are representative of two in-
dependent experiments. Dotted lines represent the mean in mock-infected controls.
Delta (D) symbols represent p < 0.05 compared to mock-infected control and asterisks
(*) represent p < 0.05 when CA4 and PR8 were compared by two-way ANOVA with
Sidak's multiple comparisons test.

K.S. LeMessurier et al. / Antiviral Research 133 (2016) 208e217 213
3.5. Beta-defensin 4 may enhance antiviral host protection in the
lungs

Although AMPs are commonly considered in defense against
bacteria rather than viruses, since we noted differential expression
of commonAMPs in response to influenza virus infection (Fig. 4) we
hypothesized that these peptides played an immunoregulatory role
during virus infection. We selected to investigate antiviral proper-
ties of MBD4 as the gene expression profile was dynamically
regulated in response to each IAV strain. We incubated each virus in
the presence of varying concentrations of biologically active MBD4
and performed hemagglutination assays to determine if MBD4 had
an impact on hemagglutinin. The hemagglutinin titer of CA4
decreased in a dose dependent manner while that of PR8 did not
change (Fig. 5A). Virus pre-incubated in MBD4 led to a reduction in
infectivity of both IAV strains although statistical significance was
only achieved for CA4 incubated in 50 mg/mL of MBD4 (Fig. 5A).
Administration of recombinant MBD4 into animals immediately
prior to virus infection resulted in a significant reduction in the viral
burden in CA4 but not PR8 (Fig. 5B). The IFNg concentration in the
BAL fluid of mice that received MBD4 prior to CA4 increased with
MBD4 treatment (Fig. 5C) while TNFa levels did not change,
remaining at approximately 12 ng/mL in all groups (data not
shown).

3.6. Beta-defensin treatment altered the innate immune cell profile
after IAV infection

Pulmonary inflammation that results from IAV infection was
similar between the two strains. We aimed to determine whether
the innate immune cell profile was affected by MBD4 pre-
treatment prior to IAV infection. The gating strategy published in
detail by Misharin et al. (2013) was adapted to determine the
numbers of macrophages (alveolar and insterstitial), dendritic cells
(CD103þ and CD11bþ), and neutrophils in the BAL/airways and
lungs of virus-infected mice (Supplementary Fig. 3). While the
number of cells in the airways and lungs increased in response to
infection, pre-treatment with MBD trended toward reduced
inflammation in response to both strains (Fig. 6). Alveolar macro-
phages (AM) were reduced in the airways and lungs after virus
infection (Fig. 6), as noted before and corroborating a previous
finding utilizing different gating strategies to quantify this popu-
lation (Ghoneim et al., 2013). Pre-treatment with MBD4 led to the
maintenance of the AM population in the lungs after virus infection
(Fig. 6). Interstitial macrophage (IM) population remained unal-
tered in the airways after IAV infection althoughMBD4 treatedmice
infected with CA4 had significantly less IMs in the airways
compared to untreated mice. Lung IMs after MBD4 treatment were
similar to that in mock-infected controls, but were significantly
reduced when compared to levels in IAV-infected mice (Fig. 6).
Dendritic cell (DC) populations differed between the BAL and lungs
wherein CD103þ DCs in the airways were not affected by infection
while those in the lungs were reduced in response to CA4 infection.
The population of CD11bþ DCs increased in the airways after CA4
but remained unaltered after PR8 and MBD treatment. The per-
centage of CD11bþ DCs decreased in the lungs of IAV-infected mice
that were pre-treated with MBD (Fig. 6). Neutrophils (Neuts)
increased in the airways after IAV infection and these cells were
reduced in both niches after MBD4 treatment (Fig. 6).

4. Discussion

Influenza viruses adapt to the host andmay becomemore or less
pathogenic. Common H1N1 influenza strains used in laboratory
research include PR8 and CA4. However, these two strains differ in
genetic makeup and host impact. In this study, we showed that PR8
and CA4 differed in induction of primary host defenses and
morbidity despite having equivalent viral load in the lungs. Our
data add novel information by comparing two frequently used
H1N1 strains of IAV and exploring immune defenses at early time
points after infection in the context of AMPs.

The bronchial epithelium is multifunctional and plays a vital
role in lung innate immunity as reviewed in detail by Vareille et al.
(2011), and penetrance of this barrier defense by targeting
epithelial junctional proteins (Golebiewski et al., 2011) is indicative
of influenza virus virulence. Airway epithelial cells are potent
producers of cytokines and chemokines that lead to airway
inflammation and stimulation of resident immune cells after IAV
infection (Tate et al., 2011a,b). Primary bronchial epithelial cells
have been noted to have different inflammatory profiles and ki-
netics depending on the virus strain used (Gerlach et al., 2013;
Ioannidis et al., 2012). Epithelial cells that were found in the BAL
compartment at early time points (1, 3, 9, 24, and 48 h) after IAV
appeared “healthy.” However, PR8 antigen is present in the



Fig. 5. Mouse b-defensin 4 (MBD4) may negatively impact virus infectivity. Incubation of CA4 in MBD4 caused a reduction in hemagglutinin (HA) and virus titer 48 hpi after
infection although virus infectivity of PR8 was unaffected (A). Mice treated with MBD4 immediately prior to virus infection had reduced CA4 lung viral load at 48 hpi while viral
burden in PR8 infected mice was not affected by MBD4 treatment (B). The amount of IFNg in the bronchoalveolar lavage (BAL) fluid also increased in MBD4 treated mice infected
with CA4 (C). Data are represented as the mean and standard deviation of n ¼ 4e5 wells/mice per group and representative of two-three experiments. Asterisks (*) represent
p < 0.05 by nonparametric one-way ANOVA and Dunn's multiple comparisons test, while # represents p < 0.05 by Mann-Whitney test when data were compared to that of
untreated controls.
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bronchial epithelia by 24 hpi (Tate et al., 2011a,b) and because we
did not determine if shed epithelia were undergoing apoptosis or
anoikis, it is possible that PR8 may have induced changes in
epithelial cells more rapidly than CA4. Since bronchial epithelia are
a main source of AMPs that were differentially regulated during IAV
infection, it may be interesting to explore molecular characteristics
and proteomics of shed epithelia to understand how alterations in
the bronchial epithelia due to sloughing may impact early activa-
tion of other immune mechanisms.

Upon penetration of the epithelial barrier, IAV encounters
alveolar macrophages in the airways and interstitial macrophages
in the lung parenchyma. Macrophage responses to IAV include pro-
inflammatory cytokine production, oxidative burst, and effer-
ocytosis (Oslund and Baumgarth, 2011). Macrophage depletion
during IAV infection leads to increased viral load, severe morbidity,
and mortality (Purnama et al., 2014; Schneider et al., 2014; Tate
et al., 2010; Wijburg et al., 1997) emphasizing the importance of
appropriate macrophage availability and function in host defense
against influenza. Characterization of macrophage subpopulations
in the lungs during influenza is limited in the literature, and vari-
ations in classifications used to define subpopulations in addition to
the harvest techniques can alter results. Alveolar and interstitial
macrophages are dynamically regulated during influenza
(Ghoneim et al., 2013). Using alternative markers and gating stra-
tegies, we confirmed these findings and also that macrophage
subpopulation kinetics differed by IAV strain. Macrophage cytokine
production in response to IAV requires viral replication and PR8
does not efficiently infect macrophages (Reading et al., 2010; Tate
et al., 2010). Therefore, changes in macrophage populations are
likely a result of differences in immune activation of epithelial cells
by each IAV strain used. Decreased IFN signaling leads to neutrophil
recruitment into the lungs (Seo et al., 2011), and IFNg treatment
early during IAV infection leads to better outcome (Weiss et al.,
2010). Therefore, it is possible that antiviral defenses in the lungs
were delayed after PR8 due to reduced IFNg production in resident
and recruited macrophages.

Reduction in tissue virus burden late in the infection course
occurs as a result of an effectively activated adaptive immune
response. A well-orchestrated CD8þ T cell response depends on the
functions of antigen presenting cells, wherein mice that lack
CD103þ DCs have reduced anti-influenza CD8þ T cells
(GeurtsvanKessel et al., 2008; Helft et al., 2012). Of the DC subtypes,
CD103þ DCs do not support IAV replication and are efficient at
cross-presentation and activation of CD8þ T cells against IAV (Helft
et al., 2012). A reduction in the number of CD103þ DCs in the lungs
after IAV may suggest their migration to the draining lymph nodes,
and it is worth noting that there were significantly less CD103þ DCs
in the lungs after CA4 compared to the more pathogenic strain PR8.
In contrast, CD11bþ DCs support virus replication (Hao et al., 2008;
Helft et al., 2012), and increase in the lungs and draining lymph
nodes after IAV infection (Helft et al., 2012). Our findings were
somewhat different from Helft et al. (Helft et al., 2012), wherein a
decrease in the CD103þ DCs occurred in response to CA4 but not
PR8 and the CD11bþ DCs only increased in the BAL compartment
after CA4. These variations may be due to viral strains and infec-
tious doses used.



Fig. 6. Macrophage and dendritic cell populations were altered after b-defensin treatment during virus infection. Mouse b-defensin 4 (MBD4) treatment reduced the total
number of cells in the bronchoalveolar lavage (BAL) and lungs after infection. Both strains of influenza virus led to a reduction in the alveolar macrophage (AM) populations which
was reversed by MBD. The virus-induced increase in interstitial macrophages (IM) did not occur in MBD-treated mice. The number of CD103þ dendritic cells (DCs) did not change in
the airways either during virus infection alone of MBD treatment, although these cells increased in the lungs of MBD-treated mice infected with CA4. The number of CD11bþ DCs
was reduced in the lungs after MBD as did neutrophils in both compartments. Graphs represent the mean and standard deviation of n ¼ 5 mice/group and are representative of two
independent experiments. Asterisks (*) represent p < 0.05 by nonparametric one-way ANOVA and Dunn's multiple comparisons test. Please see Supplemental Fig. 3 for detailed
gating strategy.
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Epithelia and macrophages produce AMPs in the lungs. While
AMPs are generally considered important in responses to bacteria,
AMPs may also serve as antiviral immune mediators (Klotman and
Chang, 2006). BPIFA1 is downregulated 48 h after IAV infection in
tracheal epithelia and tracheal cells from bpifa1�/� mice have
increased viral replication and cell death (Akram et al., 2015). Dif-
ferences in Bpifa1 levels after IAV infection in our study suggests
that early expression may be necessary in host defense and its
reduction may be associated with damage to the epithelia. Human
LL-37was recently shown to have direct antiviral properties against
respiratory syncytial virus and mouse CAMP reduced viral infec-
tivity (Currie et al., 2016). While we did not use CAMP as a thera-
peutic in this study, we noted increased Camp expression in
response to IAV that remained elevated throughout the infection
perhaps indicative of a role for CAMP in antiviral responses to IAV.
Human b-defensins are differentially expressed in health and dis-
ease (Singh et al., 1998), and MBD expression did not correlate with
viral titers in a mouse model of influenza (Chong et al., 2008)
suggesting that AMP expression is tightly regulated in disease and
may be reflective of damage to the epithelia, inflammation, and
immunoregulation, and host-pathogen interactions. We selected to
investigate properties of MBD4 here as it had the most dynamic
changes in gene expression in our model of IAV infection.

The bimodal expression pattern of Defb4 gene (albeit not sta-
tistically significant) suggests altered availability of b-defensins
during the course of infection. A recent study elegantly demon-
strated that a short peptide from MBD4 was able to reduce viral
infectivity and counter morbidity of various lethal respiratory vi-
ruses including IAV (Zhao et al., 2016). Using recombinantMBD4we
found that MBD4 reduced viral infectivity and had a direct role on
innate immune cell profile after IAV infections. Although epithelial
cells of the respiratory tract are the main source of AMPs, resident
and recruited leukocytes also contribute to local production during
inflammation (Oppenheim et al., 2003). Therefore, changes in the
expression dynamics of these AMPs after IAV may indicate changes
in resident/recruited immune cells in the lungs. Human AMs pro-
duce b-defensins (Duits et al., 2002), and b-defensins can attract
macrophages and DCs (Rohrl et al., 2010; Soruri et al., 2007), and
promote a pro-inflammatory phenotype (Barabas et al., 2013). We
noted a reduction in AMs in our study after IAV, and MBD4
treatment-induced increase in AMs only had a positive impact on
CA4-infected mice wherein viral titers were lower. Blunting AMs
can increase pathogenesis of H3N2 IAV but has no impact on PR8
(Tate et al., 2010). It would be of interest to explore whether MBD-
mediated changes in macrophage populations occur as a result of
monocyte recruitment or prevention/promotion of apoptosis. MBD-
induced differences in the DC population may be due to their
migration into draining lymph nodes, which may be beneficial in
host defense. In addition to alterations in the myeloid cells, MBD4
treatment resulted in a significant reduction in the number of
neutrophils in the airways and lungs. Neutrophils have been shown
to have both beneficial and detrimental effects on the host during
influenza (Sakai et al., 2000; Tate et al., 2009, 2011a,b). Neutrophils
were significantly reduced after MBD4 treatment in mice infected
with both IAV strains although viral load was only reduced in the
CA4-infected mice. Furthermore, considering the changes to the
inflammatory profile and viral load after MBD4 treatment, it is
possible that inflammation and viral burden may not be correlative
on all occasions. Future studies are aimed at delineating a role for
these AMPs in the late phase of IAV replication kinetics.

Variations in influenza pathogenesis in animal models can occur
based on themouse strain, virus strain, virus culturemethods, virus
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dose, and volume of inoculum, among other factors. As shown in
this study, a breakdown in immune homeostasis occurs very
quickly after virus infection wherein AMPs are rapidly regulated
and innate immune profile is altered. These defenses may control
the initial pathogen burden and trigger subsequent immune re-
sponses. Primary innate immune defense molecules are important
when investigating the immunopathogenesis of influenza virus
infections and should be considered for further investigation as
therapeutic targets.
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