
Journal of Computational and Applied Mathematics 124 (2000) 281–302
www.elsevier.nl/locate/cam

Interior-point methods
Florian A. Potraa, Stephen J. Wrightb; ∗

aDepartment of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
bDivision of Mathematics and Computer Science, Argonne National Laboratory, 9700 South Cass Avenue, Argonne,

IL 60439-4844, USA

Received 18 November 1999; received in revised form 10 February 2000

Abstract

The modern era of interior-point methods dates to 1984, when Karmarkar proposed his algorithm for linear programming.
In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions
to more general classes of problems, such as convex quadratic programming, semi-de�nite programming, and nonconvex
and nonlinear problems, have reached varying levels of maturity. We review some of the key developments in the area, and
include comments on the complexity theory and practical algorithms for linear programming, semi-de�nite programming,
monotone linear complementarity, and convex programming over sets that can be characterized by self-concordant barrier
functions. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

In their survey article [6], Freund and Mizuno wrote

Interior-point methods in mathematical programming have been the largest and most dramatic
area of research in optimization since the development of the simplex method...Interior-point
methods have permanently changed the landscape of mathematical programming theory, practice
and computation... .

Although most research in the area was devoted to linear programming, the authors claimed that

semide�nite programming is the most exciting development in mathematical programming in
1990s.

Although various interior-point methods had been considered one way or another from the 1950s,
and investigated quite extensively during the 1960s [5], it was the publication of the seminal paper

∗ Corresponding author.
E-mail addresses: potra@math.umbc.edu (F.A. Potra), wright@mcs.anl.gov (S.J. Wright).

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00433-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82666835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

282 F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302

of Karmarkar [11] that placed interior-point methods at the top of the agenda for many researchers.
On the theoretical side, subsequent research led to improved computational complexity bounds for
linear programming (LP), quadratic programming (QP), linear complementarity problems (LCP)
semi-de�nite programming (SDP) and some classes of convex programming problems. On the com-
putational side, high-quality software was eventually produced, much of it freely available. The
general performance of computational tools for linear programming improved greatly, as the sud-
den appearance of credible competition spurred signi�cant improvements in implementations of the
simplex method.
In the �rst years after Karmarkar’s initial paper, work in linear programming focused on algo-

rithms that worked with the primal problem, but were more amenable to implementation than the
original method or that had better complexity bounds. A particularly notable contribution from this
period was Renegar’s algorithm [21], which used upper bounds on the optimal objective value to
form successively smaller subsets of the feasible set, each containing the solution, and used Newton’s
method to follow the analytic centers of these subsets to the primal optimum. A new era was inau-
gurated with Megiddo’s paper [13], originally presented in 1987, which described a framework for
primal–dual framework algorithms. The primal–dual viewpoint proved to be extremely productive. It
yielded new algorithms with interesting theoretical properties, formed the basis of the best practical
algorithms, and allowed for transparent extensions to convex programming and linear complementar-
ity. In 1989, Mehrotra described a practical algorithm for linear programming that remains the basis
of most current software; his work appeared in 1992 [14]. Meanwhile, Nesterov and Nemirovskii
[16] were developing the theory of self-concordant functions, which allowed algorithms based on the
primal log-barrier function for linear programming to be extended to wider classes of convex prob-
lems, particularly semi-de�nite programming and second-order cone programming (SOCP). Nesterov
and Todd [17,18] extended the primal–dual approach along similar lines to a more restricted class
of convex problems that still included SDP and SOCP. Other work on interior-point algorithms for
SDPs, which have a wide variety of applications in such areas as control and structural optimiza-
tion, was already well advanced by this point. Work on these algorithms gained additional impetus
when it was recognized that approximate solutions of NP-hard problems could thereby be obtained
in polynomial time.
We now outline the remainder of the paper. Section 2 discusses linear programming, outlining

the pedigree of the most important algorithms and various computational issues. In Section 3, we
discuss extensions to quadratic programming and linear complementarity problems, and compare the
resulting algorithms with active-set methods. Semi-de�nite programming is the topic of Section 4.
Section 5 contains some elements of the theory of self-concordant functions and self-scaled cones.
Finally, we present some conclusions in Section 6.
There are many other areas of optimization in which areas in which interior-point approaches have

made an impact, though in general the state of the art is less mature than for the areas mentioned
above. General convex programming problems of the form

min
x
f(x) s:t: gi(x)60; i = 1; 2; : : : ; m

(where f and gi; i = 1; 2; : : : ; m, are convex functions) can be solved by extensions of the primal–
dual approach of Section 3. Interestingly, it is possible to prove superlinear convergence of these
primal–dual algorithms without assuming linear independence of the active constraints at the solution.
This observation prompted recent work on improving the convergence properties of other algorithms,

F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302 283

notably sequential quadratic programming. A number of researchers have used interior-point methods
in algorithms for combinatorial and integer programming problems. (In some cases, the interior-point
method is used to �nd an inexact solution of related problems in which the integrality constraints
are relaxed.) In decomposition methods for large linear and convex problems, such as Dantzig–
Wolfe=column generation and Benders’ decomposition, interior-point methods have been used to
�nd inexact solutions of the large master problems, or to approximately solve analytic center
subproblems to generate test points. Additionally, application of interior-point methodology to non-
convex nonlinear programming has occupied many researchers for some time now. The methods that
have been proposed to date contain many ingredients, including primal–dual steps, barrier and merit
functions, and scaled trust regions.
For references to work mentioned in the previous paragraph, and for many other results discussed

but not cited in this paper, please see the bibliography of the technical report in [28].
A great deal of literature is available to the reader interested in learning more about interior-point

methods. A number of recent books [27,29,23] give overviews of the area, from �rst principles to new
results and practical considerations. Theoretical background on self-concordant functionals and related
developments is described in [16,22]. Technical reports from the past �ve years can be obtained from
the Interior-Point Methods Online Web site at www.mcs.anl.gov/otc/InteriorPoint.

2. Linear programming

We consider �rst the linear programming problem, which is undoubtedly the optimization problem
solved most frequently in practice. Given a cost vector c ∈ Rn; m linear equality constraints de�ned
by a matrix A ∈ Rm×n and a vector b ∈ Rm, the linear programming problem can be stated in its
standard form as

min
x
cTx s:t: Ax = b; x¿0: (2.1)

The restriction x¿0 applies componentwise, that is, all components of the vector x ∈ Rn are required
to be nonnegative.
The simplex method developed by Dantzig between 1947 and 1951 has been the method of

choice for linear programming. While performing very well in practice, its worst-case computational
complexity is exponential, as shown by the example of Klee and Minty from 1972. The problem
of existence of a (weakly) polynomial algorithm for solving linear programs with integer data was
solved by Khachiyan in 1979. He proved that the ellipsoid method solves such programs in O(n2L)
iterations, requiring a total of O(n4L) bit operations, where L is the length of a binary coding of the
input data, that is

L=
m∑
i=0

n∑
j=0

dlog2(|aij|+ 1) + 1e

with ai0 = bi and a0j = cj.
There are no known implementations of the ellipsoid method for linear programming that are

remotely competitive with existing practical codes. The merit of the celebrated paper of Karmarkar
[11] consisted not so much in lowering the bound on the computational complexity of LP to O(nL)
iterations, requiring a total of O(n3:5L) bit operations, as in the fact that it was possible to implement
his algorithm with reasonable e�ciency. The theoretical computational complexity of interior-point

284 F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302

methods for LP was eventually lowered to O(
√
nL) iterations, requiring a total of O(n3L) bit opera-

tions by a number of authors. Goldfarb and Todd [8] provide a good reference for these complexity
results. By using fast matrix multiplication techniques, the complexity estimates can be reduced fur-
ther. Quite recently, Anstreicher [1] proposed an interior-point method, combining partial updating
with a preconditioned gradient method, that has an overall complexity of O(n3=log n) bit operations.
The paper [1] contains references to recent complexity results for LP.
The best of these complexity results, all of which are of major theoretical importance, are obtained

as a consequence of global linear convergence with factor 1−c=√n. In what follows we will describe
a simple interior algorithm that achieves this rate. We assume that the linear program (2.1) has a
strict interior, that is, the set

F0 def={x |Ax = b; x¿ 0}

is nonempty, and that the objective function is bounded below on the set of feasible points. Under
these assumptions, (2.1) has a (not necessarily unique) solution.
By using a logarithmic barrier function to account for the bounds x¿0, we obtain the parameter-

ized optimization problem

min
x
f(x; �) def=

1
�
cTx −

n∑
i=1

logxi; s:t: Ax = b; (2.2)

where log denotes the natural logarithm and �¿ 0 denotes the barrier parameter. Because the loga-
rithmic function requires its arguments to be positive, the solution x(�) of (2.2) must belong to F0.
It is well known (see, for example, [26, Theorem 5]) that for any sequence {�k} with �k ↓ 0, all
limit points of {x(�k)} are solutions of (2.1).
The traditional SUMT approach [5] accounts for equality constraints by including a quadratic

penalty term in the objective. When the constraints are linear, as in (2.1), it is simpler and more
appropriate to handle them explicitly. By doing so, we devise a primal barrier algorithm in which
a projected Newton method is used to �nd an approximate solution of (2.2) for a certain value of
�, and then � is decreased. Note that

32
xxf(x; �) =−X−2; 3xf(x; �) = (1=�)c + X−1e;

where X = diag(x1; x2; : : : ; xn) and e = (1; 1; : : : ; 1)T. The projected Newton step �x from a point x
satis�es the following system:

[−�X−2 AT

A 0

] [
�x

�+

]
=−

[
c + �X−1e

Ax − b

]
; (2.3)

so that Eq. (2.3) are the same as those that arise from a sequential quadratic programming algorithm
applied to (2.2), modulo the scaling by � in the �rst line of (2.3). A line search can be performed
along �x to �nd a new iterate x + ��x, where �¿ 0 is the step length.

F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302 285

The prototype primal barrier algorithm can be speci�ed as follows:

primal barrier algorithm
Given x0 ∈F0 and �0¿ 0;
Set k ← 0;
repeat

Obtain xk+1 by performing one or more Newton steps (2.3),
starting at x = xk , and �xing � = �k ;

Choose �k+1 ∈ (0; �k); k ← k + 1;
until some termination test is satis�ed.

A short-step version of this algorithm takes a single Newton step at each iteration, with step
length �= 1, and sets

�k+1 = �k

/(
1 +

1
8
√
n

)
: (2.4)

It is known (see, for instance, [22, Section 2:4]) that if the feasible region of (2.1) is bounded, and
x0 is su�ciently close to x(�0) in a certain sense, then we obtain a point xk whose objective value
cTxk is within � of the optimal value after

O
(√

n log
n�0
�

)
iterations; (2.5)

where the constant factor disguised by the O(·) depends on the properties of (2.1) but is independent
of n and �. For integer data of bitlength L, it is known that if �62−2L then xk can be rounded to
an exact solution in O(n3) arithmetic operations. Moreover, provided we can choose the initial point
such that �062�L for some positive constant �, the iteration complexity will be O(

√
nL).

The rate of decrease of � in short-step methods is too slow to allow good practical behavior,
so long-step variants have been proposed that decrease � more rapidly, while possibly taking more
than one Newton step for each �k and also using a line search. Although long-step algorithms
have better practical behavior, the complexity estimates associated with them typically are no better
than estimate (2.5) for the short-step approach. In fact, a recurring theme of worst-case complexity
estimates for linear programming algorithms is that no useful relationship exists between the estimate
and the practical behavior of the algorithm. Indeed, as we have seen above, the best-known iteration
complexity bound is obtained from a rather slow linear convergence rate. Good practical performance
is obtained by algorithms that are superlinearly convergent.
Better practical algorithms are obtained from the primal–dual framework. These methods recognize

the importance of the path of solutions x(�) to (2.2) in the design of algorithms, but di�er from the
approach above in that they treat the dual variables explicitly in the problem, rather than as adjuncts
to the calculation of the primal iterates. The dual problem for (2.1) is

max
(�; s)

bT� s:t: AT�+ s= c; s¿0; (2.6)

where s ∈ Rn and � ∈ Rm, and the optimality conditions for x∗ to be a solution of (2.1) and (�∗; s∗)

286 F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302

to be a solution of (2.6) are that (x; �; s) = (x∗; �∗; s∗) satis�es

Ax = b; (2.7a)

AT�+ s= c; (2.7b)

X Se = 0; (2.7c)

(x; s)¿0; (2.7d)

where X = diag(x1; x2; : : : ; xn) and S = diag(s1; s2; : : : ; sn). Primal–dual methods solve (2.1) and (2.6)
simultaneously by generating a sequence of iterates (xk ; �k ; sk) that in the limit satis�es conditions
(2:7). As mentioned above, the central path de�ned by the following perturbed variant of (2:7)
plays an important role in algorithm design:

Ax = b; (2.8a)

AT�+ s= c; (2.8b)

X Se = �e; (2.8c)

(x; s)¿ 0; (2.8d)

where �¿ 0 parameterizes the path. Note that these conditions are simply the optimality conditions
for the problem (2.2): If (x(�); �(�); s(�)) satis�es (2:8), then x(�) is a solution of (2.2). We have
from (2.8c) that a key feature of the central path is that

xisi = � for all i = 1; 2; : : : ; n; (2.9)

that is, the pairwise products xisi are identical for all i.
In primal–dual algorithms, steps are generated by applying a perturbed Newton methods to the

three equalities in (2:8), which form a nonlinear system in which the number of equations equals the
number of unknowns. We constrain all iterates (xk ; �k ; sk) to have (xk ; sk)¿ 0, so that the matrices
X and S remain positive diagonal throughout, ensuring that the perturbed Newton steps are well
de�ned. Supposing that we are at a point (x; �; s) with (x; s)¿ 0 and the feasibility conditions Ax=b
and AT� + s = c are satis�ed, the primal–dual step (�x;��;�s) is obtained from the following
system:

0 A 0

AT 0 I

0 S X

��

�x

�s

=−

0

0

X Se − ��e + r

 ; (2.10)

where �=xTs=n; � ∈ [0; 1], and r is a perturbation term, possibly chosen to incorporate higher-order
information about the system (2:8), or additional terms to improve proximity to the central path.

F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302 287

Using the general step (2.10), we can state the basic framework for primal–dual methods as
follows:

primal–dual algorithm
Given (x0; �0; s0) with (x0; s0)¿ 0;
Set k ← 0 and �0 = (x0)Ts0=n;
repeat

Choose �k and rk ;
Solve (2.10) with (x; �; s) = (xk ; �k ; sk) and (�; �; r) = (�k; �k ; rk)

to obtain (�xk ;��k ;�sk);
Choose step length �k ∈ (0; 1] and set

(xk+1; �k+1; sk+1)← (xk ; �k ; sk) + �k(�xk ;��k ;�sk);
�k+1 ← (xk+1)Tsk+1=n; k ← k + 1;

until some termination test is satis�ed.

The various algorithms that use this framework di�er in the way that they choose the starting
point, the centering parameter �k , the perturbation vector rk , and the step �k . the simplest algo-
rithm – a short-step path-following method similar to the primal algorithm described above –
sets

rk = 0; �k ≡ 1− 0:4√n ; �k ≡ 1 (2.11)

and, for suitable choice of a feasible starting point, achieves convergence to a feasible point (x; �; s)
with xTs=n6� for a given � in

O
(√

n log
�0
�

)
iterations: (2.12)

Note the similarity of both the algorithm and its complexity estimate to the corresponding pri-
mal algorithm. As in that case, algorithms with better practical performance but not necessarily
better complexity estimates can be obtained through more aggressive, adaptive choices of the
centering parameter (that is, �k closed to zero). They use a line search to maintain proximity to
the central path. The proximity requirement dictates, implicitly or explicitly, that while condition
(2.9) may be violated, the pairwise products must not be too di�erent from each other. For
example, some algorithms force the iterates to remain in l2-neighborhoods of the central path of
the form

N(�) def= {(x; �; s) | (x; s)¿ 0; ||Xs− �e||26�}: (2.13)

288 F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302

A very interesting algorithm of this type is the Mizuno–Todd–Ye predictor corrector method which
can be described as follows:

predictor–corrector algorithm
Given (x0; �0; s0) ∈N(0:25)
Set k ← 0 and �0 = (x0)Ts0=n;
repeat

Set (x; �; s)← (xk ; �k ; sk) and (�; �; r)← (�k; 0; 0);
Solve (2.10) and set (u; w; v)← (�x;��;�s);

to obtain (�xk ;��k ;�sk);
Choose step length �k as the largest �k ∈ (0; 1] such that:

(x; �; s) + �(u; w; v) ∈N(0:25)
Set (x; �; s)← (x; �; s) + �k(u; w; v) and (�; �; r)← (�k; (1− �k); 0);
Solve (2.10) and set

(xk+1; �k+1; sk+1)← (x; �; s) + (�x;��;�s);
�k+1 ← (xk+1)Tsk+1=n; k ← k + 1;

until some termination test is satis�ed.

It can be proved that the above algorithm has the iteration complexity bound (2.12), the same as
the short-step algorithm de�ned by (2.11). We note that the predictor–corrector method requires the
solution of two linear systems per iteration (one in the predictor step and another one in the corrector
step), while the short-step algorithm requires only the solution of one linear system per iteration.
However, numerical experiments show that the predictor–corrector algorithm is signi�cantly more
e�cient than the short-step algorithm. This is explained by the fact that while with the short-step
algorithm �k decreases by a �xed factor at each step, i.e.,

�k+1 =
(
1− 0:4

n

)
�k; k = 0; 1; 2; : : : (2.14)

the predictor–corrector algorithm, by its adaptive choice of �k , allows �k to decrease faster, especially
close to the solution. Ye et al. [30] proved that the predictor–corrector algorithm is quadratically
convergent in the sense that

�k+16B�2k ; k = 0; 1; 2; : : : (2.15)

for some constant B independent of k. This constant may be large, so that (2.15) ensures a better
decrease of �k that (2.14) only if �k is su�ciently small (speci�cally, �k ¡ (1 − 0:4=n)=B). There
are examples in which quadratic convergence cannot be observed until quite late in the algorithm
— the last few iterations. Even in these examples, the linear decrease factor in �k in early iterations
is much better than (1− 0:4=n), because of the adaptive choice of �k .
Even better reductions of �k in the early iteration can be obtained by considering larger neigh-

borhoods of the central path than the l2-neighborhoods (2.13). The worst-case complexity bounds of
the resulting algorithms deteriorates — O(nL) instead of O(

√
nL) — but the practical performance

is better.
Quadratic convergence, or, more generally, superlinear convergence is also important for the fol-

lowing reason. The condition of the linear systems to be solved at each iteration often worsens
as �k becomes small, and numerical problems are sometimes encountered. Superlinearly convergent

F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302 289

algorithms need to perform only a couple of iterations with these small �k . When �k is small enough,
a projection can be used to identify an exact solution. A �nite-termination strategy can also be im-
plemented by using the Tapia indicators to decide which components of x and s are zero at the
solution [4]. The use of a �nite-termination strategy in conjunction with superlinearly convergent
algorithms for linear programming is somewhat superuous, since the domain range of �k values
for which superlinear convergence is obtained appears to be similar to the range on which �nite
termination strategies are successful. Once the iterates enter this domain, the superlinear method
typically converges in a few steps, and the savings obtained by invoking a �nite termination strategy
are not great.
In the above algorithms we assumed that a starting point satisfying exactly the linear con-

straints and lying in the interior of the region de�ned by the inequality constraints is given. In
practice, however, it may be di�cult to obtain such a starting point, so many e�cient implemen-
tations of interior-point methods use starting points that lie in the interior of the region de�ned
by the inequality constraints but do not necessarily satisfy the equality constraints. Such methods
are called infeasible-interior-point methods, and they are more di�cult to analyze. The �rst global
convergence result for such methods was obtained by Kojima, Megiddo and Mizuno, while the
�rst polynomial complexity result was given by Zhang [32]. The computational complexity of the
infeasible-interior-point algorithms typically is worse than in the feasible case. An advantage is that
these algorithms can solve problems for which no strictly feasible points exist. They also can be
used to detect the infeasibility of certain linear programming problems.
A di�erent way of dealing with infeasible starting points was proposed by Ye et al. [31]. Starting

with a linear programming problem in standard form and with a possibly infeasible starting point
whose x and s components are strictly positive, they construct a homogeneous self-dual linear pro-
gram for which a strictly feasible starting point is readily available. The solution of the original
problem is obtained easily from the solution of the homogeneous program. When the original lin-
ear program is infeasible, this fact can be ascertained easily from the solution of the homogeneous
problem.
The practical performance of a numerical algorithm is explained better by a probabilistic complex-

ity analysis than by a worst-case complexity analysis. For example, the probabilistic computational
complexity of the simplex method is strongly polynomial (that is, a polynomial in the dimension n
of the problem only), which is closer to practical experience with this method than the exponential
complexity of the worst-case analysis (see [3] and the literature cited therein). As mentioned above,
the worst-case complexity of interior-point methods is weakly polynomial, in the sense that the iter-
ation bounds are polynomials in the dimension n and the bitlength of the data L. In [2], it is shown
that from a probabilistic point of view the iteration complexity of a class of interior-point methods
is O(

√
n ln n). Thus the probabilistic complexity of this class on interior-point methods is strongly

polynomial, that is, the complexity depends only on the dimension of the problem and not on the
binary length of the data.
Most interior-point software for linear programming is based on Mehrotra’s predictor–corrector

algorithm [14], often with the higher-order enhancements described in [9]. This approach uses an
adaptive choice of �k , selected by �rst solving for the pure Newton step (that is, setting r = 0 and
� = 0 in (2.10)). If this step makes good progress in reducing �, we choose �k small so that the
step actually taken is quite close to this pure Newton step. Otherwise, we enforce more centering
and calculate a conservative direction by setting �k closer to 1. The perturbation vector rk is chosen

290 F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302

to improve the similarity between system (2.10) and the original system (2:8) that it approximates.
Gondzio’s technique further enhances rk by performing further solves of the system (2.10) with a
variety of right-hand sides, where each solve reuses the factorization of the matrix and is therefore
not too expensive to perform.
To turn this basic algorithmic approach into a useful piece of software, we must address many

issues. These include problem formulation, presolving to reduce the problem size, choice of the step
length, linear algebra techniques for solving (2.10), and user interfaces and input formats.
Possibly, the most interesting issues are associated with the linear algebra. Most codes deal with

a partially eliminated form of (2.10), either eliminating �s to obtain[
0 A

AT −X−1S

] [
��

�x

]
=−

[
0

−X−1(X Se − ��e + r)

]
(2.16)

or eliminating both �s and �x to obtain a system of the form

A(S−1X)AT��= t; (2.17)

to which a sparse Cholesky algorithm is applied. A modi�ed version of the latter form is used when
dense columns are present in A. These columns may be treated as a low-rank update and handled
via the Sherman–Morrison–Woodbury formula or, equivalently, via a Schur complement strategy
applied to a system intermediate between (2.16) and (2.17). In many problems, the matrix in (2.17)
becomes increasingly ill-conditioned as the iterates progress, eventually causing the Cholesky process
to break down as negative pivot elements are encountered. A number of simple (and in some cases
counterintuitive) patches have been proposed for overcoming this di�culty while still producing
useful approximate solutions of (2.17) e�ciently.
Despite many attempts, iterative solvers have not shown much promise as means to solve (2.17),

at least for general linear programs. A possible reason is that, besides its poor conditioning, the
matrix lacks the regular spectral properties of matrices obtained from discretizations of continuous
operators. Some codes do, however, use preconditioned conjugate gradient as an alternative to it-
erative re�nement for improving the accuracy, when the direct approach for solving (2.17) fails to
produce a solution of su�cient accuracy. The preconditioner used in this case is simply the computed
factorization of the matrix A(S−1X)AT.
A number of interior-point linear programming codes are now available, both commercially and

free of charge. Information can be obtained from the World-Wide Web via the URL mentioned
earlier. It is di�cult to make blanket statements about the relative e�ciency of interior-point and
simplex methods for linear programming, since signi�cant improvements to the implementations of
both techniques continue to be made. Interior-point methods tend to be faster on large problems
and can better exploit multiprocessor platforms, because the expensive operations such as Cholesky
factorization of (2.17) can be parallelized to some extent. They are not able to exploit “warm start”
information — a good prior estimate of the solution, for instance, — to the same extent as simplex
methods. For this reason, they are not well suited for use in contexts such as branch-and-bound or
branch-and-cut algorithms for integer programming, which solve many closely related linear pro-
grams.
Several researchers have devised special interior-point algorithms for special cases of (2.1) that

exploit the special properties of these cases in solving the linear systems at each iteration. One
algorithm for network ow problems uses preconditioned conjugate–gradient methods for solving

F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302 291

(2.17), where the preconditioner is built from a spanning tree for the underlying network. For
multicommodity ow problems, there is an algorithm for solving a version of (2.17) in which the
block-diagonal part of the matrix is used to eliminate many of the variables, and a preconditioned
conjugate–gradient method is applied to the remaining Schur complement. Various techniques have
also been proposed for stochastic programming (two-stage linear problems with recourse) that exploit
the problem structure in performing the linear algebra operations.

3. Extensions to convex quadratic programming and linear complementarity

The primal–dual algorithms of the preceding section are readily extended to convex quadratic
programming (QP) and monotone linear complementarity problems (LCP), both classes being gen-
eralizations of linear programming. Indeed, many of the convergence and complexity properties of
primal–dual algorithm were �rst elucidated in the literature with regard to monotone LCP rather than
linear programming.
We state the convex QP as

min
x
cTx + 1

2x
TQx s:t: Ax = b; x¿0; (3.18)

where Q is a positive-semi-de�nite matrix. The monotone LCP is de�ned by square matrices M and
N and a vector q, where M and N satisfy a monotonicity property: all vectors y and z that satisfy
My + Nz = 0 have yTz¿0. This problem requires us to identify vectors y and z such that

My + Nz = q; (y; z)¿0; yTz = 0: (3.19)

With some transformations, we can express the optimality conditions (2:7) for linear program-
ming, and also the optimality conditions for (3.18), as a monotone LCP. Other problems �t under the
LCP umbrella as well, including bimatrix games and equilibrium problems. The central path
for this problem is de�ned by the following system, parametrized as in (2:8) by the positive
scalar �:

My + Nz = q; (3.20a)

YZe = �e; (3.20b)

(y; z)¿ 0 (3.20c)

and a search direction from a point (y; z) satisfying (3.20a) and (3.20c) is obtained by solving a
system of the form[

M N

Z Y

] [
�y

�z

]
=−

[
0

YZe − ��e + r

]
; (3.21)

where � = yTz=n; � ∈ [0; 1], and, as before, r is a perturbation term. The corresponding search
direction system for the quadratic program (3.18) is identical to (2.10) except that the (2; 2) block
in the coe�cient matrix is replaced by Q. The primal–dual algorithmic framework and the many

292 F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302

variations within this framework are identical to the case of linear programming, with the minor
di�erence that the step length should be the same for all variables. (In linear programming, di�erent
step lengths usually are taken for the primal variable x and the dual variables (�; s).)
Complexity results are also similar to those obtained for the corresponding linear programming

algorithm. For an appropriately chosen starting point (y0; z0) with �0 = (y0)Tz0=n, we obtain conver-
gence to a point with �6� in

O
(
n� log

�0
�

)
iterations;

where � = 1
2 , 1, or 2, depending on the algorithm. Fast local convergence results typically require

an additional strict complementarity assumption that is automatically satis�ed in the case of linear
programming. Some authors have proposed superlinear algorithms that do not require strict comple-
mentarity, but these methods require accurate identi�cation of the set of degenerate indices before
the fast convergence becomes e�ective.
The LCP algorithms can, in fact, be extended to a wider class of problems involving the so-called

su�cient matrices. Instead of requiring M and N to satisfy the monotonicity property de�ned above,
we require there to exist a nonnegative constant � such that

yTz¿− 4�
∑

i | yizi¿0
yizi for all y; z with My + Nz = 0:

The complexity estimates for interior-point methods applied to such problems depends on the pa-
rameter �, so that the complexity is not polynomial on the whole class of su�cient matrices. Potra
and Sheng [19] propose a large-step infeasible-interior-point method for solving P∗(�)-matrix linear
complementarity problems with a number of strong properties. The algorithm generates points in a
large neighborhood of an infeasible central path, and each iteration requires only one matrix factor-
ization. If the problem has a solution, the algorithm converges from an arbitrary positive starting
point. The computational complexity of the algorithm depends on the quality of the starting point.
If a well centered starting point is feasible or close to being feasible, it has O((1+�)

√
nL)-iteration

complexity. In cases in which such a starting point is not readily available, a modi�ed version
of the algorithm terminates in O((1 + �)2nL) steps either by �nding a solution or by determin-
ing that the problem is not solvable. Finally, high-order local convergence is proved for problems
having a strictly complementary solution. We note that while the properties of the algorithm (e.g.
computational complexity) depend on �, the algorithm itself does not.
Primal–dual methods have been applied to many practical applications of (3.18) and (3.19), in-

cluding portfolio optimization, optimal control, and ‘1 regression (see [28] for references).
The interior-point approach has a number of advantages over the active-set approach from a

computational point of view. It is di�cult for an active-set algorithm to exploit any structure inherent
in both Q and A without redesigning most of its complex linear algebra operations: the operations of
adding a constraint to the active set, deleting a constraint, evaluating Lagrange multiplier estimates,
calculating the search direction, and so on. In the interior-point approach, on the other hand, the
only complex linear algebra operation is solution of the linear system (3.21) — and this operation,
though expensive, is relatively straightforward. Since the structure and dimension of the linear system
remain the same at all iterations, the routines for solving the linear systems can exploit fully the
properties of the systems arising from each problem class or instance. In fact, the algorithm can

F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302 293

be implemented to high e�ciency using an object-oriented approach, in which the implementer of
each new problem class needs to supply only code for the factorization and solution of the systems
(3.21), optimized for the structure of the new class, along with a number of simple operations such
as inner-product calculations. Code that implements upper-level decisions (choice of parameter �,
vector r, steplength �) remains e�cient across the gamut of applications of (3.19) and can simply
be reused by all applications.
We note, however, that active-set methods would still require much less execution time than

interior-point methods in many contexts, especially when “warm start” information is available and
when the problem is generic enough that not much bene�t is gained by exploiting its structure.
The extension of primal–dual algorithms from linear programming to convex QP is so straight-

forward that a number of the interior-point linear programming codes have recently been extended
to handle problems in the class (3.18) as well. In their linear algebra calculations, most of these
codes treat both Q and A as general sparse matrices, and hence are e�cient across a wide range
of applications. By contrast, implementations of active-set methods for (3.18) that are capable of
handling even moderately sized problems have not been widely available.

4. Semi-de�nite programming

As mentioned in the introduction, semi-de�nite programming (SDP) has been one of the most
active areas of optimization research in the 1990s. SDP consists in minimizing a linear functional
of a matrix subject to linear equality and inequality constraints, where the inequalities include mem-
bership of the cone of positive-semi-de�nite matrices. SDP is a broad paradigm; it includes as
special cases linear programming, (linearly constrained) QP, quadratically constrained QP and other
optimization problems (see [16,25]). Semi-de�nite programming has numerous applications in such
diverse areas as optimal control, combinatorial optimization, structural optimization, pattern recogni-
tion, trace factor analysis in statistics, matrix completions, etc. See the excellent survey paper [25]
for some instances. It was only after the advent of interior-point methods, however, that e�cient
solution methods for SDP problems were available. During the past few years an impressive num-
ber of interior-point methods for SDP have been proposed. Some of them have been successfully
implemented and used to solve important application problems. However the theory and practice of
interior-point methods for SDP has not yet reached the level of maturity of interior-point methods
for LP, QP, and LCP. One reason that the study of interior-point methods for SDP is extremely
important is that while LP, QP, and LCP can also be solved by other methods (e.g. the simplex
method or Lemke’s method), interior-point methods appear to be the only e�cient methods for
solving general SDP problems presently known.
To de�ne the SDP, we introduce the notation SRn×n to represent the set of n × n symmetric

matrices, and the inner product X • Z of two matrices in this set, which is de�ned as

X • Z =
n∑
i=1

n∑
j=1

xijzij:

The SDP in standard form is then

min
X
C • X s:t: X ¡ 0; Ai • X = bi; i = 1; 2; : : : ; m; (4.22)

294 F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302

where X ∈SRn×n, and its associated dual problem is

max
y; S

bT� s:t:
m∑
i=1

�iAi + S = C; S ¡ 0; (4.23)

where S ∈SRn×n and � ∈ Rm.
In what follows, we will consider only primal–dual interior-point methods that simultaneously

solve the primal and dual problems. Points on the central path for (4.22), (4.23) are de�ned by the
following parametrized system:

m∑
i=1

�iAi + S = C; (4.24a)

Ai • X = bi; i = 1; 2; : : : ; m; (4.24b)

XS = �I; (4.24c)

X ¡ 0; S ¡ 0; (4.24d)

where as usual � is the positive parameter. Unlike the corresponding equations for linear program-
ming, system (4.24a), (4.24b), (4.24c) is not quite “square”, since the variables reside in the space
SRn×n ×Rm ×SRn×n while the range space of the equations is SRn×n ×Rm ×Rn×n. In particular,
the product of two symmetric matrices (see (4.24c)) is not necessarily symmetric. Before New-
ton’s method can be applied the domain and range have to be reconciled. The various primal–dual
algorithms di�er partly in the manner in which they achieve this reconciliation.
The paper of Todd [24] is witness to the intensity of research in SDP interior-point methods: It

describes 20 techniques for obtaining search directions for SDP, among the most notable being the
following:

(1) the AHO search direction proposed by Alizadeh, Haeberly and Overton;
(2) the KSH=HRVW=M search direction independently proposed by Kojima, Shindoh and Hara;

Helmberg, Rendl, Vanderbei and Wolkowicz; and later rediscovered by Monteiro;
(3) the NT direction introduced by Nesterov and Todd.

Most of the search directions for SDP are obtained by replacing Eq. (4.24c) by a “symmetric”
one whose range lies in SRn×n

�(X; S) = 0: (4.25)

Primal–dual methods are then derived as perturbed Newton’s methods applied to (4.24a), (4.24b),
(4.25). Examples of symmetrizations (4.25) include the Monteiro–Zhang family [15], in which

�(X; S) = HP(XS);

where

HP(M) = 1
2 [PMP

−1 + (PMP−1)T]

(with a given a nonsingular matrix P ∈ Rn×n) is the symmetrization operator of Zhang. The search
directions (1)–(3) mentioned above are obtained by taking P equal to I; S1=2, and [S1=2(S1=2X S1=2)−1=2

S1=2]1=2, respectively.

F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302 295

Even if the SDP has integer data, its solution cannot in general be expressed in terms of rational
numbers, so that the exact solution cannot be obtained in a �nite number of bit operations. We say
that an interior-point method for SDP “is polynomial” if there is a positive constant ! such that
the distance to optimum (or the duality gap) is reduced by a factor of 2−O(L) in at most O(n!L)
iterations. In this case, we will say that the interior-point method has O(n!L) iteration complexity.
The iteration complexity appears to be dependent on the choice of search direction. The best results
obtained to date show that some feasible interior-point methods based on small neighborhoods for
the central path have O(

√
nL) iteration complexity for all three search directions mentioned above.

Monteiro and Zhang [15] proved that algorithms acting in large neighborhoods of the central
path have O(nL) iteration complexity if based on the NT direction and O(n3=2L) if based on the
KSH=HRVW=M search direction. They also gave iteration complexity bounds (which depend on the
condition number of matrices Jx and Js de�ned by PTP = X−1=2JxX 1=2 = S−1=2JsS1=2) for algorithms
acting in the large neighborhood that are based on the MZ∗ family of directions. This family is a
subclass of the MZ family that contains the NT and the KSH=HRVW=M directions but not the AHO
direction. So far, no complexity results are known for algorithms based on the large neighborhood
and the AHO direction.
The analysis of infeasible interior-point algorithms for SDP is considerably more di�cult than that

of their feasible counterparts. The �rst complexity result in this respect was obtained by Kojima,
Shindoh, and Hara, who showed that an infeasible-interior-point potential reduction method for SDP
has O(n5=2L) iteration complexity. Subsequently, Zhang analyzed an infeasible-interior-point method,
based on the KSH=HRVW=M search direction, that has O(n2L) iteration complexity when acting
in the semi-large neighborhood and O(n5=2L) iteration complexity in the large neighborhood of the
central path. The analysis of the Mizuno–Todd–Ye predictor–corrector method for infeasible starting
points was performed independently by Kojima, Shida and Shindoh and Potra and Sheng. The
analysis in the latter paper shows that the iteration complexity depends on the quality of the starting
point. If the problem has a solution, then the algorithm is globally convergent. If the starting point is
feasible or close to feasible, the algorithms �nds an optimal solution in at most O(

√
nL) iterations.

If the starting point is large enough according to some speci�c criteria, then the algorithm terminates
in at most O(nL) steps either by �nding a strictly complementary solution or by determining that
the primal–dual problem has no solution of norm less than a speci�ed size.
Superlinear convergence is especially important for SDP since no �nite termination schemes exist

for such problems. As predicted by theory and con�rmed by numerical experiments, the condition
number of the linear systems de�ning the search directions increases like 1=�, so that the respective
systems become quite ill conditioned as we approach the solution. As we observed in the case
of linear programming, an interior-point method that is not superlinearly convergent is unlikely to
obtain high accuracy in practice. On the other hand, superlinearly convergent interior-point methods
often achieve good accuracy (duality measure of 10−10 or better) in substantially fewer iterations
than indicated by the worse-case global linear convergence rate indicated by the analysis.
The local convergence analysis for interior-point algorithms for SDP is much more challenging

than for linear programming. Kojima, Shida and Shindoh [12] established superlinear convergence of
the Mizuno–Todd–Ye predictor–corrector algorithm based on the KSH=HRVW=M search direction
under the following three assumptions:

(A) SDP has a strictly complementary solution;

296 F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302

(B) SDP is nondegenerate in the sense that the Jacobian matrix of its KKT system is nonsingular;
(C) the iterates converge tangentially to the central path in the sense that the size of the neighbor-

hood containing the iterates must approach zero namely,

lim
k→∞
||(X k)1=2Sk(X k)1=2 − (X k • Sk=n)I ||F=(X k • Sk=n) = 0:

Assumptions (B) and (C) are quite restrictive; similar conditions are not required for the superlinear
convergence of interior-point methods for linear programming or QP. Potra and Sheng [20] proved
superlinear convergence of the same algorithm under assumption (A) together with the following
condition:

(D) lim
k→∞

X kSk=
√
X k • Sk = 0;

which is clearly weaker than (C). Of course both (C) and (D) can be enforced by the algorithm,
but the practical e�ciency of such an approach is questionable. From a theoretical point of view,
however, it is known from [20] that a modi�ed version of the algorithm of [12] that uses several
corrector steps in order to enforce (C) has polynomial complexity and is superlinearly convergent
under assumption (A) only. It is well known that assumption (A) is necessary for superlinear
convergence of interior-point methods that take Newton-like steps even in the QP case. (However,
there are methods for convex QP and monotone LCP that attain superlinear convergence by making
explicit guesses of the set of degenerate indices.)
Kojima et al. [12] also gave an example suggesting that interior-point algorithms for SDP based

on the KSH=HRVW=M search direction are unlikely to be superlinearly convergent without imposing
a condition like (C) or (D). In a later paper they showed that a predictor–corrector algorithm using
the AHO direction is quadratically convergent under assumptions (A) and (B). They also proved
that the algorithm is globally convergent, but no polynomial complexity bounds have yet been found.
It appears that the use of the AHO direction in the corrector step has a strong e�ect on centering.
This property is exploited in a recent paper of Ji et al. [10] who proved that the Mizuno–Todd–
Ye algorithm, based on the MZ-family is superlinear under assumptions (A) and (D). They also
showed that under assumptions (A) and (B) the algorithm has Q-order 1.5 if scaling matrices in
the corrector step have bounded condition number, and Q-order 2 if the scaling matrices in both
predictor and corrector step have bounded condition number. In particular, these results apply for
the AHO direction, where the scaling matrix is the identity matrix. References to the results cited
above can be found in [10].
Over the past several years we have witnessed an intense research e�ort on the use of SDP for

�nding approximate solution of (NP-hard) combinatorial optimization problems. In what follows,
we will describe the technique of Goemans and Williamson, which yields an approximate solution
whose value is within 13% of optimality for the MAX CUT problem [7].
In MAX CUT, we are presented with an undirected graph with N whose edges wij have nonneg-

ative weights. The problem is choose a subset S⊂{1; 2; : : : ; N} so that the sum of weights of the
edges that cross from S to its complement is minimized. In other words, we aim to choose S to
maximize the objective

w(S) def=
∑

i∈S; j 6∈S

wij:

F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302 297

This problem can be restated as an integer quadratic program by introducing variables yi; i =
1; 2; : : : ; N , such that yi = 1 for i ∈S and yi =−1 for i 6∈S. We then have

max
y

1
2

∑
i¡j

wij(1− yiyj) s:t: yi ∈ {−1; 1} for all i = 1; 2; : : : ; N: (4.26)

This problem is NP-complete. Goemans and Williamson replace the variables yi ∈ R by vectors
vi ∈ RN and consider instead the problem

max
v1 ;v2 ;:::;vN

1
2

∑
i¡j

wij(1− vTi vj) s:t: ||vi||= 1 for all i = 1; 2; : : : ; N: (4.27)

This problem is a relaxation of (4.26) because any feasible point y for (4.26) corresponds to a
feasible point

vi = (yi; 0; 0; : : : ; 0)T; i = 1; 2; : : : ; N

for (4.27). Problem (4.27) can be formulated as an SDP by changing variables v1; v2; : : : ; vN to a
matrix Y ∈ RN×N , such that

Y = V TV where V = [v1; v2; : : : ; vN]:

The constraints ||vi||= 1 can be expressed simply as Yii = 1, and since Y = V TV , we must have Y
semi-de�nite. The transformed version of (4.27) is then

max
1
2

∑
i¡j

wij(1− Yij) s:t: Yii = 1; i = 1; 2; : : : ; N and Y¡0;

which has the form (4.22) for appropriate de�nitions of C and Ai; i=1; 2; : : : ; N . We can recover V
from Y by performing a Cholesky factorization. The �nal step of recovering an approximate solution
to the original problem (4.26) is performed by choosing a random vector r ∈ RN , and setting

yi =

{
1 if rTvi ¿ 0;

−1 if rTvi60:

A fairly simple geometric argument shows that the expected value of the solution so obtained has
objective value at least 0.87856 of the optimal solution to (4.26).
Similar relaxations have been obtained for many other combinatorial problems, showing that is

possible to �nd good approximate solutions to many NP-complete problems by using polynomial
algorithms. Such relaxations are also useful if we seek exact solutions of the combinatorial problem
by means of a branch-and-bound or branch-and-cut strategy. Relaxations can be solved at each node
of the tree (in which some of the degrees of freedom are eliminated and some additional constraints
are introduced) to obtain both a bound on the optimal solution and in some cases a candidate feasible
solution for the original problem. Since the relaxations to be solved at adjacent nodes of the tree are
similar, it is desirable to use solution information at one node to “warm start” the SDP algorithm
at a child node.

5. Convex programming

One of the most surprising results in interior-point methods is the fact that interior-point algo-
rithms from LP can be extended to general convex programming problems, at least in a theoretical

298 F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302

sense. The key to such an extension was provided in [16]. These authors explored the properties
of self-concordant functions, and described techniques in which the inequality constraints in a con-
vex programming problem are replaced by self-concordant barrier terms in the objective function.
They derived polynomial algorithms by applying Newton-like methods to the resulting parametrized
reformulations.
The fundamental property of self-concordant functions is that their third derivative can be bounded

by some expression involving their second derivative at each point in their domain. This property
implies that the second derivative does not uctuate too rapidly in a relative sense, so that the function
does not deviate too much from the second-order approximation on which Newton’s method is based.
Hence, we can expect Newton’s method to perform reasonably well on such a function.
Given a �nite-dimensional real vector space V, an open, nonempty convex set S⊂V, and a

closed convex set T⊂V with nonempty interior, we have the following formal de�nition.

De�nition 1. The function F :S → R is self-concordant if it is convex and if the following in-
equality holds for all x ∈S and all h ∈V:

|D3F(x)[h; h; h]|62(D2F(x)[h; h])3=2; (5.28)

where DkF[h1; h2; : : : ; hk] denotes the kth di�erential of F along the directions h1; h2; : : : ; hk .
F is called strongly self-concordant if F(xi) → ∞ for all sequences xi ∈ S that converge to a

point on the boundary of S.
F is a #-self-concordant barrier for T if it is a strongly self-concordant function for intT, and

the parameter

def= sup
x∈intT

F ′(x)T[F ′′(x)]−1F ′(x) (5.29)

is �nite.

Note that the exponent 32 on the right-hand side of (5.28) makes the condition independent of the
scaling of the direction h. It is shown in [16, Corollary 2:3:3], that if T 6= V, then the parameter
is no smaller than 1.
It is easy to show that log-barrier function of Section 2 is an n-self-concordant barrier for the

positive orthant Rn+ if we take

V= Rn; T= Rn+; F(x) =−
n∑
i=1

log xi:

where Rn+ denotes the positive orthant. Another interesting case is the second-order cone (or “ice-cream
cone”), for which we have

V= Rn+1; T= {(x; t) | ||x||26t}; F(x; t) =−log(t2 − ||x||2); (5.30)

where t ∈R and x∈Rn. In this case, F is a two-self-concordant barrier. Second-order cone program-
ming consists in minimizing a linear function subject to linear equality constraints together with
inequality constraints induced by second-order cones. Convex quadratically constrained quadratic
programs can be posed in this form, along with sum-of-norms problems and many other applica-
tions.

F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302 299

A third important case is the cone of positive-semi-de�nite matrices, for which we have

V= n× n symmetric matrices;
T= n× n symmetric positive-semi-de�nite matrices;
F(X) =−log det X

for which F is an n-self-concordant barrier. This barrier function can be used to model the constraint
X ¡ 0 in (4.22).
Self-concordant barrier functions allow us to generalize the primal barrier method of Section 2 to

problems of the form

min〈c; x〉 s:t: Ax = b; x ∈T; (5.31)

where T is a closed convex set, 〈c; x〉 denotes a linear functional on the underlying vector space
V, and A is a linear operator. Similarly to (2.2), we de�ne the barrier subproblem to be

min
x
f(x; �) def=

1
�
〈c; x〉+ F(x) s:t: Ax = b; (5.32)

where F(x) is a self-concordant barrier and �¿ 0 is the barrier parameter. Note that by the De�nition
1, f(x; �) is also a strongly self-concordant function. The primal barrier algorithm for (5.31) based
on (5.32) is as follows:

primal barrier algorithm
Given x0 ∈ intT and �0¿ 0;
Set k ← 0;
repeat

Obtain xk+1 ∈ intT by performing one or more projected Newton steps
for f(·; �k), starting at x = xk ;

Choose �k+1 ∈ (0; �k);
until some termination test is satis�ed.

As in Sections 2–4, the worst-case complexity of algorithms of this type depends on the parameter
associated with F but not on any properties of the data that de�nes the problem instance. For
example, we can de�ne a short-step method in which a single full Newton step is taken for each
value of k, and � is decreased according to

�k+1 = �k

/(
1 +

1

8
√
#

)
:

Given a starting point with appropriate properties, we obtain an iterate xk whose objective 〈c; xk〉 is
within � of the optimum in

O
(√

log
#�0
�

)
iterations:

Long-step variants are discussed in [16]. The practical behavior of the methods does, of course,
depend strongly on the properties of the particular problem instance.

300 F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302

The primal–dual algorithms of Section 2 can also be extended to more general problems by means
of the theory of self-scaled cones developed in [17,18]. The basic problem considered is the conic
programming problem

min〈c; x〉 s:t: Ax = b; x ∈ K; (5.33)

where K ⊂Rn is a closed convex cone, that is, a closed convex set for which x ∈ K ⇒ tx ∈ K for
all nonnegative scalars t, and A denotes a linear operator from Rn to Rm. The dual cone for K is
denoted by K∗ and de�ned as

K∗ def={s | 〈s; x〉¿0 for all x ∈ K}
and we can write the dual instance of (5.33) as

max〈b; �〉 s:t: A∗�+ s= c; s ∈ K∗; (5.34)

where A∗ denotes the adjoint of A. The duality relationships between (5.33) and (5.34) are more
complex than in linear programming, but if either problem has a feasible point that lies in the interior
of K or K∗, respectively, the strong duality property holds. This property is that when the optimal
value of either (5.33) or (5.34) is �nite, then both problems have �nite optimal values, and these
values are the same.
K is a self-scaled cone when its interior intK is the domain of a self-concordant barrier function F

with certain strong properties that allow us to de�ne algorithms in which the primal and dual variables
are treated in a perfectly symmetric fashion and play interchangeable roles. The full elucidation of
these properties is quite complicated. It su�ces to note here that the three cones mentioned above
– the positive orthant Rn+, the second-order cone (5.30), and the cone of positive-semi-de�nite
symmetric matrices – are the most interesting self-scaled cones, and their associated barrier functions
are the logarithmic functions mentioned above.
To build algorithms from the properties of self-scaled cones and their barrier functions, the

Nesterov–Todd theory de�nes a scaling point for a given pair x ∈ intK; s ∈ intK∗ to be the
unique point w such that H (w)x = s, where H (·) is the Hessian of the barrier function. In the case
of linear programming, it is easy to verify that w is the vector in Rn whose elements are

√
xi=si.

The Nesterov–Todd search directions are obtained as projected steepest descent direction for the
primal and dual barrier subproblems (that is, (5.32) and its dual counterpart), where a weighted
inner product involving the matrix H (w) is used to de�ne the projections onto the spaces de�ned
by the linear constraints Ax = b and A∗� + s = c, respectively. The resulting directions satisfy the
following linear system:

0 A 0

A∗ 0 I

0 H (w) I

��

�x
�s

=−

0

0

s+ ��3F(x)

 ; (5.35)

where � = 〈x; s〉=#. (The correspondence with (2.10) is complete if we choose the perturbation
term to be r = 0.) By choosing the starting point appropriately, and designing schemes to choose
the parameters � and step lengths along these directions, we obtain polynomial algorithms for this
general setting. The NT direction in the previous section is the specialization of the above search
directions for semi-de�nite programming.

F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302 301

6. Conclusions

Interior-point methods remain an active and fruitful area of research, although the frenetic pace
that characterized the area has slowed in recent years. Interior-point codes for linear programming
codes have become mainstream and continue to undergo development, although the competition from
the simplex method is sti�. Semi-de�nite programming has proved to be an area of major impact.
Applications to quadratic programming show considerable promise, because of the superior ability of
the interior-point approach to exploit problem structure e�ciently. The inuence on nonlinear pro-
gramming theory and practice has yet to be determined, even though signi�cant research has already
been devoted to this topic. Use of the interior-point approach in decomposition methods appears
promising, though no rigorous comparative studies with alternative approaches have been performed.
Applications to integer programming problems have been tried by a number of researchers, but the
interior-point approach is hamstrung here by competition from the simplex method with its superior
warm-start capabilities.

Acknowledgements

This work was supported in part by NSF under grant DMS-9996154 and by the Mathematical,
Information, and Computational Sciences Division subprogram of the O�ce of Advanced Scienti�c
Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.
We are grateful to an anonymous referee for a speedy but thorough review.

References

[1] K.M. Anstreicher, Linear programming in O([n3=ln n]L) operations, CORE Discussion Paper 9746, Universit�e
Catholique de Louvain, Louvain-la-Neuve, Belgium, January 1999, SIAM J. Optim., in preparation.

[2] K.M. Anstreicher, J. Ji, F.A. Potra, Y. Ye, Average performance of a self-dual interior-point algorithm for linear
programming, in: P. Pardalos (Ed.), Complexity in Numerical Optimization, World Scienti�c, Singapore, 1993, pp.
1–15.

[3] K.H. Borgwardt, The Simplex Method: A Probabilistic Analysis, Springer, Berlin, 1987.
[4] A.S. El-Bakry, R.A. Tapia, Y. Zhang, A study of indicators for identifying zero variables in interior-point methods,

SIAM Rev. 36 (1) (1994) 45–72.
[5] A.V. Fiacco, G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Wiley,

New York, 1968 (reprinted by SIAM, Philadelphia, PA, 1990).
[6] R.M. Freund, S. Mizuno, Interior point methods: current status and future directions, Optima 51 (1996) 1–9.
[7] M.X. Goemans, D.P. Williamson, Improved approximation algorithms for maximum cut and satis�ability problems

using semide�nite programming, J. Assoc. Comput. Mach. 42 (6) (1995) 1115–1145.
[8] D. Goldfarb, M.J. Todd, Linear programming, in: G.L. Nemhauser, A.H.G. Rinnooy Kan, M.J. Todd (Eds.),

Optimization, North-Holland, Amsterdam, 1989, pp. 73–170.
[9] J. Gondzio, Multiple centrality corrections in a primal–dual method for linear programming, Comput. Optim. Appl.

6 (1996) 137–156.
[10] J. Ji, F.A. Potra, R. Sheng, On the local convergence of a predictor–corrector method for semide�nite programming,

SIAM J. Optim. 10 (1999) 195–210.
[11] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373–395.
[12] M. Kojima, M. Shida, S. Shindoh, Local convergence of predictor–corrector infeasible-interior-point algorithms for

SDPs and SDLCPs, Math. Programming, Ser. A 80 (2) (1998) 129–160.

302 F.A. Potra, S.J. Wright / Journal of Computational and Applied Mathematics 124 (2000) 281–302

[13] N. Megiddo, Pathways to the optimal set in linear programming, in: N. Megiddo (Eds.), Progress in Mathematical
Programming: Interior-Point and Related Methods Springer, New York, 1989, pp. 131–158 (Chapter 8).

[14] S. Mehrotra, On the implementation of a primal–dual interior point method, SIAM J. Optim. 2 (1992) 575–601.
[15] R.D.C. Monteiro, Y. Zhang, A uni�ed analysis for a class of long-step primal–dual path-following interior-point

algorithms for semide�nite programming, Math. Programming Ser. A 81 (3) (1998) 281–299.
[16] Yu.E. Nesterov, A.S. Nemirovskii, Interior Point Polynomial Methods in Convex Programming: Theory and

Applications, SIAM, Philadelphia, PA, 1994.
[17] Yu.E. Nesterov, M.J. Todd, Self-scaled barriers and interior-point methods for convex programming, Math. Oper.

Res. 22 (1997) 1–42.
[18] Yu.E. Nesterov, M.J. Todd, Primal–dual interior-point methods for self-scaled cones, SIAM J. Optim. 8 (1998)

324–362.
[19] F.A. Potra, R. Sheng, A large-step infeasible-interior-point method for the P∗-matrix LCP, SIAM J. Optim. 7 (2)

(1997) 318–335.
[20] F.A. Potra, R. Sheng, Superlinear convergence of interior-point algorithms for semide�nite programming, J. Optim.

Theory Appl. 99 (1) (1998) 103–119.
[21] J. Renegar, A polynomial-time algorithm, based on Newton’s method, for linear programming, Math. Programming

40 (1988) 59–93.
[22] J. Renegar, A mathematical view of interior-point methods in convex optimization, unpublished notes, June 1999.
[23] C. Roos, J.-Ph. Vial, T. Terlaky, Theory and Algorithms for Linear Optimization: An Interior Point Approach,

Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley, New York, 1997.
[24] M.J. Todd, A study of search directions in primal–dual interior-point methods for semide�nite programming,

Technical Report, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY, February
1999.

[25] L. Vandenberghe, S. Boyd, Semide�nite programming, SIAM Rev. 38 (1) (1996) 49–95.
[26] M.H. Wright, Interior methods for constrained optimization, in: Acta Numer. 1992, Cambridge University Press,

Cambridge, 1992, pp. 341–407.
[27] S.J. Wright, Primal–Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1997.
[28] S.J. Wright, Recent developments in interior-point methods, preprint ANL=MCS-P783-0999, Mathematics and

Computer Science Division, Argonne National Laboratory, Argonne, IL, September 1999.
[29] Y. Ye, Interior Point Algorithms: Theory and Analysis, Wiley-Interscience Series in Discrete Mathematics and

Optimization, Wiley, New York, 1997.
[30] Y. Ye, O. G�uler, R.A. Tapia, Y. Zhang, A quadratically convergent O(

√
nL)-iteration algorithm for linear

programming, Math. Programming Ser. A 59 (1993) 151–162.
[31] Y. Ye, M.J. Todd, S. Mizuno, An O(

√
nL)-iteration homogeneous and self-dual linear programming algorithm, Math.

Oper. Res. 19 (1994) 53–67.
[32] Y. Zhang, On the convergence of a class of infeasible-interior-point methods for the horizontal linear complementarity

problem, SIAM J. Optim. 4 (1994) 208–227.

