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It is the object of the present note to give a brief and transparent 
proof of the following generalization of the classical Picard-Banach con­
traction principle in its quantitative form: 

Theorem l. Let X be a complete metric space, M a bounded subset 
of X, T a mapping of M into M. Suppose that there exists a monotone 
nondecreasing function 1p(r) for r> 0, with 1p continuous on the right, such 
that 1p(r)<r for all r>O, while for all x and y in M, 

d(Tx, Ty) <;1p(d(x, y}}, 

(where d is the distance function on X). 
Then: For each xo in M, Tnxo converges to an element~ of X, independent 

of xo, and 

where do is the diameter of M, 1pn is the n-th iterate of 1p, and 

For the classical Picard-Banach theorem, 1p(r)=1Xr with IX<l. We shall 
give sharper specializations of Theorem l below, as well as a discussion 
of its relation to other generalizations of the contraction principle in the 
literature. 

We emphasize explicitly the importance of the explicit estimate given 
in Theorem l for the error term, since it is the explicit control over the 
error term in the Picard theorem which contributes so much to its wide­
spread usefulness. 

Proof of Theorem l. For a fixed x0 in M, let 

If do is the diameter of M, 
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while by hypothesis, 

d(xf, xk) = d(TXf-1, Txk-1) < "P(d(XJ-1, X1c-1)) 

for all j, k-;;;. l. 
We set 

Then 

by the monotonicity of 1p, i.e. 

An<"fJ(An-1), n-;;;.l. 

Iterating and applying the monotonicity of 1p, we see that 

If dn="fJn(do), we note that 

Hence dn -+ d00 for some d00 > 0. By the right continuity of 1p, 

and hence 

Since 1p(r) < r for r > 0, it follows that doo = 0, and hence that An -+ 0, i.e. 
{xn} is a Cauchy sequence in X and hence converges to an element ~ 
of the complete metric space X. 

Finally, if yo is another point of M, Yn=T11 yo, then by the same argu­
ment Yn -+ ~1 for an element ~1 of X. Then 

q.e.d. 

Corollary to Theorem 1. Under the hypotheses of Theorem 1, T 
can be extended in one and only one way to a continuous mapping of the 
closure of Min X into itself, and ~is the unique fixed point of this extended 
mapping. 

We give some applications of Theorem 1 under variant hypotheses. 

Theorem 2. Let X be a complete metric space, M .a bounded subset 
of X with d1:ameter do. Suppose that T is a mapping of M into M and that 
for each s-;;;.0, there exists <l>(s) with O.;;;;<l>(s)<s for s>O such that for all x 
andy in M, 

d(Tx, Ty)<<l>(d(x, y)). 
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Suppose further that on each compact subinterval [p, do] of [0, do] (/1>0), 
the function s-1 $(s) is uniformly bounded by a constant 0(/1) < 1. 

Then: 

(a) For each Xo in M, the sequence Xn=Tnxo converges in X to a point~ 
independent of the choice of xo. 

(b) Let tp(r) for r > 0 be defined by 

Then for each n;;;. I, 

where dn -?-- 0 as n -?-- + oo. 

Proof of Theorem 2. It suffices to show that the hypotheses of 
Theorem I are satisfied for the given function tp(r). 

The function 
tpo(t) = sups.;;;;t $(s) 

is monotone non -decreasing in t, so that 

is obviously both monotone non-decreasing and continuous from the right. 
Moreover, $(r)<;tp(r) for each r>O, so that the inequality 

d(Tx, Ty) <;tp(d(x, y)) 

holds for all x andy in M. It suffices therefore to show that for all r>O, 
tp(r)<r. 

Let r>O be given, and choose p with 0</J<r. For s.;;;p, we know that 
$( s) < s < p, while by hypothesis there exists a constant 0(/1) < 1 such that 
for all s;;;.p, 

$(s) < 0(/J)s. 

Hence for t>r, 
tpo(t)=sups.;;;;t$(s)< max (/1, 0(/J)t). 

Hence 

q.e.d. 
As a specialization of Theorem 2, we have the following: 

Theorem 3. (RAKOTCH [15]) Let X be a complete metric space, M 
a subset of X, T a mapping of Minto M. Suppose that for each s>O there 
exists tp(s)<s such that for x and y in M with xi=y, 

d(Tx, Ty) < tp(d(x, y)). 
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Suppose further that s-1 '!fJ(s) is non-increasing ins for s>O. Then for each 
x0 in M, Tn xo converges in X. 

Proof of Theorem 3. Since s-l'!fJ(s) is less than l for each s>O and 
is non-increasing, it is bounded by a constant (J(f3) < l on each interval 
of the form [{3, + oo] with f3 > 0. Hence, to apply Theorem 2, it suffices 
to show that each point Xo of M is contained in a bounded subset Mo 
of M invariant under T, i.e. that the orbit of each point xo under T is 
bounded. This, however, follows from the following more general result: 

Theorem 4. Let M be a metric space, T a mapping of Minto M such 
that there exists a function '!fJ with '!fJ( s) < s for each s > 0 such that for all x 
and y in M with xc/=y, 

d(Tx, Ty) <'!fJ(d(x, y)). 

Suppose that x0 is a point of M, and that there exists a constant R > 0 
such that for r>R, 

r- '!fJ(r) > 2d(xo, Txo). 

Then the orbit of xo under T is a bounded subset of M of diameter at 
most R. 

Proof of Theorem 4. It suffices to show that for each n> l, 

d(Tnxo, xo) <;R. 

Indeed, this last inequality shows that the orbit of x0 is bounded, and 
since the hypothesis of the Theorem is invariant if one replaces x0 by x1 

for any j > l, it will also follow that for 0 <; j < k, 

For each n> l, we have 

d(Tnxo, xo)<d(Tnxo, Tn+lxo)+d(Tn+lx0 , Txo)+d(Txo, xo)< 

<;2d(xo, Txo)+'!fJ(d(xo, Tnxo)). 

Hence 
d(xo, Tnx0 )-'!jJ(d(xo, Tnx0 ))<;2d(xo, Tx0 ), 

and it follows that d(xo, Tn x0 ) < R. q.e.d. 
Another consequence of Theorem 2 is the following result of a type 

announced recently by BoYD and WONG [1]: 

Theorem 5. Let X be a complete metric space, M a subset of X, T a 
mapping of Minto M such that there exists a function '!fJ(r) for r>O with 
'!fJ(S)<s and '!fJ(s) upper semi-continuous ins such that for all x andy in M 
with xc/=y, 

d(Tx, Ty) <'!fJ(d(x, y)). 
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Let x0 be a point of M, and suppose that there exists an R> 0 such that 
for all r>R, r-'ljl(r)>2d(xo, Txo). 

Then: Tn x0 converges in X as n --;.. + oo. 
Theorem 5 follows obviously from Theorems 2 and 4, since s-1 'IJ'(s) 

attains its upper bound on each compact subinterval [p, do] with P > 0. 

Remarks. (1) Theorem 1 and its proof is a specialization on the 
qualitative level of a mode of argument applied in the much more general 
context of pseudo-metric spaces by Kantorovich, Schroder, and others. 
(See KANTOROVICH [11], ScHRODER [17], [18], CoLLATZ [7], WouK [19], 
Pseudo-metric spaces have a "metric" taking values in a cone in a partially 
ordered linear space.) 

(2). Forms of the iteration method which work for arbitrary non­
expansive operators in Hilbert space and certain other Banach spaces 
have been treated in BROWDER (2], [3], [4], BROWDER-PETRYSHYN [5], 
[6], PETRYSHYN [14], and 0PIA.L [13]. (For the compact and weakly 
continuous mappings in this class, see also KRASNOSELSKI [12] and 
ScHAEFER [16]). Results about iterates for contractive mappings have 
been considered in a number of papers by EDELSTEIN [8], [9], [10]. 

In conclusion, we note that a slightly sharper form of Theorem 2 holds 
when X is a Banach space. 

Theorem 6. Let X be a Banach space, M a bounded convex subset 
of X, T a mapping of Minto M. Suppose that for each s>O, there exists 
a least constant 'IJ'(s)<s such that if d(x, y).;;.s, then d(Tx, Ty)<'IJ'(s). Then: 

(a) For each Xo in M, the sequence Tnxo converges to an element ~ of X. 

(b) For each n;;. 0, 

as n --;.. + oo, where do is the diameter of M. 

Proof of Theorem 6. For each x andy of M with xt=y, we obvi-
ously have 

d(Tx, Ty) <. 'lf'(d(x, y)), 

and moreover 'IJ'(r) is monotone non-decreasing in r. Hence, to apply 
Theorem 1 to obtain the conclusion of Theorem 6, it suffices to prove 
that the function 'IJ'(r) is continuous from the right. 

Let s>O be fixed, and let t>s. Ifx andy are points of M with d(x, y)=t, 
it follows since M is convex that we can choose points X1 and Yl of M 
on the segment joining x to y such that the following conditions hold: 

d(x, XI)=!(t-s), d(x1, YI)=s, d(y1, y)=!(t-s). 

Since T is a non-expansive mapping on M, we have 

d(Tx, Tx1) <!(t-s), d(Ty, Ty1) <!(t-s). 
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Hence 
d(Tx, Ty) <.,d(Tx1, Ty1) + (t-s) <1J'(s) + (t-s). 

Therefore 
1J'(S) <.,1jl(t) <.,1JI(S) + (t-s), 

and 1J' is continuous (and indeed satisfies a Lipschitz condition with 
constant 1). d q.e .. 

An addendum: After completing the previous part of the present note 
and making a further examination of the literature on the general topic 
of successive approximation techniques for nonlinear equations, we have 
noted that it would be useful to extend the above results by a simple 
argument to cover those theorems in which contractiveness hypotheses 
are imposed upon iterates of the mapping T rather than upon T itself. 
The primary example of such a result is the theorem of Cacciopoli (Atti. 
Accad. Naz. Lincei (6), 11 (1930), 794-799) which asserts the covergence 
of successive approximants Tnxo in a complete metric space X provided 
that for each j> 1, there exists a constant c1 such that 

d(Tix, T1y) <., c1 d(x, y) 

for all x and y in M, where 

(This theorem was republished two decades later by J. Weissinger, Math. 
Nachr., 8 (1952), 193-212). 

The following two theorems give much stronger results (which include 
the weakening of the Cacciopoli hypothesis to the simpler condition that 
for some m, Cm< I): 

Theorem 7. Let M be a bounded subset of the complete metric space X, 
T an uniformly continuous mapping of M into M. Suppose that there exists 
a positive integer m and a monotone function 1J'(r) for r;;;, 0, with 1J' continuous 
on the right, such that 

1J'(r)<r, for all r>O, 

while for all x and y in M, 

d(Tmx, Tmy) <1J!(d(x, y)). 

Then: 

(a) For each x0 in M, Tn x0 converges in X to a limit point ~ which is 
independent of the choice of the initial approximant xo in M. 

(b) If T is extended continuously to a continuous mapping of the closure 
of Minto itself, then~ is the unique fixed point of the extended mapping 
T in the closure of M. 
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(c) For each xo in M, 

where: 
d(Tn Xo, ~) < {J(tp[n/m] (do), 

do= the diameter of M; 

[n{m]=the integer part of (n/m), 

{J(r) =maxo,;;;J,;;;m-1 supx, ye M; a(x, y) .;;r Jd(Tix, Tiy)J. 

Proof of Theorem 7. We begin by applying Theorem 1 to the 
iterated mapping Tm of Minto M. It follows from Theorem 1 that there 
exists an unique element ~ in X such that as k -+ + oo, Tmk x0 -+ ~ for 
each Xo in M. Moreover, 

where do is the diameter of M. We may assume without loss of generality 
that T is already extended by continuity to a continuous mapping of 
cl(M), the closure of Min X, into cl(M). Then, if we continue to denote 
this extended mapping as T, Tm is the continuous extension of Tm{M 
to a continuous mapping of cl(M) into cl(M) and ~ is the unique fixed 
point of Tm in cl(M). 

We note the elementary fact that if for a point p in cl(M), Tm(p) = p, 
then 

Tm(Tp)=T(Tmp)=Tp, 

i.e. T maps the fixed point set of Tm in cl(M) into itself. Since ~ is the 
unique fixed point of Tm in cl(M), it follows that T~=~. Since, on the 
other hand, every fixed point ofT is also a fixed point of Tm, we know 
that ~ is the unique fixed point ofT in cl(M). 

By hypothesis, T is uniformly continuous as a mapping of M into M. 
It follows by induction that for each positive integer j, Ti is uniformly 
continuous as a mapping of Minto M. Hence the function {J(r) of the 
conclusion (c) of Theorem 7, which is the maximum of the moduli of 
continuity of Ti for O.;;;;r.;;;;m-1, satisfies the condition that 

{J(r) -+ 0, as r-+ 0. 

Let n be a positive integer. We may write n in the form 

n=mk+j, k= [n{m], O.;;;;j .;;;;m-1. 

By a preceding remark, for each x0 in M 

Since (J(r) dominates the modulus of continuity of eachTi with O.;;;;j .;;;;m-1, 
it follows that 

3 Series A 
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By Theorem 1, tpk(do) -+ 0 as k -+ + oo, i.e. as n-+ + oo. Since f3(r) -+ 0 
as r -+ 0, it follows that 

{3(tpk(do))-+ 0, (n-+ +oo). 

Hence Tn x0 converges to ,;, the unique fixed point of T in cl(M), and 
the estimate of conclusion (c) holds. q.e.d. 

Theorem 8. Let M be a bounded subset of the complete metric space X, 
T a uniformly continuous mapping of Minto M. Suppose that there exists 
a positive integer m and a function cp(r) for r;;;. 0 such that on each interval 
of the form [{3, do] with f3 > 0 s-1 cp( s) is bounded from above by a constant 
Op< 1. Suppose that for each x and y in M, 

d(Tmx, Tmy) <.cp(d(x, y)). 
Then: 

(a) For each xo in M, Tnxo converges to a point ,; in X, where ,; is inde­
pendent of the choice of Xo in M and is the unique fixed point of the 
mapping T extended continuously to cl(M). 

(b) For each xo in M, 

where: 
do=the diameter of M, 

[nfm]=the integer part of (n/m), 

{3(r)=maxo..;.J,;;;.m-1 supx,y~tM; a(x,y)..;.r d(Tix, Tiy), 

tp(r)=limt-+r+ supa,;;;.ecp(s). 

Proof of Theorem 8. AsintheproofofTheorem2fromTheoreml, 
we show that under the hypotheses of Theorem 8, 

d(Tmx, Tmy) <"P(d(x, y)), (x, y r= M), 

and that the function tp satisfies the restrictions imposed in Theorem 7. 
The proof is identical in the latter respect with the proof of Theorem 2. 
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