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1. INTRODUCTION 

(13 Topology of embed&d surfaces 

LET X be a smooth, simply-connected 4-manifold, and 5 a 2-dimensional homology class in 
X. One of the features of topology in dimension 4 is the fact that, although one may always 
represent r as the fundamental class of some smoothly embedded surface, it is not always 
possible to take this surface to be a sphere. The purpose of this paper and its sequel [20] is 
to establish a lower bound for the genus of the surface, in terms of the self-intersection 
number of the class. The result applies to those 4-manifolds for which the polynomial 
invariants [S] are defined and not all zero. As a corollary, we shall answer a question raised 
by Milnor [25] concerning the unknotting number of algebraic knots. This first paper 
contains statements of the results and most of the technical material; the sequel provides the 
more geometrical parts of the proof. 

Obstructions to embedding spheres arise in relation to the known obstructions to 
realizing a quadratic form as the intersection form of a smooth 4-manifold. Specifically, 
there are obstructions which are related to Rohlin’s theorem [28,17], and to Donaldson’s 
theorem on definite quadratic forms [6,21, 111. In the case that the given homology class is 
not primitive (so is an integer multiple of another class), there are obstructions also to 
embedding surfaces of higher genus: the results of [16] and [24] give a lower bound for the 
genus of a non-primitive surface in terms of the self-intersection number C *Z and the 
invariants of X. In the case of the 4-manifold @P2, similar bounds are obtained in [35]. 

More recent results [26] have established further obstructions to embedding spheres 
and tori in 4-manifolds for which the polynomial invariants are non-zero; these can be seen 
as extensions of the theorem of Donaldson on the indecomposability of complex surfaces 
[8]. The main result which we announce here is in the same spirit, and extends the result of 
[26] to surfaces of higher genus, though the scheme of the proof is rather different. In the 
statement below, b+ is, as usual, the dimension of a maximal positive subspace for the 
intersection form on the second homology. 

THEOREM 1.1. Let X be a smooth, closed, oriented 4-manijold which is simply connected, 
has b + odd and not less than 3, and has non-trivial polynomial invariants. Then the genus of 
any orientable, smoothly embedded surface C, other than a sphere of self-intersection - 1 or an 
inessential sphere of self-intersection 0, satisjies the inecruality 2g - 2 2 Z* Z. 

Remarks. For the moment, the polynomial invariants we have in mind are those coming 
from the SU(2) moduli spaces [3], though the theory could be extended to include SO(3). 
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The non-vanishing of the polynomials is certainly an essential hypothesis, and the restric- 
tion on bf is there because this condition is necessary to ensure that the polynomial 
invariants are defined. The orientation of X is important also: the polynomial invariants 
and the self-intersection number are dependent on the orientation, and the same orientation 
must be used for both. Indeed, the theorem really has no content if the self-intersection 
number is negative, for the inequality is then satisfied automatically except in the one case 
that is explicitly excluded. Note finally that it is a consequence of Freedman’s theorem [14] 
that the smoothness assumption cannot be weakened to allow locally flat, topologically 
embedded surfaces; indeed, if X is spin for example, then every primitive class in HZ(X) is 
represented by a locally flat sphere (see [22]). 

The inequality in the theorem says that the sum of the Euler numbers of C and its 
normal bundle is not greater than zero. Alternatively, we can think of the decomposition of 
TX into a sum of oriented 2-plane bundles along C as determining an almost complex 
structure on the 4-manifold in the neighbourhood of the surface; the theorem then says that 
the first Chern class of TX is not positive on C. From this description we see that, if X is the 
underlying 4-manifold of a complex surface with cl = 0, and if C is a smooth holomorphic 
curve, then the inequality of the theorem is sharp (this is a special case of the adjunction 
formula [ 151). 

The simply-connected complex surfaces with c1 = 0 are the K3 surfaces, and it is one of 
the main results of [8] that the hypothesis of Theorem 1.1 on the non-vanishing of the 
invariants is satisfied by K3 and by any simply-connected complex surface with b+ not less 

than 3. As a consequence of the theorem we therefore have 

COROLLARY 1.2. If C is a smooth complex curve in a K3 surface and C is a smoothly 
embedded orientable 2-manifold in the same homology class, then the genus of C is not smaller 
than the genus of C. q 

In the case of K3, if one uses the fact that the diffeomorphism group acts transitively on 
the primitive classes of any given self-intersection number [23,24], it is not hard to show 
that the inequality of Theorem 1.1 is sharp for all homology classes of non-negative 
self-intersection. This is just a matter of finding, for each even integer 2d, a smooth, primitive 
surface in K3, having self-intersection number 2d and genus d + 1. One way to obtain such 
a surface is to realize the K3 surface as an elliptic fibration and then take the sum of 
a section of the fibration and d + 1 smooth fibres; smooth the intersection points to obtain 
the required C. 

It is an outstanding open question whether the statement of Corollary 1.2 continues to 
hold for complex surfaces other than K3, and in particular for the complex projective plane. 
For complex surfaces X with b+ 2 3 and positive canonical class K, the inequality of 
Theorem 1.1 is weaker than the inequality which a generalization of (1.2) would predict. 
Thus, for the homology class which is d times the canonical class, the lower bound for 
(2g - 2) given in the theorem is d2(K SK), whereas one can conjecture that d(d + l)(K - K) is 
the best possible. 

Theorem 1.1 also implies results about the slice genus of algebraic knots and links. (The 
slice genus of a knot is the smallest genus of any oriented surface in the 4-ball whose 
boundary is the given knot in S3.) Let C be a smooth algebraic curve in C 2 and B4 an 

embedded 4-ball whose boundary S3 meets C transversely in a knot K. Then we have: 

COROLLARY 1.3. If C c B4 is a smooth orientable surface in the 4-ball having boundary 
K, then the genus of C is not less than the genus of the algebraic curve C n B4. That is, the 
algebraic curve realizes the slice genus of the knot 
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Proof: Let C be the closure of C in @P2. By deforming C slightly if necessary, we can 
arrange that this closure is a smooth algebraic curve. Take a smooth curve D of degree six in 
@Pz which meets C transversely and is disjoint from the ball B4. The branched double cover 
of @P2, branched along D, is a K3 surface, and the inverse image of c^ is a smooth complex 
curve c”. If a 2-manifold C existed which contradicted (1.3) then we could modify d inside 
the ball B4 so as to reduce its genus without affecting its intersection with D. The inverse 
image of the new 2-manifold would be a closed surface in the K3, with the same homology 
class but smaller genus than c, contradicting the previous corollary. 0 

This statement is sometimes called the “local Thorn conjecture”. An equivalent formula- 
tion is to say that Corollary 1.2 holds for the complex projective plane provided one 
imposes an additional constraint on C, that it coincides with C outside some compact 
domain in @‘. An attractive application of (1.3) is to the case in which C is obtained from 
a singular curve Co by a small deformation and B4 is a small, standard ball centred at the 
singular point. The intersection C n B4 is then the Milnor fibre of the singularity. For 
example, the torus knot K,,,, with (p, q) = 1, arises from the singular curve xi’ = yq, whose 
Milnor fibre has genus ) (p - l)(q - 1). This number is therefore the slice genus of the knot. 

In general, the slice genus is a lower bound for the unknotting number (also called the 
gordian number) of a knot: this is the least number of times that the string must be allowed to 
pass through itself if the knot is to be changed to the unknot. It is also known that, for the 
knots which arise from singularities in algebraic curves, the genus of the Milnor fibre is an 
upper bound for the unknotting number [4] (for example, in the case of K,,,, a little 
experimentation shows that passing the curve through itself t (p - I)(q - 1) times is 
sufficient). It therefore follows from Corollary 1.3 that, for such knots, the unknotting 
number and the genus of the Milnor fibre are equal, which confirms the conjecture made in 
[25]. A useful survey of conjectures related to (1.3) is given in [4]; see also [30]. 

Apart from the challenging problem of extending (1.2) to other complex surfaces, there 
are some modest extensions one could envisage making to Theorem 1.1. For example, the 
condition on the fundamental group could probably be relaxed, and (perhaps with very 
little change in the proof) one should expect to prove the same inequality for 4-manifolds 
such as the Barlow surface, using the invariant developed by Kotschick [lS]. 

(ii) Twisted connections 

A natural strategy for the class of problems discussed above is to study gauge theory 
(connections and the anti-self-duality equations) on the complement of the surface. A 
choice must be made at the outset here, since the anti-self-duality equations depend on a 
Riemannian metric or a conformal structure, and whereas any two choices will give 
equivalent results on a closed manifold, this is not the case for X\Z. 

One possibility is to consider a complete metric which is asymptotically cylindrical, so 
the end of the manifold is modeled on tR+ x Y, where Y is the boundary of the tubular 
neighbourhood of Z, a circle bundle over the surface. In the case of S2, this is conformally 
equivalent to “blowing down” the surface to obtain a 4-dimensional orbifold with a single 
quotient singularity. For genus zero or one, several results have been proved using this line 
(in particular, the results of [26]), and the analysis of the moduli spaces which arise has been 
developed in some generality. 

A different approach is to take a smooth Riemannian metric on X and consider its 
restriction as an incomplete metric on X\Z. The corresponding moduli spaces will not be 
the same as those which result from a cylindrical end, and one of the first problems is to 
develop the usual tools of gauge theory in this setting. In an earlier paper [19], the first 
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author wrote down some conjectures about the features of the moduli spaces for the 
incomplete metric and outlined a scheme whereby these might be applied to prove results 
such as Theorem 1.1. The main purpose of the present paper is to develop the machinery to 
confirm the conjectured properties. 

The new feature of gauge theory on X\Z is that a connection which is flat, or has small 
curvature, can still be locally non-trivial near C on account of having non-trivial holonomy 
on the small circles linking the surface. When the structure group is SU(2) for example, we 
can have a connection A on X\C which is represented on each normal plane to 2 by 
a connection matrix which looks like 

dtl + (lower terms), (1.4) 

where r and 8 are polar coordinates in the normal plane. The size of the connection matrix is 
0(1/r), since this is the size of de, so the connection appears singular along the surface. The 
holonomy of this connection on the positively-oriented 
approximately 

exp 2ni 
-a 0 ( > 0 a’ 

small circles of constant r is 

(1.5) 

Since only the conjugacy class of the holonomy has any invariant meaning, we may suppose 
that a lies in the interval [0, $1, since the matrices (1.5) then run through each conjugacy 
class just once. 

When a = 0 the holonomy will be trivial and, if the phrase “lower terms” is suitably 
defined, we are just considering ordinary connections on X. Also when a = 4, since the 
holonomy is - 1, the associated SO(3) bundle has trivial holonomy and, with this twist, we 
can consider these as connections on X again. The interesting new phenomena occur when 
a lies in the interval (0, $),, as it will throughout this paper. 

In Section 2 we introduce a space ~4” of SU(2) connections modeled on (1.4) by choosing 

an initial model connection A” and defining LZZ~ as the set of all A” + a, where a is in 
a suitably defined function space. We shall refer to the elements of d” as twisted connec- 
tions, or as a-twisted connections when the holonomy parameter needs to be mentioned. 
This terminology is not ideal; the connections are not really twisted in any sense. 

One soon realizes that there are two topological quantities determined by A”, in 
addition to the holonomy parameter a. There is an integer k which, as in the usual set-up of 
Yang-Mills theory, measures the second Chern class of the bundle on X, and there is 
another integer 1 which measures the degree of the reduction of the bundle near C deter- 
mined by the eigenspaces of the holonomy (1.5). We call these the instanton number and the 
monopole number. 

Choosing a metric on X, we define a moduli space Mz,, as the space of gauge 
equivalence classes of anti-self-dual connections in d”. We shall develop the usual frame- 
work of Fredholm theory and transversality results, to show that, with the usual provisos 
about reducible and flat solutions, the moduli spaces are generically smooth, finite- 
dimensional manifolds. We can also consider the extra parameter a as part of the moduli 
space, so as to obtain a smooth space of dimension one greater, with a smooth map to the 
interval (O,+). We shall prove a weak compactness theorem for these moduli spaces and 
a theorem on the removal of point singularities. 

The two important features of these moduli spaces are their dimensions and a Chern- 
Weil formula. The formula for the first reads 

dim ME.* = 8k + 41- 3(b+ - b’ + 1) - (29 - 2) (1.6) 
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where b’ and b+ are, as ‘usual, the invariants for the closed manifold X (not the complement 
of the surface). The Chern-Weil formula expresses the Lz norm of the curvature (the action) 
of an anti-self-dual solution in terms of the topological data: for A E Mg,l we have 

1 

-s 87~’ x\x 
tr(FA A F,+)=k+2aI-aZC*C. (1.7) 

Note that, as far as the topology of the surface goes, the dimension formula involves only 
the genus while the Chern-Weil formula involves only the self-intersection number. It is the 
interplay between these two which provides the mechanism for the proof of Theorem 1.1. 

We close this introduction with some technical remarks. The first concerns our choice of 
function space for the connections in LzZ’. Our connections will be of the form A” + a, where 
the covariant derivative of a is in Lp; and there is not much leeway in the choice of p. On the 
one hand, this choice of function space means that our gauge transformations should be in 
a covariant L$, and such gauge transformations will not form a group unless p > 2 because 
L$ functions are on the borderline of the Sobolev embedding theorem in dimension 4. On 
the other hand p cannot be too large: the natural growth rate for the curvature of solutions 
near C appears to involve terms of size I-*’ and r-‘f2a, and these will not be in Lp unless 
p is close to 2. Indeed, p must approach 2 as tl approaches 0 and 4. In an Appendix to this 
paper, we give an example of an explicit solution which illustrates this point quite clearly. 

Twisted connections arise also in 2 dimensions, on a punctured surface. Suitable 
function spaces for this problem were introduced by Biquard in [2, 31, and our construc- 
tions in Section 3 are motivated in part by this example. The other model which guides our 
constructions is provided by the thesis of Wang [36]. 

Rather than use Lp spaces, one might try to use weighted Sobolev spaces based on L2. 

Unfortunately, it seems that any straightforward attempt to introduce such spaces runs foul 
of the necessary multiplication theorems. Having settled on our definition of ,a3”, it would 
be aesthetically pleasing to have a theorem which stated that any smooth, anti-self-dual 
connection with finite action on the complement of C was gauge equivalent to a solution in 
our space; this would make the definition of our moduli spaces look less arbitrary. The 
authors have not proved such a theorem; a result on the lines of [32] is what is wanted. 

A second point concerns the choice of metric on X. For large parts of this paper we shall 
not use a smooth metric, but choose instead a metric with a cone-like singularity along 
E with a small cone-angle 27r/v. The reason for this is that it simplifies the analysis while 
leaving unchanged the important features of the moduli spaces (such as the formulas (1.6) 
and (1.7)). In the first instance, if v is a positive integer and CL is a multiple of l/v, then the 
set-up we describe is equivalent to analysis of an orbifold connection over a space modeled 
locally on a cyclic quotient singularity. The elliptic theory in this case is standard: locally, 
solutions of the equations are just invariant solutions on a branched cover. We deduce the 
elliptic theory for general values of c1 and for the original smooth metric by regarding the 
relevant operators as bounded perturbation of the orbifold set-up which we understand. We 
take from [36] the idea that the anti-self-duality equations for a smooth metric can be 
regarded as a bounded perturbation of the equations on a cone-like metric, as a special case 
of a device exploited in [lo]. 

The use of the cone-like or orbifold metrics is not just a stepping-stone to the smooth 
case: there are at least two technical points (one of them contained in [20], the other 
discussed below) which we can carry through only in the orbifold setting. For this reason we 
choose the moduli spaces associated to the orbifold metrics in order to carry through the 
topological applications. The analysis is easier when the cone-angle is small, because the 
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natural decay rate for the off-diagonal terms in the connection and curvature matrices is 
then more rapid, and we can therefore use Sobolev spaces based on stronger norms. 

The technical point referred to in the previous paragraph concerns the phenomenon of 
bubbling off. In general, there will be sequences of solutions in ME,, for which part of the 
curvature concentrates in the neighbourhoods of isolated points of C, and there will be 
a weak limit of such a sequence in which both k and 1 may change. This much of the theory 
can be developed for either the smooth or the orbifold metrics. Such a weak compactness 
result is of limited value in applications however unless it is also known that the new values 
of k and I are such that the new solution lives in a moduli space of strictly smaller dimension 
than Mi,,. In the usual set-up on a closed manifold this drop in dimension comes for free, 
because the action is sure to drop in the weak limit and the index formula shows that the 
dimension is a monotonic function of the action. We cannot make the same simple 
argument for the moduli spaces of twisted connections, so we must give a different proof. 
This is carried out in Section 8, but only for the cone-like metric. 

One last result which has not been proved in the generality which the authors would 
have liked is the correspondence between the moduli spaces we have defined and the space 
of stable bundles with parabolic structure in the case that X is a Kahler surface and Z is 
a holomorphic curve; see [19] for a statement of a conjecture modeled on the 2-dimensional 
result of Seshadri [31], also proved in [3]. A weakened form of this result (for the orbifold 
metric) is proved in [20], and while this is adequate for the applications, the conjecture as 
stated in [19] remains attractive. 

2. A FRAMEWORK FOR GAUGE THEORY 

This section contains more precise statements of some of the main definitions and results 
concerning the moduli spaces. The proofs are contained for the most part in Section 5, after 
some preliminary work in Sections 3 and 4. One exception is the dimension formula (1.6) 
which is postponed until Section 6. The remaining results, not discussed in this section, 
relate to the weak compactness theorem and are dealt with in Sections 7 and 8, at the end of 
the paper. 

(i) The mod&i spaces 

Let X be a smooth, closed, oriented 4-manifold and C a closed embedded surface. For 
simplicity we shall suppose C to be orientable and oriented, though the following construc- 
tions can be modified for the non-orientable case. We shall also suppose that both X and 
C are connected. Let N be a closed tubular neighbourhood of C, diffeomorphic to the unit 
disk bundle of the normal bundle, and let Y be the boundary of N, which acquires the 
structure of a circle bundle over C via this diffeomorphism. Let iv be a connection l-form for 
the circle bundle; so r) is an S ‘-invariant l-form on Y which coincides with the l-form d0 on 
each circle fibre. Here we write (r, f3) for polar coordinates in some local trivialization of the 
disk bundle, and we choose these so that dr A de fixes the correct orientation for the 
normal plane. By radial projection we extend r) to N \C. 

The matrix-valued l-form given on X\C by the expression 

. or0 

1 o-u rl ( ) 
has the asymptotic behaviour of (1.4), but is not globally defined. To make an SU(2) 
connection on X\Z which has this form near Z, begin with an SU(2) bundle _#? on X and 
choose a C” decomposition of E on N as EIN = L@ L*, compatible with the hermitian 
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metric. (We shall tend to use the overbar for objects defined over all of X rather than just 
over X\Z) Although J? is trivial on N, we need not suppose that L is: there are two 
topological invariants in this situation, which we write 

k = cz(J?)[X] 

1= - c&)[C]. 

The minus sign is for later convenience. Choose any smooth SU(2) connection A0 on 
I? which respects the decomposition over N, so 

where b is a smooth connection in E. Finally, choose a number tl in the range 0 < a < f, and 
define a connection Aa on E = E,,, by 

A” = A0 + ib(r) ; “, n. 
( ) 

(2.1) 

Here /3 is a smooth cut-off function equal to 1 in a neighbourhood of 0 and equal to 0 for 
I 2 3. This mixture of local and global notation is best explained by saying that the second 
term is an element of R&,x&) expressed in terms of a trivialization compatible with the 
decomposition, and that this l-form is extended by zero to all of X\Z. Note that the 
curvature of A” extends to a smooth 2-form with values in gr on the whole of X. This is 
because the 2-form idn is smooth on N: it is the pull-back to N of the curvature form of the 
circle bundle Y, which can be regarded as a smooth 2-form on the base C. 

The expression (2.1) defines a connection over X\I: whose holonomy around small 
linking circles is asymptotically equal to (1.5). We now define an affine space of connections 
modeled on A” by choosing some p bigger than 2 and setting 

JP*” = {A” + a(a,V,=a E P(X\C)}. 

Similarly we define a gauge group 

(2.2) 

‘P= {g E Aut(E)IV,mg,V;.g E Lp(X\Z)). (2.3) 

The Lp space is defined using the measure inherited from any smooth measure on X. The 
notation is not meant to suggest that a and g are smooth on X\E; in local trivializations 
away from E their matrix entries will be in Lp and L$ respectively. We do not include 
mention of a in the notation for the gauge group because we shall see in Section 3 that BP is 
independent of the holonomy parameter. Sometimes we shall write &;:p when the instanton 
and monopole numbers need to be mentioned; more frequently we shall write just &, or 
even J&‘, if the context makes the parameters either clear or unimportant. 

PROPOSITION 2.4. (i) The spaces JP.~ and Yp are independent of the choice of A0 and the 
choice of the connection l-form n. 

(ii) The space gp is a Banach Lie group which is independent of a, and it acts smoothly on 
da* p. The stabilizer of A is { + I> or S 1 according as A is irreducible or reducible respectively. 

(iii) There exists a continuous function p(a), with p(a) > 2 for a E (0, i), such that when 
2 < p < p(a) the quotient Wp is a Banach manifold except at points [A] corresponding to 
reducible connections. 

Remark. The definition of 1 used the orientation of the surface Z twice. First, the 
orientation of the unit circle in the normal bundle was used in determining the holonomy; 
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secondly, the orientation was used to calculate the first Chern class of the line bundle. The 
result is that, up to gauge equivalence, the space ~4 ;;p is independent of the chosen 
orientation. The monopole number does not change sign when the orientation of 2 is 
reversed. 

Although the domain of definition of the connections in dagp is strictly speaking X\C, 
we shall sometimes refer to these twisted connections as living “over (X, C)“, or sometimes 
even “over X” when this lack of precision is not likely to cause confusion. Sometimes we 
shall talk of a twisted connection over (X, Z) as being carried by a bundle pair (E, L), and we 
will mean that (E, L) was the pair of bundles used in the definition of the space ~4. 

We now introduce the anti-self-duality equations. Pick a smooth Riemannian metric 
S on X and let Fp denote Lp(X\Z, A’(gE)), the Banach space of self-dual 2-forms in 
Lp(X\C) with values in gE. The gauge group acts on BP with kernel { &- 11, so over the open 
set of irreducible connections (9Vp)* c aasp we can form the Banach vector bundle Yp 
with fibre pp. The multiplication theorem (3.8) shows that A I-+ F 2 defines a smooth map 
from da,” to 9P. We define 

Thus M:,, is a subspace of 9Yp. We write (Mi,,)* for its intersection with the space of 
irreducible connections (59’*“)*, so (M;,l)* is the zero set of a smooth section @ of VP. For 
sufficiently small p we have all the usual Fredholm theory for these moduli spaces: 

PROPOSITION 2.5. There exists a continuousfunction p(a), with p(a) > 2for c1 E (0, f), such 
that for p in the range 2 < p < p(a) the following results hold: 

(i) the moduli space M%,, is independent of p; 
(ii) in local trivializations of VP, the section Q, which cuts out (Mi,,)* is Fredholm; 
(iii) the index of@ is 

8k + 41- 3(b+ - b’ + 1) - (29 - 2). 

The third proposition of this section is a generic metrics theorem, modeled on that of 
[13]. As usual, we note that the anti-self-duality equations can be defined using metrics 
which are, say, of class C’ for some r; such metrics are parametrized by an open subset of 
a Banach space, and the term “generic” below refers to the complement of a first-category 
subset of this space. 

PROPOSITION 2.6. Fix an a in the range 0 < a < f, and consider the moduli space Mt.,. 
(i) For a generic choice of Riemannian metric g on X, the section @ cuts out the moduli 

space (Mz, ,)* transversely, except perhaps at flat connections. 
(ii) If b ’ is positive, then for a generic Riemannian metric the moduli space contains no 

reducible solutions, except perhaps for flat ones. 

To summarize, we have described moduli spaces which depend on two topological 
numbers k and 1, and a real parameter a, which determines the holonomy. If b+ is positive 
and a moduli space contains no flat connections, then for a generic choice of metric it is 
a smooth manifold of the dimension given by the formula (1.6). We refer to k and 1 as the 
instanton and monopole numbers of the solution. 

(ii) The holonomy as a parameter 

As the holonomy a varies, the moduli spaces M” sweep out a space of one higher 
dimension. To set this up correctly, let I be a compact sub-interval of the interval (0, &), and 
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introduce the space 

Sip = u Wp x {a). 
QEI 

PROPOSITION 2.7. Let p(a) be thefinctionfrom (2.4) and let p,, be its minimum value on the 
interval I. Then, for p < pO, the space dp has the structure of a smooth Banach manifold away 
from the reducibles, and the map dp + I is a smooth submersion. 

In a similar way we introduce the moduli space Mk, I as the union of the Mt I over I. This 
space is a subset of dp, and its irreducible part is the zero set of a section & of a vector 
bundle over the Banach manifold. Summarizing the analogues of Propositions 2.5 and 2.6 
for this situation, we state: 

PROPOSITION 2.8. Suppose b+ is at least 2 and p c po. Then, except atjat connections and 
for a generic Riemannian metric, the space fi,,, consists only of irreducible solutions and is 
a smooth manifold cut out transversely by 6. The map to I is smooth and thefrbres are the 
moduli spaces Mi,,. 

Since our moduli spaces are independent of p once p is sufficiently small, we can take the 
union over increasing intervals 1 to obtain a moduli space fik,, over the whole interval 
(0,Q. Note that bf must be one higher than in the previous proposition, in order to avoid 
reducible connections in the l-parameter family. We shall call this A?,,, the extended moduli 
space. 

(iii) Cone-like metrics 

We have been using a smooth metric on X to define the moduli spaces, but this is not the 
only possibility. We can take a metric which, near to the surface 2, is modeled on 

ds’ = du2 + dv2 + dr2 + 

where u and v are coordinates on I5 and v is a real parameter, not less than 1. To obtain 
a global metric on N of this shape we just replace du2 + dv2 by the pull-back of any smooth 
metric on Z and we replace d0 by the l-form q. We then patch the metric to a smooth one on 
the complement of N to extend it to the rest of X. The resulting metric has a cone-angle of 
27r/v in the normal planes to Z.. When v = 1, this metric is smooth on X, and when v is an 
integer greater than 1 the metric is an orbifold metric: locally there is a v-fold branched 
cover on which the metric is smooth. (Moduli spaces of the usual kind over 4-manifolds 
with cone-like metrics of this sort were previously studied in [36].) We write g” for a typical 
metric of this form, and Mg,,(g”) for the corresponding moduli space. 

Everything we have stated above for the smooth metric carries over to metrics of this 
form. We emphasize that the spaces -c9, ‘9 and 9 have not been changed; the local 
coordinates r and 8 are used just as they were before to define the model connection -c4”, and 
the Lp norms are equivalent to the old ones since g” differs boundedly from a smooth metric. 
Most importantly, the covariant derivative VA= used to define d and 9 does not involve the 
Levi-Civita connection of the cone-like metric but only the smooth structure of X. The new 
metric only enters in defining the anti-self-duality condition on X\Z. 

Remark. We will have more to say in Section 3(iv) on the subject of comparing the 
norms defined by the different Levi-Civita derivatives. The choice we have made here is not 
the only way to make the theory go. 
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PROPOSITION 2.9. For any v 2 1, the statements of Propositions 2.5,2.6 and 2.8 continue to 

hold with metrics of the form gy in place of smooth metrics. 

The only additional word of explanation needed here is to say what is meant now by 
a generic metric of the form g”, since the geometry of the model metric we have described is 
rather special. We use the simplest route which allows the desired conclusion by fixing 
a particular model metric and considering C’ perturbations of this which are compactly 
supported in some fixed subset of X\N. When we say that a property holds for a generic 
metric, we mean that it holds for a generic perturbation of this form. 

(iv) The extension problem and SO(3) bundles 

In the introduction, we made reference to what we might call the extension problem. To 
put this in its sharpest form, we can ask whether every anti-self-dual connection A with 
finite action on X\Z is gauge-equivalent to a connection in one of the spaces d” we have 
defined. This problem is chiefly an analytic one, and as such can be studied locally in 
coordinate patches near Z; but there is also a global, topological side to the question, which, 
though it is elementary, can cause confusion. It is this topological aspect which we wish to 
discuss now. 

Suppose A is given: a connection in an SU(2) bundle E over X\C. To keep the analytic 
difficulties at bay, let us assume of our connection that it is reducible on N\IZ and that its 
curvature 2-form extends smoothly across C. So A has the same sort of regularity near C as 
our model connections A”. From this it is not hard to deduce (or alternatively the reader can 
add this to the hypotheses) that each point of C has a neighbourhood U c X such that the 
connection is gauge-equivalent on U\C to a connection matrix of the form 

( lL’ -Oh,) + iB(r(; “.)% (2.10) 

where b,_, is a smooth l-form on U and CI is a constant in the interval [0, $J, (compare (2.1) 
above). We shall suppose that a lies in the interior of the interval; its value is uniquely 
determined by the gauge-equivalence class of the connection. The nub of the topological 
difficulty is that the definition of d4” began with bundles E and I? defined on all of X, not just 
on X \ C, and these bundles were used in the definition of k and 1. We have only a bundle on 
the open manifold, and this has no characteristic classes. We want to see how k and 1 can be 
recovered. 

Suppose V is a nearby open set and that we have a similar trivialization there, with by 
a smooth l-form on V. Let g be the transition function on U n I/ which relates the two 
trivializations. Since the connection matrices lie in the Lie algebra of the subgroup S’ in 
both trivializations, g must take values in the normalizer of S’, which is S’ u ES ‘, where E is 
a representative of the non-trivial element of the Weyl group. However, since in both 
trivializations the holonomy around small circles is close to 

h(a)=exp2ni (2.11) 

the odd component ES’ is ruled out (E changes the sign of a). It follows that we can write 

g’$ O ( > 0 II/-’ ’ 

and the circle-valued function $ satisfied d$ = $(bu - b,). Since bU and b, are smooth, it 
follows easily that II/ extends across C and is also smooth on U n V. 

Covering the whole of N with such neighbourhoods, we obtain a system of S’-valued 
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transition functions, which define a reducible bundle L @ I?-‘. Outside C, this bundle is 

canonically identified with E, and the connection matrices bLi in the local trivializations 

satisfy the correct relations to define a smooth connection in this bundle. This achieves our 

aim of realizing A as arising from one of our model connections, and shows how k and 1 can 

be recovered. 

We have an application for this construction. Suppose A and E are as above and 

suppose in addition that the homology class of C is a multiple of 2. This means that on X\C 

there is a flat, real line bundle 4: whose holonomy on the small circles linking C is - 1. 

Consider the connection A’ = A @ 5 on the tensor product bundle E’ = E @ 5 over X\C. 

Certainly this is still reducible on N, and its curvature is a smooth 2-form as before. It 

follows, as above, that A’ arises as a model connection, and has associated a holonomy 

parameter CL’ E (0, 4) and an instanton and monopole number k’ and I’. The relation between 

the new parameters and old is not quite obvious: 

LEMMA 2.12. In the situation above, the parameters of E’ are related to those of E by 

k’=k+l-+C.C 

I’= -r+)c*c. 

The formula for do’ is easy to verify: on small circles, the holonomy of A is asymptotic to 

h(cr) (2.1 l), so the holonomy of A’ approximates - h(u), which is conjugate to h(i_ - o() in 

SU(2). The formulae for k’ and I’ can be extracted by analysing the construction of the 

extension as outlined above. Some care is needed to get this right, and we prefer to postpone 

the proof until after our discussion of the Chern-Weil formula in Section 5(ii), at which point 

the formulae can be proved by an argument which is less prone to error. Lemma 2.12 will be 

used in our proof of the index formula (1.6). 

Notice that the induced connections on the Lie algebra bundles gE and gE’ are 

isomorphic. It follows straight away that the construction A H A @ 5 gives a bijection 

between the spaces of connections -02;,, and JZI’~~:,~,, and therefore between the two moduli 

spaces 

05: M;,, + M;:,,,. (2.13) 

If we extend our theory to include SO(3) bundles with non-zero Stiefel-Whitney class w2, we 

can generalize the correspondence (2.13), dropping the constraint that C should be a mul- 

tiple of 2. We finish now by explaining this. The discussion of SO(3) bundles will not be used 

elsewhere in this paper. 

So let l? be an oriented R3 bundle on X and let there be given a redution of l? to SO(2) on 

N. By a reduction to SO(2), we mean strictly that a section of the associated Sz bundle is 

given. This means that I? is decomposed as R @ R where K is an SO(2) bundle and both 

summands are given orientations. In this situation, define 

k = -$p,(@ 

1= -+e(K)[Z], 

taking values in 4 Z and 4 Z respectively. For CI E (0, f), construct a model connection A” on 

E in the form 

(2.14) 
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where B is a smooth connection in K and the connection matrix is written in a trivialization 
which is compatible with the orientations. Writing w for the Stiefel-Whitney class of E, we 
obtain moduli spaces 

ML,,,. 

The characteristic classes are constrained by 

- 4k = w2 (mod 4) 
21= w[Z] (mod 2). 

(2.15) 

Consider now the extension problem in this situation, We are given an SO(3) bundle 
E only on X\C, and A is a connection which is compatible with a reduction Iw @ K near 
I; and has smooth curvature. From this data it is nor possible to recover 01, k and I uniquely. 
One first needs an orientation of K. Once an orientation is chosen, there is an essentially 
unique gauge in which the connection matrix looks like (2.14), and the construction goes 
through as in the SU(2) case, giving rise to an extension (.??, K) and associated invariants k, 1. 

The choice of orientation in K is important: if we chose the opposite orientation, we 
would not simply recover the same (,!?, K) with the orientation of K reversed; the complica- 
tion stems from the convention that the holonomy parameter should lie in (0, $). Changing 
the orientation of K gives rise to a different extension, with invariants u’, k’ and 1’ as in 
(2.12). The Stiefel Whitney class w’ is different also: we have 

w’= w + P.D.[Z], 

as can be deduced from the formula for I’ in (2.12) and the constraint (2.15). 
The correct generalization of (2.13) therefore is that there is a natural identification of 

the two moduli spaces 
M:,,,, 2 M::,l,,,o. (2.16) 

If we wish to think of the SO(3) connections in one of our spaces d as arising from smooth 
connections in a smooth bundle by adding a singular term, then there is an ambiguity in 
identifying the smooth bundle: for each singular connection, there is a choice of two. 

As a last word on this subject, we can note that to distinguish between a and f - c( it is 
not quite an orientation of K which is being used; all that is really needed is an isomorphism 
between the orientation bundle of K and the orientation bundle of the normal to Z: it is 
because we are assuming a standard orientation for the latter that it did not enter in the 
discussion above. This shows how the theory can be extended to include the case that C is 
not orientable. In general, the topological data should consist of a principle SO(3) bundle 
P --, X, a reduction of PIN to an O(2) bundle Q, and an isomorphism x between the 
(h/2)-bundle Q/S0(2) and the orientation bundle of C. Under these circumstances, the Euler 
class of Q can be evaluated on x as a signed integer - 21, and the holonomy parameter 
u E (0, 4) can be interpreted unambiguously. 

3. FUNCTION SPACES AND MULTlPLICATION THEOREMS 

We have defined the space of connections da as the space of all A” + a, where the 
covariant derivative of a is in Lp. This is a covariant version of the Sobolev space Lf. On 
a compact manifold, the Sobolev norms defined using a covariant derivative are indepen- 
dent of the choice of connection used, at least up to equivalence. But for our twisted 
connections, which are singular along Z:, a little care is called for. In this section we will 
examine these Sobolev norms. 
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(i) Weighted Sobolev spaces 

For p in the range 1 < p < 00, let Lz denote the usual Sobolev space of functionsf on 

X with k derivatives in Lp. Sometimes we prefer to regard the same Li as a space of functions 
on X\Z.; there is no essential difference. We shall introduce also the following weighted 
Sobolev spaces. Extend the function r (originally defined on N) to a smooth function on 
X\C, taking values greater than or equal to 1 on X \N. Define W,” as the completion of the 
space of compactly supported smooth functions on X\Z in the norm 

llfll,~=j/;fj/p+~/;il=ivfj/p+~~~ + IIVkfllp. 

We begin with two elementary lemmas concerning these norms. 

LEMMA 3.1. If f is in L{,,,, on X \Z and if the integrals which de$ne the Wt norm converge, 
then f is in the space Wt. 

Proof: The lemma asserts that we can find a sequence f, in Cz which are Cauchy in 
W,” and converge to J: The matter of smoothness is quite standard, so we just seek 
compactly supported fn. It is a routine matter to verify that the simplest strategy is 
successful: let p(r) be the standard cut-off function supported in N and equal to 1 near C, 
and define fn as (1 - /?(nr)) f. •1 

LEMMA 3.2. A function f is in W% if and only if(l/r’)f is in L[_i for i = 0, . . . , k. 

Proof The forward direction is immediate; for the converse, use the previous 
lemma. 0 

Next we carry over the usual embedding theorems to the weighted spaces. Recall that 
the Sobolev embedding theorems are governed by the conformal weights of the function 
spaces Ll, which in dimension 4 are defined as 

w(p, k) = k - 4/p. 

LEMMA 3.3. If k 2 1 and w(p, k) 2 w(q, 1) then there is an inclusion W,“G WY. If both 
inequalities are strict, then the inclusion is compact. 

Proof Use Lemma 3.2 to reduce to the ordinary embedding theorem L:_i 4 Lf_i, for 
i 5 1. cl 

The multiplication theorems also carry over, for various combinations of spaces: 

LEMMA 3.4. The multiplication map (fl g) H fg is continuous as a map from W,” x LT or 
Lkpx Wf to Wk provided that k and 1 are not less than m and one of the following conditions 
holds: 

(9 W(P, 4 -c 0, w(q, 1) < 0 and w(p, k) + w(q, 1) 2 w(r, m); 
(ii) w(p, k) 2 0 and w(q, I) I 0 and w(q, f) > w(r, m); 
(iii) w(p, k) > 0, w(q, I) > 0 and w(p, k), w(q, I) 2 w(r, m). 

In each of these cases, ifk > m and thejnal inequality is strict, then the mapf Hfg, forfixed g, 
is compact. 
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Proof: The same strategy applies as was successful with Lemma 3.3: these reduce to the 
multiplication theorems for the unweighted Sobolev spaces. cl 

Since W,” c Lkp, we also have multiplication theorems of the shape Wi x WY -+ W’, and 
w,“xwT+L;, as well as a compact inclusion of W,P in Co when the weight is positive. 

(ii) Holonomy and weighted norms 

To take a closer look at the weighted norms, consider a local situation. As a model for 
a neighbourhood of a patch of C in X take the space 0’ x Dz containing the surface 
0’ x (0). Write Z for the complement of the patch of surface, 

Z = D2 x(D’\{O)), 

and equip Z with the flat product metric. Over Z, let K be the trivial line bundle @ x Z and 
let V, be the connection 

V, = V + ictd0, 

where (r, (3) are polar coordinates on D2 \ (0). We shall suppose that c( is not an integer, so 
the holonomy is not 1. For compactly-supported sections of K we can consider two families 
of norms. On the one hand, using the canonical trivialization of K, we can regard sections of 
K as functions and compute the W! norms. On the other hand, we can use the covariant 
derivative to define the covariant Sobolev norms: 

i I/ vts up. 

To define these higher derivatives, we need also a connection on the tangent bundle. We 
choose here the Levi-Civita connection for the flat metric on the patch, or just the product 

connection, (but see Section (iv) later). We use I& to denote these last norms. An important 

observation for us is that the two families of norms are equivalent. The main point is 

contained in the following lemma. We use the notation c(a) for the absolute value of the 

difference between o! and the nearest integer. So c is a non-negative saw-tooth function. 

LEMMA 3.5. For compactly supported sections s of K we have an inequality 

1 /I /I -s 
r P 

I const. /I V,.5 lip, 

with a constant of the form C/c(u), where C is independent of cl and p. 

Proof Let S be the unit circle in one of the normal planes to D*. The differential 

operator 8, = (a/%) + icr on S, has no kernel, since tl is not an integer. Being skew-adjoint, it 

is invertible, and the inverse is given by convolution with the Green’s function 

c(e) = (1 - e-2nia)- 1 eiaO, (0 < e -c 271). 

Since G is bounded, the Co norm off is controlled by the L’ norm of a,f; and so the weaker 

inequality also holds: 

s 
)flpd8 5 (const.)P 1 8,flPd0. 

s 

The L” norm of G will serve as the constant here, and this is bounded by an expression of 

the form C/C(E). This shows that, in comparing the integrals which define the two norms in 

the lemma, the contribution from S in the first integral dominates the same contribution in 
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the second. Since 2 is a union of similar circles, and since the two norms scale in the same 
way, the lemma follows. cl 

Note that although the constant depends on a, we will have a uniform bound as long as 
there is a lower bound on the difference between c1 and the nearest integer. We will make use 
of a sharper version of this lemma in Section 4. 

The lemma says that the Ly,, norm dominates the WT norm. On the other hand, since 
V, differs from V by a term of size l/r, the reverse inequality is clear, so the two norms are 
equivalent. Repeating this argument k times proves: 

LEMMA 3.6. The Ll.= and W,” norms are equivalent on sections of K. 0 

(iii) Function spaces for gauge theory 

Let A’ be the model twisted connection over (X, C) constructed in Section 2. Fix 
a number p greater than 2, and write d” for the space of connections davP. We shall write 
L$ for the covariant Sobolev norms on bundle-valued functions or forms. Recall then that 
d” is the space of all A” + a where a is in Lf,Aa. We give d” the topology of an affine space 
over this Banach space. 

In a neighbourhood of some patch of C, choose a smooth trivialization of L and so 
obtain a trivialization of .!? = L@ t*. We shall call a trivialization obtained in this way 
a diagonal trivialization. Note that the chosen trivialization of L is supposed to be defined 
(and smooth) on 2 too, not just on the complement. The Lie algebra bundle, restricted to N, 
decomposes as [w 0 Lz; the two summands are respectively the diagonal and off-diagonal 
parts of the two-by-two matrix in our trivialization. The connection V,U restricts as the 
trivial connection V on the IR summand and a connection close to VZa on the Lz summand 
(in fact, differing from V,, by something smooth). From Lemma 3.6 we therefore deduce: 

PROPOSITION 3.7. A section s of gE or of End(E) which is in L[,,,, is in L[,*” ifand only if, in 
diagonal local trivializations near C, the diagonal components of s are in L[ and the 
of-diagonal components are in W,P. In particular, JZZ’ consists of connections A” + a where the 
diagonal and ofFdiagonal components of a are in L: and WT respectively, while the gauge 
transformations g E B have their diagonal and ofS-diagonal parts in Le and W$. 0 

Combining the first part of this proposition with the multiplication theorems of (3.4), we 
obtain multiplication theorems for the spaces L&. (End E). They are proved by considering 
the various components separately. Thus, when multiplying two sections of End(E), the 
product of an off-diagonal term and a diagonal term must be an off-diagonal term etc., so 
we must check that (3.4) provides a continuous multiplication on the corresponding spaces. 

LEMMA 3.8. On sections of End(E), the multiplication map (st , s2) M s1 s2 is continuous in 
any of the following norms: 

LeAa x Lf,JQ -+ L,q,= 

L,q,. x L?,*” + L$ 

LfJ” x L$ + LP. 

In the last two of these three cases, ifs2 is fixed, the map si I-+ s1s2 is compact. q 

We can now prove parts (i) and (ii) of Proposition 2.4. For part (i), note that changing 8’ 
or 11 only changes A” by the addition of a smooth term, so the equivalence class of the norm 

TOP 32:4-H 
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Lc.Aa is unaffected. (We already used this fact tattily in (3.7).) For part (ii), the continuity of 
the multiplication map on B follows from the first case of (3.8); the fact that B is a Lie group 
with Lie algebra &a(gE) is standard given this multiplication and the inclusion of LeAa in 

Co. The second case of (3.8) shows that Y acts smoothly on da. The last sentence of part (ii) 
is standard, and really defines irreducibility for us. In passing, note that for any A E d4” the 
difference between V, and V,a (regarded as an operator from L!.** to L[_ 1,Aa for k = 1 or 2) 
is a compact operator. This follows from the rider to the proposition. The same statement 
holds for the associated operators dA and di . 

The third part of Proposition 2.4 requires a slice theorem for the action of 9 on da, and 
this will have to wait until we have developed the elliptic theory. 

As in Section 2(ii), we can now regard u as a parameter in the definition of A”. One 
corollary of (3.7) is that the equivalence class of the norm Lf,p is independent of a. So (as we 
mentioned without proof in Section 2) the gauge group Q is independent of c(, and the space 
&” has the form A” + Sz, where Q is a Banach space which is independent of a also. The 
extended space of connections 

s2= U(W+Q)x{a}) 
01 

can therefore be topologized as the product 51 x (0, f), and the space i is the quotient of 
2 by an action of $9. (Note however that the product structure on 2 is not natural, and the 
action of B is different on each fibre.) 

The difference between the operators PAa for two values of the holonomy, say CL and a’, is 
a multiplication operator by a form whose size is of the order (c1- a’)(l/r) pointwise on X\C. 
It therefore follows from (3.5) that the operators V,, dA and d: vary continuously in 
operator norms as A runs over 2 

(iv) Holonomy on a cone-like metric 

Let us go back to the local model space 2 from subsection (ii) above, but now let us 
equip 2 with the cone-like metric 

g’=du2+dv2+dr2+ L r2d02. 
0 V2 

Let K be the same line bundle as before, and let Lp,, continue to denote the Sobolev spaces 
defined using the covariant derivative V, and the Levi-Civita connection of the original flat 
metric. Let f.kq@(g”) temporarily denote the covariant Sobolev spaces defined using the 
Levi-Civita connection of the metric gy coupled to V,. When considering such norms on 
spaces of forms Q;(K), we shall use the covariant derivative also on A’. 

The norms L[, a and L&,(g”) are not always equivalent, since the Levi-Civita connection 
of gv has holonomy itself, and this may cancel the holonomy in K on some components. 
Whenever this phenomenon occurs, it will eventually be the metric-independent norm 
Li,n with which we shall want to work. Here we find conditions which ensure the 
equivalence of the two families. Recall the saw-tooth function C(M) from Section (ii) above. 

LEMMA 3.9. The norms Lz,, and Lf,,(g’) are equivalent on C&(K) prouided that c(a) 
exceeds (i + k - 1)/v. 

Proof The holonomy of the Levi-Civita connection of g’ acts on the complexified 
cotangent bundle T,*Z with eigenvalues 1 (twice) and exp(+2rri/v). For the action on 
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(T*Z)@ @ A’, the eigenvalues are exp( + 2niP) for various p in the range ) /I I I (i + j)/v. If 
c(a) exceeds the largest such p then the holonomy on all components of 
E’*j = (T*Z)@j @ A;(K) will be non-trivial. Lemma 3.5 then implies that the L:,,(g”) norm 
is equivalent to the WT norm on sections of E’*j in the standard local trivialization. 
Applying this argument k - 1 times proves that, under the hypothesis of the lemma, the 
Li.,(g’) norm is equivalent to the W$ norm on G(K). cl 

4. ELLIPTIC THEORY ON S4 

The basic properties of the anti-self-dual moduli spaces are usually deduced from 
properties of the elliptic operator d: + d: acting on l-forms. One of the first difficulties in 
developing the theory in the context of twisted connections is the apparent possibility that 
this operator is not Fredholm as a map from Ly,., to Lp, at least for smooth Riemannian 
metrics on the base, and that the kernel of d: does not provide a complement to the image of 
dA. It seems likely that the usual elliptic results can be recovered if the operator d* is 
replaced by a suitable weighted adjoint of the operator d, with a weight appropriate to the 
spaces introduced in the previous section. The authors succeeded in carrying this through, 
with a direct analysis of the equations in the case p = 2, as far as establishing the Fredholm 
nature of the linear operator, but the necessary Lp theory for p > 2 appeared too daunting. 

While not doubting that a direct approach could be successful, we have followed 
a different and rather indirect route. There are two ingredients. The first is an idea taken 
from [36], that we can use the constructions of [lo] to compare an orbifold metric with 
a smooth one on X. The second idea is to use a sharp version of Lemma 3.5 to estimate the 
difference between the operators as the holonomy is varied. In this section we deal with the 
local theory by tackling the analysis on S4. 

(i) Estimates on the or&fold 

Let S4 be the unit sphere in IRS, let II3 be the 3-plane in lR5 spanned by the last three 
basis vectors, and let C be the 2-sphere in which II3 meets S4. There is a l-parameter family 
of 4-dimensional half-planes with boundary 1’13 in IRS, uniformly parameterized by an angle 
cp running from 0 to 21~. The form dcp is a l-form as S4\C whose integral on small loops 
linking C is 1. The loci of constant cp are 3-dimensional hemi-spheres in S4, analogous to the 
lines of longitude on the 2-sphere. 

Let the cyclic group 72, of order v act linearly on S4 so that the generator fixes I: and 
increases the angle cp by 27r/v. Let s” be the quotient space and let 8 be the coordinate vcp, 
which is single valued mod 2n on s 4. The integral of df9 on small circles linking C in 5” is 
1 again. On s4\x we put the Riemannian metric i inherited from the round metric on S4. 
Topologically, ,?’ is a sphere, but the metric has an orbifold singularity along C. 

On S4, take the trivial complex line bundle @ x S4 with the product connection. Lift the 
action of Z, to this line bundle by making the generator act as eZniai” on the fibre. The 
number a should be an integer in the range 1 < a < v. Taking the quotient by Z,, we obtain 
a line bundle K on i4\C with a connection whose holonomy is non-trivial: in some global 
trivialization of K, the connection l-form is icrodO, where 

We shall write V,, for this covariant derivative, and we let d,, and d& stand for the usual 
operators in the complex 

Q’(K)k R’(K) dt, -R+(K). 
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The formal adjoint of d,, for the metric Q will be written d,*,. 
Until Section (iii) below, when considering the covariant derivatives on n’(K) we shall 

have in mind that the Levi-Civita connection of the orbifold metric g is used. We shall write 
?., for the Levi-Civita connection coupled to V,,. With this said, let T be the kernel of 
db*, acting on the completion of R’(K) in the norm 

II a IIT = II qaoa IIP, 

and consider the operator 

d&IT-, Lp(s4,A+(K)). 

This operator is invertible since it can be regarded as just the &invariant part of the 
corresponding operator with trivial coefficients on the smooth S4 upstairs (the latter 
operator is invertible since S4 has no first or second cohomology). Let Q., denote the 
inverse. We need to estimate the operator norm of Q.,. 

LEMMA 4.1. The operator norm of Q., on the spaces above is bounded by M,&, where M, 
is a constant which can be taken to be independent v and u and tends to 1 as p tends to 2. 

ProoJ It is sufficient to estimate the norm of the operator Q upstairs on S4, for this will 
bound the norm of Qa, for all v and aO. Further, it suffices to estimate the norm in the case 
p = 2, because the estimate for nearby p follows by interpolation (cf. [lo]). On the kernel of 
d* on Sz’ (S4), the Weitzenbiick formula [13] reads 

V*Va = 2d*d+a - Ricci(a), 

and since the Ricci curvature is positive on S4 we obtain 

IlVa/I~~211dtall~ 

by integration by parts. This gives the desired estimate. 0 

There is a second operator whose norm we need to estimate before leaving the simple 
orbifold. Let Rf be the operator 

R+ : T + Lp(i4, A+ (K)) 

a--, (a A de)+, 

and let R- be defined similarly. The fact that these are bounded comes from (3.5). Let c(a) 
again denote the saw-tooth function, and suppose that l/v is less than c(u,,). 

LEMMA 4.2. lf l/v is less than c(a), the operator norms of R’ and R- are bounded by 

N,l(fi(c(a) - l/v)), h w ere Np is a constant which tends to 1 as p tends to 2. 

Proof Again, it is enough ti treat the case p = 2. The number c(u) is equal to the 
absolute value of smallest eigenvalue of the operator a, of (3.5) acting on functions on the 
unit circle S’. So, since 1 de ( = 1 on S ‘, we have 

II &f@ do II2 2 c(@ II ./-de II ‘1 

for the Lz norms. If we replace functionsf by l-forms, we have to take account of the fact 
that the Levi-Civita connection for 3 has holonomy on some components of A’; as in the 
proof of (3.9), this shifts a by + l/v. So we have 

IId,aOdB/122(c(a)- l/v)*/Ia A dBI12, 
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This estimate is independent of the size of the circle; so by integrating over the circles which 
make up s” we obtain 

_ 
II V,a II > (c(a) - l/v) II a A a Il. 

The extra factor of fi arises because R’ (a) and R- (a) are orthogonal 2-forms of equal 
length whose sum is a A de, and the self-dual and anti-self-dual parts of a decomposable 
2-form have the same magnitude. 0 

(ii) Changing the conformal structure 

We now bring in the device used in [IO]. Let g be some other metric on i”\C, different 
from jr. (We have in mind later that g will be a metric with a more open cone-angle than i, 
but we keep the discussion general for now.) Only the conformal class of g is material. 

We continue to use R+ and K to denote the self-dual and anti-self-dual spaces for the 
metric 5, and we write P+ and P- for the projections. The anti-self-dual subspace for the 
metric g can be represented as the graph of a unique linear map 

defined by a bundle map whose pointwise operator norm is everywhere less than 1 [lo]. We 
shall suppose that there is a uniform upper bound ( p ( which is strictly less than 1. The map 
p encodes the conformal structure of g (see [7]), so we can dispense with g and think only of 
,u as given. The anti-self-dual subspace for the new conformal structure is the kernel of 
P’ - ,uP-. We consider the operator 

d,+,S,=d,+,-yod,:T-+ n+(K). 

If we identify the self-dual space for p with R+ by the projection, then this operator is the 
anti-self-duality operator d+ for the new conformal structure. The norms on T and sZ+ (K) 
are still defined using the metric 5. 

Write S for the operator d&, 0 Q=,:n’(K) + n-(K). The next lemma is from [lo]. 

LEMMA 4.3. The operator norm of S on Lp is bounded by a constant C, which tends to 1 as 
p approaches 2. This constant can be taken to be independent of v and ao. 

Proof For the operators with trivial coefficients on S 4, this is (2.14) from [lo]. Take the 
+,-invariant part to obtain this version of the result. cl 

From now on we shall suppose that p is sufficiently close to 2 to ensure that C, 1 ,u ) is 
strictly less than 1, where C, is the constant in the lemma above. 

LEMMA 4.4. If C,] ,u 1 is less than 1, the operator d&, is invertible. The operator norm of 

its inverse QolO,,, is bounded above by M,,/?(l - C,) ~1 )-I, where Mp is the constant from 
Lemma 4.1. 

Proof: (This follows [lo].) The number C,( ,U 1 bounds the operator norm of 

poS:R+(K) --) a+(K) 

in Lp. So if this number is less than 1 then (1 - pts) is invertible by a power series: 

(l-$i)-‘=l+@+(@)Z+... . 

An estimate for the norm of this inverse is (1 - C,l p 1)) I. Combining this with Lemma 4.1 



792 P. B. Kronheimer and T. S. Mrowka 

we obtain the bound M,$(l - C,J p I)- 1 for the norm of the operator Qa, (1 - pS)- r, 
which is the inverse of d&, c. q 

Now we get to the main point, which is to change the holonomy angle away from the 
orbifold value a/v. Let IX = c1,, + y, with y considered small. A connection 9, with this 
holonomy is obtained from V,, by addiing the connection l-form iy d6. The corresponding 
anti-self-duality operator for the metric jr is 

dJ = d,‘, + iy R+ : T + Q+ (K), 

while for the conformal structure p we have 

d+ = d+ 0I.c E,,.p + W+-@-). 

For small y we can regard this operator as a perturbation of the operator d&, which we 
already know to be invertible with inverse Q.,,,. The power series for the inverse of the 
perturbed operator will converge provided that the operator norm of 

is less than 1. The operator norm of R+ - /AR- is bounded by (1 + ( p ( ) times the constant 
in Lemma 4.2 as long as c(cqJ exceeds l/v; for the other factor QaO,, we have the estimate 
(4.4). Putting together these estimates, we deduce: 

LEMMA 4.5. The operator d& with u = c(~ + y is invertible provided that c(uO) exceeds l/v 
and 

IYI 
MPNP (1 + IPI) 

(4%) - l/v) (1 - WI)< l. 

cl 

(iii) Application to the smooth metric 

As a particular case, we now take g to be a metric on S4 which makes this topological 
sphere look like a round sphere of unit radius. This g just stretches the 8 directions by 
a factor of v compared to 6. Conformally, the metric 5 is the same as the metric on R4\ R2 
given by 

du2 + dv2 + dr2 + 

The new conformal structure [g] will just lose the factor of v2 in the denominator; so the 
conformal structure is that of the flat metric on R4 or the round one on S4. For the metric 
displayed above, an orthonormal basis of l-forms at any point is given by 

e, = du, e2 = dv, e3 = dr, e4 = 
0 

1: d9, 
V 

and the map p which corresponds to [g] is easily calculated in these terms; we have 

v-l 
p(eIe2 - e3e4) = - v+l (ele2 + e3e4) ( ) 

because the form 

v-l 
(ele2 - e3e4) - - ( ) 2 

v+l 
(ele2 + e3e4) = - ( 1 v+l 

(ele2 - Ve3e4) 
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is anti-self-dual for g. There are similar expressions for the other basis vectors of Sz-, and the 
norm of p is therefore 

Substituting this value into the estimate in Lemma 4.5, we find that the differential operator 
is invertible as long as 

Since the three unknown constants approach 1 as p approaches 2, the right hand side is 
eventually greater than 0.9(c(a0) - l/v)/v when p tends to 2 with v and a0 fixed. This proves: 

PROPOSITION 4.6. There is a positive number n(v) such that for all p with 1 p - 21 < n(v) the 
operator d,:, is invertible for a in the range 

u 

We now shift our point of view. The space s4 depends on an integer v, but the geometry 
of this space equipped with the metric g is independent of v: it looks like the round sphere. 
So let S now be a fixed round sphere containing a standard S 2, and let us identify each of the 
spaces (s4, g)y isometrically with S. We have a line bundle K on S which we regard as the 
trivial bundle equipped with the connection iad9. The space of forms T on s” becomes 
identified with a space of forms on S which depends on v and on a. Let us denote this space 

by T,.,. 
The round metric on S defines a Levi-Civita connection which, coupled to the connec- 

tion on K, defines an LT,, norm on Q;(K) and an Lq,, norm on Q’(K). According to (3.9) 
these two norms are equivalent to those defined by the orbifold derivative t, provided that 
c(a) > l/v. 

We now let d: stand for the usual anti-self-duality operator for the round metric; this 
operator is equivalent to the operator d& considered in the proposition above. We have as 
usual the complex 

R:(K++Q$(K) d.f - Qf (K) (4.7) 

and we can translate Proposition 4.6 as follows: 

PROPOSITION 4.8. Consider the complex (4.7)for the round metric on the sphere, and let the 
three spaces be completed in the topologies L$,,, LT., and Lp. Suppose there exist integers 
a and v such that, with a0 = a/v, we have 

c(a) > l/v 

c&o) ’ W 

Suppose also that I p - 21 < n(v). Then the operator d,’ has a bounded right inverse Q mapping 
to the space T,,,, which is a closed complement to the image ofd,. 0 
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We now see that for each rational number a/v in the interval (0, 1) there is an open 
neighbourhood of acceptable values for the holonomy cc To tie things up, we observe that 
these open intervals cover the whole of (0, 1): 

LEMMA 4.9. For each a~(0, 1) there exists a rational number r,, = aJv such that the three 
inequalities displayed in (4.8) are satisfied. 

Proof Take a = 3 and consider the sequence of values a0 = 3/v, for v = 6,7,. . . . For 
c( I 4, we have c(a) = o! and the conditions are satisfied as long as 

( a - (3/v) ( < 13/v*. 

Since the distance between 3/v and 3/(v + 1) is 3/v(v + l), which is less than 
1.8(1/v’ + l/(v + l)‘), the adjacent intervals overlap, so covering the whole of the bottom 
half of the interval (0, 1). The top half is covered similarly by taking a = v - 3. 0 

Remark. There is nothing too delicate in this. We can replace 0.9 by any positive 
constant bigger than 9 ’ m (4.8) without spoiling the proof of (4.9); it is only necessary to 
replace the choice a = 3 in the proof by a larger integer. If we are prepared to sacrifice some 
explicitness in approximating reals by rationals then any non-zero constant E can replace 
0.9. The main thing is to approximate a real a with a rational a/v with 

For this problem, with c1 fixed, we can replace (a - 1)/v by a constant, and so consider the 
problem as one of approximating c( by a/v with ) u - a/v) < 6/v, for some small 6. The 
existence of such an approximation is standard: it is the statement that the multiples of any 
irrational number, taken mod 1, are dense in the unit interval. 

We now return to considering an SU(2) bundle E = L @ L-’ on S\S’, where L is the 
trivial line bundle carrying the connection with holonomy parameter IX. The Lie algebra 
bundle gE splits as R @ L.‘, where L2 has holonomy 2~. We now take tl in the range (0, t), 
and take L2 as the K of the Proposition (4.8) (so there is a factor of 2 between the present 
c1 and that above). Let A” denote the SU(2) connection, and let L:$” be the covariant 
Sobolev norms defined in Section 3. Consider the usual complex 

This is the sum of two complexes corresponding to the decomposition of gE. The (w sum- 
mand poses no problems: the kernel of the formal adjoint d* for the round metric provides 
a complement to the image of d on which d+ is invertible. For the L2 summand we use the 
results above. Putting things together we obtain: 

PROPOSITION 4.11. Let the spaces offorms in (4.10) be completed in the norms Lc,*=, LyxA1 
and Lp respectively. Then there exists a continuous positive function n(a) on the interval (0, f) 
such thatfor all p with 1 p - 2 ) < q(a) the operator d,‘for the round metric has a right inverse 
Q mapping to a closed complement T of Im(d,.). 7’he space T depends on a, but for any a there 
is an open neighbourhoodfor which the same Twill serve, and in this region the operator norm 
of Q is uniformly bounded. Both Q and T are independent of p in the admissible range. 0 

The phrase “independent of p” is meant with the understanding that the Lp spaces are 
contained one in another. This rider to the proposition implies a little elliptic regularity for 
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the operator din on T. Sa, for example, suppose p 2 4 are two numbers close to 2; then we 
have: 

LEMMA 4.12. Let a ER’ (gE) be of class L:,An, with din a in Lr. Then there is a u E L;.,. with 
a - dAnuE Ly,A=. q 

The construction of the complement T seems artificial, and it is worth spelling it out 
again. Consider the decomposition of gE into diagonal and off-diagonal parts. Let d’ be the 
usual d* operator for the round metric, acting on the diagonal summand; and let d2 be the 
formal adjoint of dzao with respect to the orbifold metric, acting on the off-diagonal 
summand. Let d’ be the operator. 

d’ = d’ 0 d2:@(gE) + C?‘(gE). (4.13) 

Our slice Tin the complex (4.10) is defined as the kernel of d’, in which 2cro is a rational 
approximation to 2a satisfying the conditions of (4.8). Thus, on the off-diagonal part, it is 
the kernel of an operator defined using a different metric and a connection with a different 
holonomy. The second of these two features is probably an unnecessary artifact of our line 
of argument, but the need to avoid the usual Coulomb condition seems to be real. 

(iv) Intermediate cone-angles 

Although we have pursued the argument only for the smooth metric on the sphere, we 
could instead have stretched out the metric 6 by a smaller factor, and so obtained the same 
results for any cone-angle less than 27~. Let c > 1 be some fixed number, and let v large 
integer as before, greater than c. Form the same orbifold j’ with an orbifold metric of 
cone-angle 27c/v. Let g be the metric obtained by dilating the 0 directions by a factor of v/c, 
so g has cone-angle 3. The new conformal structure is related to i by a map fi : A- + At 

which has norm 

This is smaller than the norm of the p in the previous section, so the estimates become more 
favourable. Let d’ be defined again as in (4.13), with d’ still being the formal adjoint with 
respect to the round metric (neither g nor 6). Then we have 

PROPOSITION 4.14. The statements of Propositions 4.11 and 4.12 continue to hold when the 
operator d,h is defined using the cone-like metric Q in place of the round metric on the sphere. In 
Proposition 4.11, the transverse slice T is still provided by the kernel of d’, as in (4.13). 

Proof When gE is decomposed again as R @ L2, the result for the off-diagonal part L2 
follows as above. The diagonal summand R is now a little different, since we are using the 
slice defined by the formal adjoint for the round metric while the anti-self-duality condition 
is defined with respect to the metric g. The required Fredholm property here follows from 
another application of the idea we have already used from [lo]: we regard the conformal 
structure @ as being obtained by deforming the round metric. (This is the same application 
as was made by Wang in [36].) cl 

(v) An alternative approach : stronger norms 

If we are satisfied with developing a theory which is valid only for a in a specified, 
compact subinterval, and if we are content with cone-like metrics, then we can simplify the 
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constructions of Section (iii) considerably: the standard L2 adjoint d* will define a slice, and 
we can use the stronger Sobolev norms Li, for fixed, large k. We outline the argument in this 
section. 

We take a large integer v and go back to the orbifold s” = S4/h, with the metric 5. We 
define K again, with its connection VaO for a0 = a/v, as in Section (i) above. Again, we insist 
that 0 < a < v, so the holonomy is non-trivial. We define Sobolev norms L[,,, for 
1 < p -=z cc, now using the connection VdO coupled Levi-Civita connection of the orbifold 
metric g (so these are the norms we called Lkp(g”) in Section 3(iv)). These norms are 
equivalent to the usual Sobolev norms on the branched cover, restricted to the subspace 
which is invariant under the weight a action of Z,. The differential operators are also just 
invariant parts of those of S4. This immediately implies: 

LEMMA 4.15. The operator 

.9=, = d,*,,d,f,:!2’(K) -+ SI”(K)@R+(K), 

considered as acting from if,., to Lg- l,ao, has an inverse Q whose operator norm is bounded 
by a constant Nk,r which depends on k and p but is independent of v and ao. 

(Note that although the operator 9 is not surjective for trivial coefficients on S4, it is 
surjective on the invariant part of weight a for a # 0. So there is no need to qualify Lemma 
4.8 with a statement of a Fredholm alternative.) 

LEMMA 4.16. Let aE(0, 1) and an integer k be given. Then for all v > k/c(a) the multiplica- 
tion operator on n’(K) defined by 

is bounded as a mapfrom L[,, to ii_ l,a, and the bound is of the form M,Jc(a) - k/v), where 
Mksg is independent of v and a, and c is the saw-tooth function defined previously. 

Proof: The pointwise norm of dg is l/r, so this lemma follows from (3.9) in the case 
i= 1. q 

Once more, we set a = a0 + y, and we consider the operator 58= as a perturbation of se,,. 
We can write 

where P is a multiplication operator which satisfies bounds of the same order as the 
multiplication operator in Lemma 4.9 up to some overall algebraic factor. Adjusting the 
constant M,_ accordingly, we see that ga, is going to be invertible as long as 

, y, < (c(a0) - k/v) 
Nk,p”k,p 

We mention also that we can apply the same argument to the formal adjoint 9:. So we 
have an interval surrounding the value a0 = a/v for which the theory works. The radius of 
this interval exceeds l/v provided that 

c (ao) > (Nk, $‘fk. p + Q/v, 

and we can make the right-hand side less than any given E by taking v to be large. In that 
case, the union of the intervals centred on l/v, 2/v, . . . covers the subinterval of (0, 1) defined 
by the condition c(a) 2 E: i.e., the subinterval [E, 1 - E]. 
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Finally, we switch back to the case of the SU(2) bundle L @ L-l, where L has holonomy 
CCE(O, &, and we consider the operator gan for the connection A” on gE. We write i[,n for 
the Sobolev norms obtained using the orbifold Levi-Civita connection. 

PROPOSITION 4.17. Given any compact subinterval I c (0, *) and any p and k,,, there exists 
a v0 such that for all a E I, all v 2 v0 and all k I kO, the elliptic theory for 2** “works” on the 
Sobolev spaces LF,,= (gE) over the orbifold S4 = S4/E,. That is, both 9Aa and itsformal adjoint 
are Fredholm, actingfrom L,” to Lj_ 1, the kernel of g4= is trivial, its cokernel consists of the 
constant diagonal matrices in Q”(gE), and the Fredholm alternative holds. 0 

From this proposition, elliptic regularity follows for both sA= and its adjoint. For 
example, if a is in L2(R’ (gE)) on s” and satisfies D,aa = n formally, with q E L,$a, then a is in 

&‘+ 1.A‘. This is because the proposition gives us some solution a” E L,!+ ,,Am to the equation 
$@A”6 = q, and it follows that a = ii,. If a is only defined on an open subset U c s’ then we 
multiply a by a cut-off function $ of class L’ k+l to deduce the statement of local elliptic 
regularity by a boot-strapping argument. The remaining point worth noting is that (4.17) 
also tells us that the second-order operator s:=&3,.,m is Fredholm with kernel and cokernel 
equal to the constants, and this operator also satisfies the usual statement of elliptic 
regularity for formal L2 solutions. 

(vq Hodge theory for the de Rham complex 

The argument of the previous subsection extends to other operators. Again take the 
bundle gE with the connection A” over (s4, i), and let Q’(g,) denote the complement in 
Q*(g,) of the constant forms in Q” and f14. The operator 

d,*. + dA* : Q’(gE) + Q’(g,) 

in the topology Ly,,. -+ Lp is invertible in the case that the holonomy is a/v; this comes from 
upstairs again. Just as in 4.17, if an interval I is given, we can argue that for large v the 
operator will be invertible for all a in I. 

The value of v affects the operator d* through the metric 6, but the de Rham complex 
itself (and the LT norm, up to equivalence, once v is large) do not see the metric. So, using the 
metric-dependent d* as a prop, we deduce: 

PROPOSITION 4.18. Let o Eni be of class Lq, and suppose dAaco is in Lp in the 
distributional sense, with 1 < p,q < co . Let the exponents be such as to ensure that Li c Lq. 
Then there exists a ~~52’-‘(g,) of class Lf,*= such that w - dXE LTAa, 0 

5. GLOBAL THEORY 

We now have all the machinery in place to prove the propositions of Section 2, with the 
exception of the dimension formula, which we postpone to Section 6. The local elliptic 
theory of Section 4 allows us to develop the global theory in more than one way. This 
reflects the fact that, if we take the standard elliptic complex 

for the model twisted connection A” on (S4, S2), then there is more than one way in which 
we can complete the spaces to obtain a Fredholm complex of Banach spaces. 

First, if d+ is defined with respect to the round conformal structure, then the three spaces 
can be completed in the topologies L:A=, Lt Aa and Lp respectively, for some p depending on 
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cr; this is the content of(4.11). If we take p a little bigger than 2 then the functions in L;,*” are 
continuous, so the non-linear aspects of the gauge theory can be developed and the results 
transferred to an arbitrary pair (X, C). This is the framework outlined in Section 2; it is the 
most natural and general of these settings, and its details will occupy us for parts (i)-(iii) of 
this section. 

Next, if we put a cone-like metric jr on (S4, S ‘), with cone-angle 2n/v for some arbitrary 
real v greater than 1, and if d’ is the corresponding operator, then the complex is again 
Fredholm, with the same completions of the spaces as above. This is the content of (4.14), 
and it allows us to develop the theory for a pair (X, C) equipped with a cone-like metric, as 
promised in Proposition 2.9. Since the necessary modifications to the argument are very 
small, we will not go through the details. 

Finally, if v is an integer, then we can complete the spaces in the topologies L,‘, 1,Aa, Lf.An 
and L,‘_ ,,,,’ , for some k 2 2, as in Section 4(v). This gives rise to a more elementary theory. 
However, the holonomy parameter c1 is then restricted to lie in some compact sub-interval 
I c (0, i), which depends on v. We shall sketch some of the necessary construction in part 
(iv) below, and we shall see that the moduli spaces which arise are not different from those 
which are obtained using the other completion. 

(3 Mod&i spaces 

We consider the set-up of Section 2: X is a smooth, closed I-manifold with an embedded 
surface C and a smooth metric g; on X \Z we have an SU(2) bundle E with a model twisted 
connection A” having holonomy parameter SI E (0, f); and we define d” and 9 as before, 
fixing. an exponent p a little bigger than 2. As in (4.8), there is a rational number c(~ = a/v 
such that ) a - cc0 1 satisfies the necessary bounds, and we shall suppose p is chosen so that 
p - 2 < q(v). Let q be the conjugate exponent; this is a little less than 2, and 1 q - 2 1 < q(v) 

also. 
Since the elliptic theory given by (4.11) does not deal with the usual operator d:, we 

develop the global theory on the basis of having a parametrix for the operator d+. In this we 
follow [lo], and the exposition below is modeled closely on Section 4 of that paper, to 
which the reader can turn for more details at several points. 

Let A be a connection in G’” and consider the operators 

TC!JA T.&‘d;‘g”, (5.1) 

where the three spaces are the completions of Q”(gE), Q’(g,) and R+ (gE) in the L;,A=, 
Ly,An and Lp topologies respectively. (These operators do not form a complex if A is not 
anti-self-dual.) The results of Section 3 imply that the norms L:., for k = 1,2 are equivalent 
to the Lf,Av norms, since A” - A is in Ly,A= and the multiplication theorems (3.8) apply. The 
same multiplication theorems show that the operators are bounded. It also follows immedi- 
ately that the image of dA is closed, its kernel is the space of covariant constant sections, 
which is either 0 or 1 dimensional. 

LEMMA 5.2. The operator di has a right parametrix P, i.e. an operator P: ?F -+ TsfQ such 
that dl P = 1 + K, with K compact. 

Proof: (See [lo], p. 210.) Cover X (not X\C) with open sets Ui. We can arrange that 
these are of two types: the first type meet C and are such that the pairs (Ui, Ui n C) are 
diffeomorphic to a standard ball-pair inside (S4, S’), with the metric being nearly Euclid- 
ean; the second type are disjoint from C, and the metric on these is also to be close to the 
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Euclidean one. On each patch Ui, choose a trivialization of the bundle so as to express the 
connection as 

dA = dAO + a. 

If ZJi is of the first type then A,, is to be the model a-twisted connection on (S4, S’); 
otherwise, A, is to be the trivial connection. In either case, a is in ,Cf,A,. 

Next construct local inversion operators Qi for the operators diO. Let { Vi} be a slight 
shrinking of the cover {Vi}, and let pi be a cut-off function, equal to 1 on Vi and supported 
in Ui. After identifying Ui with a ball in S 4, define an operator Qi acting on sections of 
A’(gE) over Ui by 

Qi(W)= Q(BPh 

Here Q is the operator provided by (4.11) if Ui is of the first type; otherwise it is the standard 
operator for trivial coefficients on S4. In either case, Qi maps Lp to Lf,A, continuously, and 
we have 

dA+,Qi(w) = o on Ui. 

(We should note that the proof of (4.11) shows that the proposition remains valid for metrics 
which are close to the round one on S4.) 

Let {vi} be a smooth partition of unity subordinate to {Ui) and define 

P(O) = CYiQi(w IV,). 

Then, as in [lo], we compute: 

+ 1 (VYJQi(w IUJ 

= TYiwl,: + C Ki(o) 

I 

where Ki(w) = (yia+ + VYi)Qi(o),C), Here a’ denotes the operator b F+ (a A b)+. 
The coefficient R = (yia’ +Vyi) is in Ly.AI, so the corresponding multiplication map 

R:Lf’,a -+ Lp 

is compact by (3.8). This shows that each Ki is compact and proves the lemma, with 
K = ZiKi. Cl 

COROLLARY 5.3. The image of di has jinite codimension. a 

Let H c B denote the space of coupled self-dual harmonic forms of class Lp, the kernel 
of dA on F, and let H’ be its annihilator in 9 under the Lz inner product. 

LEMMA 5.4. The image of d: is equal to HI and the cokernel is isomorphic to H. The 
operator has a bounded right inverse QA: Hi + Tzl”. 

Proof: The image is the annihilator of the space of coupled self-dual harnominc forms of 
class Lq (the dual exponent). So the first sentence follows if we show that the Lq harmonic 
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forms are all in Lp. Again, a model for this regularity results is in [lo], on p. 211. In local 
charts the equation is 

(dAm + a)w = 0, 

with a 6 Ly,.. The multiplication theorems give ao, and hence dA.u in L4’3. So by the 
Hodge theory (4.18) there is a XE L;l,Ar with 

o + dXELf’3 c L2 

over a smaller open set. Since o is self-dual, dig is in L2; so using (4.12) we may alter x by an 
exact l-form so that 2 E Lf,AE. This shows that w E L2. Repeat the whole thing to get w E Lp at 
the next iteration. 

Given the parametrix (5.2), the construction of the one-sided inverse is standard; see 
[lo] for the model. 0 

LEMMA 5.5. ([lo], Lemma 4.14). For each A in da, the image of dA has a closed 
complement T, c T&“. 

Proof. Lacking the usual d;, we exploit the operator QA as in [lo]. Let S = Im(Q,), and 
consider the intersection and sum: 

S n Imd, 

S + ImdA. 

The claim is that these have finite dimension and finite codimension respectively in T&‘. If 
this is established, the result follows, since a finite-dimensional modification of S will give 
the required transversal. We show first that ImdA is closed. This follows if we show that, on 
any complement C to the finite-dimensional space of covariant constant sections, the norm 
on TB is equivalent to the norm 11 dAu lip,. All that is at stake is to show that, if ui is 
a sequence in 799 which converges weakly to zero while d*Ui converges strongly to zero in 

LT..4 norm, then ui converges to zero strongly in Lp. Using Lemma 3.5, the hypothesis 
implies that dxOUi is bounded in the ordinary Sobolev space Lf defined by the smooth 
connection, and the existence of a strongly convergent Lp subsequence is then standard. 

For the intersection, let ai be a sequence in S n Imd,, so 

aj = dAUi = QAll/i, 

and suppose II ai IL;,, = 1. Since the inclusion of L;,, in Co is compact, we may suppose the 
ui converge in Co. Then d: aj = [Fi , UJ = I)~ is Lp convergent, so ai = QA(tii) converges in 
the LT.., topology of Tkd”. 

Now we turn to the sum. First note that Ker(d:) is a transversal to S. In the case that 
A is anti-self-dual, the composite di dA is zero, so the image of dA is contained in Ker(di) 
and the codimension of S + Imd, is equal to the dimension of the cohomology 
Ker(di)/Im(d,). For general A, this description is not available as it stands. Following [lo] 
we introduce the operator 

Here F + is thought of as an algebraic operator, the composite d+d, as above. The operator 
bA is a compact perturbation of dA, and it is set up just so that the composite d,’ BA is zero. 

To complete the proof of the lemma, we need to show that Ker(di)/Im@,) is finite 
dimensional. This means that given a sequence {ai) in Ker(di ) with (1 ai (IL:,, = 1, we must 
find a sequence {ui) such that {ai - SAni) has a convergent subsequence. As with the proof 
of (5.2), the Ui are constructed by a patching construction, covering X by open sets and 
applying (4.12) locally. A model can be found in [lo]. 0 
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PROPOSITION 5.6. The orbit space W = d”/Y is a Hausdor-space. The space of irredu- 
cible connections (9)* is a Banach manifold, with a local chart at [A] being provided by the 
projection map from A + TA to $3’“. 

Proof: Entirely standard, now that we have the slice. q 

Now let M c 9? be the moduli space of anti-self-dual connections, and let [A] E M. If 
[A] is an irreducible connection then a neighbourhood of [A] in M is modeled on the zero 
set of a smooth map (see Section 3) 0: T, --) 9. The derivative of @ is 

d; : TA -+ 9, 

and the construction of T, as a finite-dimensional modification of the image of QA shows 
that d: is Fredholm on these spaces. It follows as usual that the neighbourhood is 
homeomorphic to the zero-set of a smooth map between finite-dimensional spaces, 

where the H: are the cohomology groups of (5.1) (which is a complex when A is anti- 
self-dual). We also have the familiar description of the neighbourhoods in the case that A is 
reducible: the map q is equivariant, and the model is cp-‘(0)/S’. 

Next we turn to the matter of showing that the moduli space M is independent of p, as 
asserted in part (i) of Proposition 2.5. Suppose 2 -C p’ < p < 2 + q, and let d’, 9’ and M’ be 
the objects corresponding to p’. It is an elementary matter that if two connections in ZX?’ are 
gauge equivalent by a g EB’, then g is actually in 9 (i.e., has the regularity of LEAa). So there 
is a natural injective map from M to M’. To show surjectivity, let A’ E &’ be an anti-self-dual 
connection and let us seek a gauge-equivalent connection in da. First, since d” is dense in 
AZ’, we can find a nearby connection B of class Lf.,,=. There is a gauge transformation which 
carries B into TA,; or thinking of this another way, there is a connection A, gauge-equivalent 
to A’, with BE T,. Write B = A + a. Since T, is constructed as a finite-dimensional 
modification of the image of Q,.,, we have 

a=Q,d+a+s, 

where s is regular (say of class L f.,=). On the other hand, we have 

d+a = Fi + (a A a)+, 

and using the multiplication theorems gives 

where 

2P’ 
P* = 4 _ p, - > p’ + (p’ - 2). 

Since QA maps Lp to Lf,AO, this now shows that a is in LtA= (if p* > p) or in Ly.zS otherwise, in 
any case giving an improvement on p’. By repeated application of the argument we 
eventually reach p, showing that A = B - a is in d”. 

So the natural map from M to M’ is a continuous bijection. The gauge transformation in 
the argument above can be made a continuous function of a in small patches, so the inverse 
map is continuous too. cl 

The extended moduli spaces ti now give us no problem. Given a compact subinterval 
I c (0, & we can find a p less than the minimum value of 2 + ~(a) and construct the space 
& over I. On the irreducible set A$ *, local charts are obtained using the transversals 
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TA x [w c Tim. Inside 2 is the moduli space, modeled on the zero-set of a map 
^ 
@:T,@R+ 9. 

Since the moduli space is independent of p, we can take the union over increasing intervals 
I to obtain G. 

(ii) The Chern- Weif formula 

This is a convenient moment to take up the Chern-Weil formula mentioned in the 
Introduction (1.7) as we will need part of the discussion in the section to follow, when we 
talk about reducible solutions. 

Let k and I again denote the instanton and monopole numbers of a model twisted 
connection A”. 

PROPOSITION 5.7. For all A ES?’ we have the formula 

1 

-4 g7r2 x\z 
tr(F,~F,)=k+2aE-~2C~~. 

Proof. We begin by proving the formula for the model A” in the simple case that A” is 
globally reducible. So we suppose that ,!? = L @ E* globally, that 6 is a smooth connection 
on L and that A” is reducible as 

where 
b, = 6 + iccfl(r)q. 

Here, as in Section 2, p(r) is a cut-off function and iv is a connection l-form on the normal 
circle bundle to C. As we have already mentioned, the closed 2-form d(ijI(r)q) extends 
smoothly across C, since near Z where fi = 1 it is the pull back from C of the curvature form 
of the connection iv]. We see from this description that the form 

integrates on X to give YE * C, the degree of the normal bundle. Since the second cohomology 
of the neighbourhood is l-dimensional, it follows that this closed 2-form represents the 
Poincare dual of E (see [S] for this construction of the Thorn class). In de Rham cohomol- 
ogy we therefore have 

& [db,] = & [db] + CY[C] 

= cl(L) + a[C]. 

Denoting the form on the left-hand side by w, we now calculate the left hand side in (5.7) 
as 

- <o A 0,X) = - c,(L)2 - 2q(L)[C] - cr2cq2 

=k+2al-a’Z.C, 

since c,(E) = - c,(L)‘. 
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Although this calculation is global, it has an interpretation locally on N.. Let Y, c N be 
the 3-manifold circle bundle over C given by I = E, and consider the Chern-Simons integral 
(see e.g. [9]) 

The integral depends only on the homotopy class of the trivialization of the bundle on Y, 
with respect to which the connection matrix A is computed. But on Y, there is a distin- 
guished trivialization, the one which extends to N, so r, can be defined as a real number. If 
X, denotes the complement of the s-neighbourhood of C (a manifold with boundary Y,), 
then the theory of the Chern-Simons invariant gives us 

1 
- tr(FAAFA)=k+z,, 

s gn2 x, 

so the calculation above for the reducible solution tells us that 

lim z, = 2x1 - ~1~ C * C. 
&-‘O 

This local statement can now be applied elsewhere, so, by applying the above argument 
in reverse, we can conclude that the Chern-Weil formula (5.7) holds whenever A is 
a connection which is smooth and reducible near to Z:. Since such connections are dense in 
ZP and the curvature integral is a continuous function of A in the Lr.AS topology, the result 
follows. 0 

The Chern-Weil formula has a simple corollary: 

COROLLARY 5.8. If X is simply-connected and C* I? is square-free, then the fundamental 
group of X\C has no non-trivial representations in SU(2). 

ProoJ: Write n for the self-intersection number. Suppose there were a non-trivial repres- 
entation, and let A be the corresponding flat connection. Consider the restriction of A to Y, 
and the holonomy around the circle fibre. Since the conjugacy class of the circle generates 
the fundamental group of X \C, the holonomy cannot be 1. Nor can it be - 1 since the class 
of C cannot be a multiple of 2. So the holonomy is 

exp 2ni - 
a 0 ( > 0 c! ’ 

with c1~(0, f). Since the circle’s class is central in rrr(Y,) and its nth power is a product of 
commutators, the representation must be reducible on Y, and c1 must be of the form a/n 
[34]. We can regard A now as one of our model connections corresponding to some pair 
(k, I). The formula for the cohomology class of the form w in the proof of the previous 
proposition gives 

(w,Z)= -l+aC*C, 

and since o = 0 (the bundle being flat) we see that 1 = a. Since the action is zero, the 
Chern-Weil formula gives 

k= -2a1+u2C*C 

=- a2/n. 

So a’/n is an integer, which is impossible if n is square-free and a < n. q 

TOP 32:4-I 
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Some of the arithmetic in this proof is worth extracting as a separate proposition, for 
future reference. 

PROPOSITION 5.9. Let the self-intersection number of Z be n # 0 and let A be a flat 
cr-twisted connection. Then the holonomy parameter c1 is of the form a/n and the instanton and 
monopole numbers are given by 

l=a 

k = - a2Jn 

If on the other hand C* C is zero, then k and 1 are zero also. 0 

Remark. The result (5.8) is also true for SO(3) representations. The authors know of no 
example of an embedded surface satisfying the hypotheses of the theorem for which the 
fundamental group of the complement is non-trivial. 

As another application of the Chern-Weil formula, we can tie up a loose end from 
Section 2(iv): 

Proof of Lemma 2.12. The original connection A and its half-twisted companion 
A’ = A @I 4 have the same curvature, so from the Chern-Weil formula it follows that the 
invariants (a’, k’, I’) of A’ are related to the invariants of A by 

k + 2cr[ - a2 C - C = k’ + 2c(‘I’ - (E’)~ I: - C. 

We have already noted the relation ~1’ = 3 - u. As for k’ and l’, since the construction can be 
made continuously as M varies in (0, $), they must be independent of a. We can therefore 
substitute (Y’ = : - (Y in the formula above and then equate coefficients of c1 and the constant 
term. This gives 

and 
k= k’+ r-4X.X, 

which are equivalent to the formulae in the lemma. q 

(iii) Transversality 

We now establish the transversality results (2.6), sketching an appropriate variant of the 
usual proof [13]. Details for this version of the argument are in [9], Let U be an open 
domain in X whose closure is disjoint from C. Let g be a fixed, smooth metric on X and let 
%? be the space of all conformal classes of C’ metrics which differ from g only in the open set 
U. The integer r is chosen to be larger (by 2) than the degree of differentiability occurring in 
any of the Sobolev spaces we use for the gauge theory. The space %’ can be parametrized by 
an open subset of the Banach space C’ (U, Hom(A, A’)). Build now the parametrized 
mod& space 

&,r C wax%? 

whose fibre over the conformal structure [g] is the moduli space of anti-self-dual solutions 
M$,, with respect to g. We also write JY* for the space of irreducible, non-flat solutions. If 
we show that A* is a Banach manifold, then it will follow that the fibre M* is smooth for 
a generic g, by the Sard-Smale theorem, since the projection to %7 is Fredholm. 

If _M fails to be smooth at a point ([A], [g]) then the usual line of argument shows that 
there must be a harmonic form h E H 2 whose image, regarded as a bundle map from A+ to 
gr, is pointwise orthogonal to the image of the curvature on the open set U. From this it 
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follows that A is locally reducible on U, and so must either be flat or globally reducible by 
a unique continuation argument [9]. 

This completes the proof of part (i) of (2.6). Part (ii), concerning the reducible solutions 
also follows the standard proof [7], once one has understood a necessary condition for the 
existence of a reducible solution in the presence of the twist. This condition can be read from 
the proof of (5.7). If a line bundle L on X admits an anti-self-dual a-twisted connection, then 
there must be a smooth, harmonic, anti-self-dual 2-form o whose cohomology class 
represents 

ci (il, + x[Z]. 

In particular, the translate of the integer lattice 

H2 (X, E) + ff [E-J C H2(X, IR) 

must meet the harmonic space %- c H2. The usual argument shows that, if b+ is positive, 
this will not happen for a generic conformal class in %, unless x[Z] is an integer class, in 
which case the two sets intersect at 0. In this case, there may be a flat a-twisted connection 
on L. Note, however, that there is still a global topological obstruction to the existence of 
such a connection; it is necessary that the homology class of Z be divisible. 

Given these results, the additional arguments needed to deal with the extended moduli 
spaces are entirely formal. We introduce the parametrized extended moduli space i as the 
zero set of a map . 

g’x%?+-r. 

That the derivative of this map is surjective at all points of 2 follows from the correspond- 
ing statement for JZ. So the parametrized extended moduli space is a Banach manifold, 
except at reducible or flat solutions. The extended moduli space h is a fibre of the 
Fredholm map 2 + %, and the Sard-Smale theorem tells us that the generic fibre is 
smooth. All this should be done first for a fixed compact subinterval I c (0, 3); take the 
union over a countable increasing sequence of intervals to deduce the smoothness of G* for 
a generic metric. Note that we do not assert that the projection map i@* + (0, f) will be 
a submersion: even though fi* will be smooth generically, we expect the holonomy 
parameter CI to have critical points as a function on fi*. 

In order that &l contains a reducible solution (other than a flat one) it is necessary that 
s- should meet a l-parameter family of translates of the integer lattice somewhere other 
than at 0. The spaces &‘- c H2 meeting this condition are a subset K of the Grassmanian 
of codimension (b+ - 1) (a countable union of submanifolds). If this codimension is positive, 
then for a generic metric there will be no solution. Indeed, the set of bad conformal classes in 
V has the same codimension, because the map 

is transverse to K (see [7,9]). 
We have now completed the proofs of the transversality results (2.6) and (2.8). Bringing 

in the result of (5.7) we can state that, if X is simply connected, b’ is at least 2 and the 
self-intersection number of C is square-free, then for a generic metric the moduli spaces 
&?,,, are all smooth, and are cut out transversely by the equations. 

(iv) Stronger norms on the orbiford 

Let k be an integer not less than 2, let I be a compact sub-interval of (0, t), and let v be 
a large integer, greater than the lower bound v0 which appears in Proposition 4.17. Put an 
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orbifold metric g’ on X with a cone-angle 211/v along C, let A” be a model a-twisted 
connection, with u E I, and consider the space of connections 

i” = A” + &(&, 

the gauge group 
& = 9 n if+ ,,am(End(E)) 

and the space of curvature tensors 

SF = if- ,,*n(gE). 

All the higher Sobolev norms here are defined using the Levi-Civita derivative of g”, as in 
Section 4(v). For AESI?‘, we consider the operators 

and the first-order elliptic operator gA, acting in the topologies & + Lz_ ,,A=. 
Starting with (4.17) we can prove that the operator g* and its formal adjoint are 

Fredholm, and that the usual statements of elliptic regularity and the Fredholm alternative 
hold. The image of dA is closed, and a transversal is provided by the slice 

T = Kerd;. 

From this it follows as usual that the quotient space 5’ = 2’/S is a Banach manifold 
except at the reducible connections, with local charts provided by the slices A + T. The 
moduli space of anti-self-dual connections is finite-dimensional and modeled in the usual 
way in terms of the cohomology groups of the deformation complex. All this can follow the 
exposition of [9] without much alteration, and transversality results need no modification 
of the proof given above. We also have the extended moduli spaces &? in this set-up, but 
only over the compact interval I: we cannot take an increasing sequence of intervals without 
taking a decreasing sequence of cone-angles, and changing the cone-angle changes the 
moduli space. To summarize these statements, we give a proposition. 

PROPOSITION 5.10. For v > vo, depending on 1, the extended moduli spaces ti over the 
interval I, using a metric g” with cone-angle 271/v, are Jinite-dimensional spaces. The local 
model at an irreducible connection [A] is the zero-set of a smooth map 

where the Hi are the cohomology groups of the deformation complex above. If X is simply- 
connected, b+ is at least 2 and the self-intersection number of C is square-free, then the 
extended moduli space is cut out transversely by the equations and contains no reducible orjlat 
solutions for a generic choice of metric g’. cl 

Of course, we do not have to use the stronger Sobolev spaces to construct the moduli 
spaces. As we said in the introduction to this section, we can stay with the ‘LT’ framework, 
rather than use the orbifold norms. The advantage is that, following the line of 4(iv), we can 
also construct moduli spaces for arbitrary irrational cone-parameter a, and arbitrary 
holonomy c1 E (0, 1). For integer values of G and a restricted range of ~1, we have a choice 
between the two Banach space frameworks. This leaves us with the business of showing 
that, in such cases, the two moduli spaces coincide. 

In the case that v is an integer, let us temporarily write M for the moduli space as 
described in parts (i)-(iii) of this section, and ti for the moduli space described in this part, 
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using the orbifold norms. The norms defining h;i are stronger, so there is a continuous map 
from A% to M. What is needed is a regularity result, to show that an anti-self-dual 
connection in M is gauge equivalent to one in a. 

So let A” + a represent an element of M, so that V,~UE Lp, with V the Levi-Civita 
derivative for the round metric. By the embedding theorem (3.3), a is in Lq for some 4 > 4. If 
we go over to the orbifold metric and the corresponding derivative V, it may be that the 
covariant derivative VAsa is not in Lp, so a is not in z,,=. But we can still say that a is in Lq 

and that the exterior derivative dpa is in Lp. We wish to find a gauge equivalent connection 
A” + a’ with a’ in Ly.,a . The proof that we can achieve this is the usual combination of local 
elliptic theory and a patching argument. The local input is provided by the Hodge theory 
for the de Rham complex on the orbifold (see Section 4(vi)), which tells us that if a is a l-form 
in Lq whose exterior derivative is in Lp, then there is a O-form x of class L”, such that a - dx is 
in e. 

-P Once one has a’ in L,,J, it is a routine matter to show that the connection is equivalent 
to one in any of the higher Sobolev spaces on the orbifold, using the regularity results of 
Section 4(v), just as one does in the usual theory. 

Remark. The reason that some work had to be done at this point is that the Lp norms 
on l-forms are not the same in the orbifold setting as for the round metric, because the 
Levi-Civita connection is involved. It is in fact only on the diagonal components of the 
connection matrix that these norms differ, since on the off-diagonal components both are 
equivalent to the WT norm. In [36], based on the construction in [lo], gauge theory is 
developed for cone-like metrics of the sort we are considering, using connection matrices 
a in L4+” whose exterior derivatives (rather than full covariant derivatives) are in L2+6. 

Such a space of connections has the advantage of being unaltered by the change from 
a smooth to a cone-like metric, and we have exploited this in the argument given above. 
These spaces would presumably provide another framework in which the present theory 
could be developed. 

6. THE 1NDEX FORMULA 

(i) Setting up the index problem 

In this section we take up the dimension formula (2.5) (iii). So let A be an anti-self-dual 
twisted connection in one of our moduli spaces M;,, = Mz,,(X, C), associated to a pair 
(X, Z). The quantity we wish to calculate is the alternating sum 

dimHf, - dimHi - dimHi (6-I) 

of the dimensions of the cohomology groups of the complex (4.10) and we wish to obtain 
the answer 

8k + 41- 3(b+ - b’ + 1) - (2g - 2). (6.2) 

In the usual development of the theory for anti-self-dual moduli spaces on a closed 
manifold, one introduces the formal adjoint d* of the first operator d in the complex, and 
one interprets (6.2) as the index of the operator gA = d: + di acting on Q’(gE). The 
advantage gained is that the operator 97” is defined whether or not A is anti-self-dual, 
whereas the cohomology groups in (6.1) are not; this allows one the flexibility needed to 
calculate the index by exploiting deformation-invariance and excision arguments. 

In our theory, at least for the set-up with the smooth rather than the orbifold metric, the 
operator d* is not available globally on X. The same point arose in [lo], and we borrow 
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from there a device to avoid the problem. Let A be any connection in d” and let QA be the 

right-inverse to di constructed in (5.4). (The operator d,’ ’ 1s for the smooth metric, for the 

moment, and we use the Lp spaces.) As in the proof of (5.5), we introduce the operator 

defined by bA = d, - QA F ,’ . So the sequence 

is a complex. Let H’,,, be the cohomology groups; they depend on Q. 

PROPOSITION 6.4. The image of dA is closed and the cohomology groups H>., are 
finite-dimensional. 

Proof The argument of [IO] (Proposition 4.11) applies; the difficult case is the finite- 

dimensionality of H’, which we sketched in the proof of (5.5). cl 

We now define a quantity i as minus the Euler characteristic of the complex (6.3); we 

write 

ik,!(X, Z) = dimH :.o - dim H;,Q - dim Hi,,. 

This integer is independent of the choice of Q first of all. Indeed, if we have two different 

choices we may interpolate linearly between them and so have a family of complexes of the 

form (6.3) with 6, varying continuously in operator norm; in such a situation the Euler 

characteristic is constant in the family. 

The integer i is also independent of the choice of A in .cI’. Given a family of connections 

A,, we would like to construct a continuous family of right-inverses QA, and hence 

a continuous family of operators dAt to deduce the invariance of the Euler characteristic. 

This is not quite possible, since the dimension of H 2 need not be constant in the family. This 

point can be overcome by the usual procedure of stabilization. We replace the space T&” 
with T&” @ RN for some large N, and replace di with di 0 $; the operator II/ and the 

integer N are chosen so as to make the sum surjective for all A, in the family. Using 

a right-inverse then for the modified operators, one deduces the constancy of i quite 

formally; see [lo]. This argument only depends on the fact that the operators dA and di are 

varying continuously in operator norm as A varies, and on the existence of the parametrix 

ford:. 

There are two other parameters which we can deform without affecting i. First, we can 

vary the holonomy parameter c1 and consider a family A, E &“l, varying continuously in the 

total space 2. Our basic observation, Lemma 3.5, says that the operators dAt and di, vary 

continuously in operator norm as the holonomy changes, so the index i is independent of 

c( (recall that the spaces TA” etc. are independent of the holonomy). Second, we can vary the 

cone-angle of the metric; recall from 4(iv) that the Fredholm theory continues to work with 

the same Lp spaces for metrics g’ with cone-angle 271/5 for arbitrary Iv 2 1. As the metric 

varies in such a family, the operators di vary. As in Section 4(iv), these df operators are 

equivalent to a family 

for a varying fi representing the change in conformal structure. As the cone-angle varies, 

fi varies continuously in C’(X\C), so these operators vary continuously in operator norm. 

Again we deduce that the index is invariant. 
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Exploiting these last two properties, we can reduce the calculation to the case where the 
cone-angle is 27c/v for some integer v, and the holonomy parameter a is a multiple a/v. In this 
setting the analysis is of orbifold type; that is, the manifold is locally a quotient and the 
operators are the usual ones (without holonomy after a gauge transformation) on the local 
covering spaces. This gives two advantages. The first advantage is a technical one. We can 
introduce the formal adjoint d: of the operator dA and the usual first-order elliptic operator 
z?@_,,; the index i is the index of this operator, as usual. We can also suppose that A is smooth 
in the orbifold sense (i.e. is smooth on the local coverings), and we can consider the 
operators acting on smooth orbifold sections, for we have the full range of elliptic regularity. 
The second advantage is more on the formal side: for orbifolds, one knows how to calculate 
the index, at least when the orbifold is globally a quotient, for one only need examine the 
invariant part of the cohomology of the complex on the smooth cover. 

We will prove the index formula using excision to establish-the general shape of the 
answer and then examining some special cases, global quotients by finite groups, to obtain 
the correct numerical coefficients. 

(ii) Excision: the shape of the index formula 

Let us temporarily introduce the notation &(X) for the index of the usual deformation 
complex (4.10) in the absence of any surface with twist, so [9] 

ik(X) = 8k - 3(b+ - 6’ + 1). 

The result to be proved can then be written 

ir,JX, Z) - ik(X) = 41 - (2g - 2). (6.5) 

The first point is that the difference on the left necessarily depends only on 1 and the 
geometry of the tubular neighbourhood N of Z. That is, if (Xi, Ci, ki, li) are two such 
situations (i = 1,2), then we have: 

LEMMA 6.6. The two difirences iki,r,(Xi, Ci) - iki(XJ are the same provided that 1, = 1, 
and that the surfaces C,, & have difiomorphic neighbourhoods (which will be the case as long 
as they have the same genus and self-intersection number). 

The proof is by excision, as we now outline (see [9] for a more detailed exposition). 
Suppose a 4-manifold X is written as the union of two open sets U and V, and let E be 
a vector bundle over X carrying a connection A. Suppose that X’ = U’ u V’ is another 
such manifold with a bundle E’ and connection A’, and consider the difference i - i’ 
between the indices of the corresponding operators C@__ and C&, in the two settings. The 
statement of the excision principle (due to Atiyah and Singer) in this particular setting is 
that, if there is an isometry between V and V’ which lifts to a bundle isomorphism 
$ intertwining the connections A and A’, then the difference i - i’ depends only on the data 
over U and U’. (This data comprises the sets U, U’ themselves, the bundles EJU and E' Iv, 

with their connections, and the restriction of I,+ to V n K) A proof which stays within the 
framework of differential operators is given in [9], and examination of the argument shows 
that neither the statement of the result nor the proof need any modification if X and X’ are 
orbifolds rather than manifolds. In view of the remarks in the previous subsection, the 
excision principle can therefore be applied to the calculation of i,,{(X, 2). 

Proof of Lemma 6.6. Given a pair (X, Z) with an orbifold metric g”, write X as U u V 
with V the complement of the closed tubular neighbourhood N 1 Z and U a neighbour- 
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hood of N. Let E be a bundle carrying a twisted connection A with holonomy parameter 
a = a/v, regarded as an orbifold bundle, and with invariants (k, I). Let X’ be the same 
4-manifold, but equipped with a metric which is smooth near E, and let E’ be a bundle with 
c2 = k, equipped with a smooth SU(2) connection A’. To be quite specific, we can refer to 
the construction of Section 2(i), and for E’ we can take the bundle called E and for A’ we 

take a smooth connection which is reducible on N (such as the connection A0 in 2(i)). Then 
for A we can take the model connection A” of (2.1). The construction of A” is by a standard 
modification within U, so the excision principle applies. q 

We have dwelt on the excision principle because we have other applications for it. We 
consider next a procedure for increasing the monopole number I by 1. Over the pair (S4, S2), 
let El be a bundle carrying an a-twisted connection A,, and choose these with invariants 
I = 1 and k = 0. Suppose that Al is flat near a point p E S2, and choose a local trivialization 
there in which Al coincides with the model connection A”. Identify S4\{p) with R4, and 
apply a dilation to obtain a twisted connection over (Iw4, rW2) whose curvature is supported 
in a small ball B around the origin and which coincides with a model A” outside the small 
ball. Now let (X, C) be any other pair, carrying a twisted connection A, living on a bundle E. 

Let U be a neighbourhood of a point qEE and suppose that A is flat in U, so that in some 
trivialization the connection is the same model A”. Now construct a new bundle E’ with 
connection A’ by removing a small ball around q and replacing it with the standard ball 
about 0 in R4; the bundle E’ is built from E and E 1, which are identified using trivializations 
on the edge of the ball in which the connections are standard. The result is to change the 
topological type, increasing I by one while leaving k unchanged (we will return to this 
construction in Section 7(iv)). 

Applying the excision principle to this situation shows that, when 1 is increased by one, 
the index changes by a quantity which is independent of (X, C) and (k, I). It follows that 
1 enters linearly with a constant coefficient in the dimension formula, which therefore takes 
the form 

&,1(X, C) = ik(X) + Cl + D(g,(C .C)), 

where C is a constant and D is an unknown function of the genus and self-intersection 
number. 

Next consider the following operation. Again, we suppose we have a pair (X, C) carrying 
a twisted connection A which is flat in some neighbourhood U of a point q E C. Take 
a small ball Z inside U and disjoint from C. Inside Z, let T be a torus in some standard 
embedding. Modify the surface x so as to make a new surface C’ by joining C to T with 
a standard pipe contained in U. Using the flat structure, we modify the connection A in 
a standard way, to obtain a connection A’ twisted along the new surface ‘c’, without 
affecting k or 1. The effect is to increase the genus g by one, and by the excision principle, we 
deduce that the genus g enters linearly in the formula, with a constant coefficient. 

As a final application of excision, we consider the self-intersection number. Let Z be 
a small ball near to C, as in the previous paragraph, and modify X by taking a connected 
sum with CP’, making the sum in the small ball. The new manifold X’ has different 
topology, and the formula for &(X) shows that the index drops by 3. Now consider 
modifying x by joining it by a pipe to a standard 2-sphere S inside cP2, with S * S = 1. The 
genus is unchanged and the self-intersection number of the surface increases by 1. As in the 
previous paragraph, we deduce that C *x enters in the index formula with a constant 
coefficient. 

(iii) Calculation of some examples 

From the results of the previous subsection we now know that the index formula must 
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have the shape 

ik,dX, X:) = 4(X) + ml1 + m2g + m3(Z*X) + m4 

= Sk - 3(bf - b, + 1) + ml1 + m2g + m3(IZ.Z) + m4. 

We shall obtain the unknown coefficients mi from some examples. 
As a first example, take X to be S4 and take C to be a surface of genus g (with a standard 

embedding). On the complement of Z there is a flat line-bundle L with holonomy a; we take 
E = L @ L-‘, with a = l/4. The invariants k and I are zero in this example, by (5.9). The 
bundle of Lie algebras gE decomposes as 

where R’ is the line bundle with trivial connection, and r is a real line bundle with a flat 
connection having holonomy - 1. Take an orbifold metric g” on (S4, C) with v = 2, and let 
2 be the branched double cover of S4, branched along Z, which has a smooth metric. If we 
lift gE to d then we get a trivial R3-bundle with a flat connection which extends over C; the 
covering transformation is acting trivially on one I&! summand and non-trivially on the 
other two. Let i(z) denote the index of the operator ZB on x” acting with trivial real 
coefficients, and let i(r?) = i+ + i_ denote the decomposition according to the action of the 
covering transformation. Then we have 

io,o(S4,Z)=i++2i_. 

We now need to compute the invariants of x”. The Euler number is given by 

e(X”) = 2e(S4) - e(Z) 

= 4 + (29 - 2) 

while the signature o(z) is zero, because there is an orientation-reversing diffeomorphism. 
So we have 

i(2) = - (b+ (x”) - bl (x”) + 1) 

= -+(a+e) 

= -2-(g- 1). 

The invariant part i+ is just the index of 9 on S4 with trivial coefficients R, which is - 1; so 
i_ is equal to - 1 - (g - 1). This gives the answer 

io,o(S4, C) = - 3 - (2g - 2), 

and we deduce that, in the index formula above, the coefficient of g is -2 and the constant 
term m4 is 2. 

The most interesting coefficient in the index formula is the coefficient m, of the 
monopole number 1. Curiously, we can argue that ml is equal to 4 just on the grounds of 
internal consistency. Let (X, C) be any pair with the property that the homology class of Z: is 
even, so there,,exists on X\Z a flat real line bundle t with holonomy - 1 around C (see 
Section 2(iv)). This is the case, for example, for the standard S2 in S4. Let A E & be 
a twisted connection, let E be the bundle which carries it, and let (k, I) be the invariants. 
Consider the bundle E’ = E @ l with the tensor product connection A’. The associated Lie 
algebra bundles gE and 9,. are isomorphic, so the two indices are the same. However, the 
topological invariants (k’, l’) for E’ are different, as is shown by the formulae in Lemma 2.12. 
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Equating the indices we obtain 

8k + m,l = 8k’ + rql’, 

and on substituting the expressions from (2.12) this becomes 

(2mr - 8)1 + (8*$ - )ml) C-C = 0. 

Since this formula must be an identity, the coefficient ml must be 4. 
We now know that the formula for the index has the shape 

i,,l(X,Z)=8k+41-3(b+-b,+1)-(2g-2)+m,(I:*Z), 

and all that remains is to show that the coefficient m3 is zero. For this purpose it will be 
enough if we calculate one case in which C l C is non-zero, to verify that our answer is 
consistent with the vanishing of m3. Take X to be @Pz and let C be a smooth algebraic curve 
of degree 2p. Take a = l/4. If p is even then there exists on X\C a flat complex line bundle 
L with holonomy parameter l/4; for E we take the flat bundle L 0 L-‘. The invariants 
k and I in this situation are not zero: from (5.9) we have 

i=aZ*C=p2, 

and 
k= -a$ 

The genus of C is given by the adjunction formula, and comes out as 

(29 - 2) = 4p2 - 6p. 

If the coefficient m3 is zero, then the formula predicts that the index is 

8k + 41- 3(b+ - bl + 1) - (29 - 2) = - 2p2 + 4p2 - 6 - 4p2 + 6p 

= - 2p2 + 6p - 6. 

We shall verify this answer. Put a cone-like metric gy on @P2 with v = 2, so that the metric 
on the branched double cover 2 is smooth. Then, as with our example of the sphere above, 
the index we wish to calculate can be expressed as i+ + 2i_, where 

i(2) = i+ + i_ 

is the decomposition of the ordinary index on d (with trivial real coefficients) into the parts 
corresponding to the + 1 eigenspaces of the action of the covering transformation. The 
relevant invariants of 17 are written down in [9], from which we extract the fact that 
b,(X) = 0 and 

b+ (x”) = p2 - 3p + 3. 

So the index with trivial coefficients is 

i(g) = - (b+ - b’ + 1) 

= - p2 + 3p - 4. 

The invariant part i+ is the index on @P2, which is - 2, so 

1+= - 2 

i- = - p2 + 3p - 2. 

Finally then, the index for the original deformation complex is 

i+ + 2i_ = - 2p2 + 6p - 6, 
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which is the answer we said we wanted above. This completes the proofs of the index 

formula. q 

Remark. There are other ways to prove the formula. For example, having used excision 
to reduce to the case of an orbifold which is globally a quotient, one can apply the general 

G-index theorem of [I]. Another possibility is to use excision to reduce to the case of 

a Kahler orbifold, where the cohomology groups can be identified with sheaf cohomology 

groups associated with a bundle with parabolic structure, as outlined in [19]; this line will 

be taken up again in [20], where we shall use excision to compare not the indices but the 

moduli spaces themselves when holonomy is introduced. 

In most lines of calculation, the sign of 1 is a worry, for it is easy to mistake -1 for 

1 or - tl for CL The proof we have given above, essentially deducing part of the index formula 

from the Chern-Weil formula via (2.12) provides a useful cross-check of the consistency of 

our sign conventions. 

7. REGULARITY AND COMPACTNESS 

Our next goal is a gauge fixing theorem, modeled after the basic result for connections 

on the ball due to Uhlenbeck. We wish to use a gauge fixing result to deduce a weak 

compactness result for our moduli spaces: 

PROPOSITION 7.1. Let A, be a sequence of twisted connections in the extended moduli space 
I$?,,, over (X, C). Suppose that the holonomy parameters a, for these connections converge to 
UE (0, )). Then there exists a sub-sequence, which we continue to call A,,, and gauge trans- 

formations gn E 59 such that the connections g,,(AJ converge, ojfajnite set of points (xi} c X, 
to a connection A. The solution A extends across thejnite set and defines a point in a moduli 
space Mi,,,,. 

Further, we can assign to each point Xi a pair of integers (kt, li), with ii = 0 unless Xi E C, 
such that the curvature densities converge 

1 FA, I2 + ) FA 1’ + 87~’ 1 (ki + 2ctli)6,, 

in the sense of measures. In this case also, 

k = k’ + C ki 

l=I’+Cli. 

This proposition is valid eitherfor the LP-based moduli spaces with the smooth metric, orfor the 
moduli spaces of Proposition 5.10 with the orbifold metric, provided that u is in the compact 
interval I. It remains valid also tfeach A, is anti-self-dual with respect to a different metric in 
a sequence which converges to some limit metric g. 

A few words of explanation are needed here. Given a sequence of anti-self-dual 

connections of the sort described in the proposition, we can restrict our attention to X\& 

where the connections will be smooth and of bounded action, and by a simple application of 

Uhlenbeck’s theorem (covering X\C by a countable collection of open sets) we can prove 

that there is a subsequence which converges on compact subsets of X\C, except perhaps at 

a finite set of points, to some anti-self-dual connecton A. Such an argument applies quite 

generaly on a non-compact manifold, but it is not enough for our purposes. First of all, this 

line tells us nothing much about the limit A, except that it has finite action, and we would 

need to show that A had sufficient regularity along I: to belong to our moduli spaces. 
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Second, we would not have obtained a uniform understanding of how the A, were 

approaching A near C. 

The proposition above is giving us stronger convergence. It asserts that if U c X is an 

open coordinate chart meeting C but not containing one of the points xi then, in some 

gauge, the restriction of the A, to U converge in the topology which defines d”; that is, we 

can write 

A, = Aan + a,,, on U 

where the A”” are the fixed model connections and the a, converge strongly in L~J to a limit 

a (or converge in I!,:_ l,A if we are using the orbifold moduli spaces of Section 5(iv)). 

To prove such a result, what is needed is a gauge fixing result for the connections 

Aun + a, E s?’ in a chart such as U; we need to know that if the curvature is small then we 

can find a gauge in which a, is small in Ly,,,. This is the nature of the gauge fixing theorem of 

the next section. Once it has been set up in this way, and given the local elliptic theory of 

Section 4, the proof turns out to be a straightforward adaptation of the usual procedures. 

Note that this is a rather different, and more elementary, sort of theorem than the type of 

gauge-fixing discussed in [ 321. 

As the proposition says, the results can be developed both for the Lp framework and 

smooth metrics on X and for the orbifold framework, with the stronger norms. We shall 

treat only the first case in any detail, since the arguments are not much different in the 

technically easier orbifold case. The exposition follows the treatment in [9] very closely. 

(i) Gauge fixing 

Let B4 be the standard 4-ball, with B2 as a standard embedded surface. We identify 

(B4, B2) with the upper hemi-spheres in (S4, S2); here S4 is a 4-sphere with the standard 

round metric a, On B4, the metric S is conformal to the flat one, by a bounded conformal 

factor, and defines Sobolev norms equivalent to those of the flat metric. Let o! E (0, $) be 

given, and let A” be the standard flat SU(2) connection on S4\S2 (and by restriction on 

B4\ B2) with holonomy parameter CC This we regard as a twisted connection on the trivial 

bundle E over the manifold. Let cl0 = a/v be a nearby rational number, so that (a - a, ( 

satisfies the bound of Proposition 4.8. As always, we suppose that 2 < p < 2 + q(v). 

Let 

be the operator (4.13), and let T = TV,, be the kernel of d’. This T is the slice which appears 

in Proposition 4.11. By restriction, d’ is an operator also over B4. Let i4 be any slightly 

smaller ball. The gauge fixing result is the following: 

PROPOSITION 7.2. Let A = A” + a be a twisted connection over (B4, B2), with a E Ly,An. 

There are constants K,, M and M’, independent of A, such that if the curvature of A satisjies 

/I F.4 1% < K: 

then there is a gauge-equivalent connection A” = A” + a” satisfying the following conditions on 

the smaller ball b4: 

(i) d’Z = 0; 

(ii) )I r? llL;,,mcp, _< M II FA IILWJ ; 

(iii) )I d IJL;,AIcgy 5 M’ II FA II L~BY. 

The gauge transformation which achieves this is of class L!.p. All the constants, and K, in 

particular, depend on ~1. 
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We prove the result first in the case that A = A” + a with a smooth and the off-diagonal 

part of a vanishing near B2. (Such a are dense in JP.) The proof is by the method of 

continuity. Let m,: B4 -+ B4 be the map x t-+ tx, and write A, = m:(A). Since m, respects A”, 

we can write A, = A” + a,, and the a, tend to zero in Ly,An as t goes to zero, while A, = A. 

The A, satisfy the same L2 curvature bound as A. As in [9], we find it convenient to transfer 

these connections to the 4-sphere. So let p: (S4, S2) + (B4, B2) be the map which is the 

identity on the upper hemi-sphere and maps the lower to the upper. Approximate p by 

a smooth map pE, equal to p outside the s-neighbourhood of the equatorial 3-sphere and 

with Vp, uniformly bounded, and pull back A, by this pE. We can arrange that pt (A”) = A”, 

since this is true of p, and so write the resulting connection on S4 as A” + ~$(a,). As in [9], 

the squared norm of the curvature on S4 will be below 21~: once E is sufficiently small. (This 

step, as presented in [9], uses the fact that FA is in L”; this is the only reason we restrict our 

attention, for the moment, to the case of smooth a.) 

By the two devices of the previous paragraph, we come to consider a family of 

connections over (S4, S2), which we shall continue to call A,. We shall prove that we can 

find gauge-equivalent connections 2, = A” + a”, for which the two conditions of the prop- 

osition hold on S4: that is, we find gt E ?? such that g,(A,) = A” + a”, on S” with 

(i) d’d, = 0, 

(ii) II & lIL+ I M It FA /IL’ 9 

(iii) /I 4 IIL~.,a I M’/l FA 11~‘. 

LEMMA 7.3. Let A = A” + a he a connection on S4 with d’u = 0. There are constants K~, 

M and M’, independent of a, such that if 

~~ < 1/(2C2). A simple boot-strapping 

argument gives the Lp estimate. 0 

We now go back to the family of connections A” + a, on S4 and seek gauge transforma- 

tions gr as above. We show that the set oft for which g, exists satisfying (i) and (ii) is open 

and closed, provided K~ is small. This is enough, since a0 = 0 and go = 1 will do here. 

Openness. By (4.7), the image of dAa is a complement to Ker d’ in the LtAu topology. We 

want first to show that this is still true if we replace dAa by dA, for some A = A* + a~&’ on 

(S4, S2) with )I a /I sufficiently small in Lf,,.. Certainly, with a sufficiently small in this way, 

the operator 

d, : L;,,,= + a& 

has image which is a complement to Ker d’ in the Lf,Aa topology; this isbecause the operator 

dA is close to dAz in operator norm for this topology. This means that given 

b E Ly,Ax (S4\S2, A’ (gE)) we can solve the equation for u and w: 

b - dAU = Qo 
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with u in l&a and w in L2. However, we then have 

and the multiplication theorems give OE Lp. So u is in L;, and we have proved that the 
image of dA is a complement to Ker d’ also in the Ly,,a topology. 

Now suppose that we have found a gr as above for a particular t = s. We may as well 
suppose gs = 1, and we write a, = a and A, = A” + a. For nearby t, we write A, = A, + b 
with b small in Lj’*a. Since a is small in L&a, a straightforward application of the implicit 
function theorem, based on the linear result above, allows us to find a small gauge 
transformation achieving condition (i) above. By Lemma 7.3, the same gauge transforma- 
tion also achieves (ii), a priori, provided rcl was small enough: this is because (ii) is assumed 
to hold for a, and gives us a bound on the L4 norm of a, and of the nearby a, = a, + b. 

Closedness. Suppose we have solved the problem above for a sequence of times ri 
converging to t. So we have A” + &, gauge equivalent to A” + a,,, satisfying (i)-(iii). The 
curvatures of the connections A,i are converging in Lp to the curvature of A,, so by 
condition (iii) above we have a uniform Lf,Aa bound on the c?,, and hence a subsequence 
converging weakly to some d in Ly,Aa. We have &a” = 0, and it is a straightforward matter to 
show that A” + ii is gauge-equivalent to A,. 

This completes the proof of (7.2) under the additional hypothesis that a is smooth. To 
remove this hypothesis, approximate a by a sequence of smooth forms a,, find the 
gauge-equivalent forms a”, given by (7.2), and transfer these to the 4-sphere using a cut-off 
function supported in fi4 and equal to 1 on a slightly smaller ball. As in the proof of 
closedness above, we find a weak limit to solve the problem; see [lo], p. 231 for a model. 

(ii) Compactness and patching constructions 

The basic-gauge-fixing result (7.1) gives a local convergence result for a sequence of 
anti-self-dual solutions: 

PROPOSITION 7.4. Let Ai = A” + ai be a sequence of anti-self-dual twisted connections over 
(B4, B2). There is a constant K, independent of the sequence, such that if 

II FAi II < JG 

then we can>nd a gauge-equivalent sequence A” + iii satisfying the estimate 

on a smaller ball l?“. Further, the Gt have a subsequence converging strong/y in Lf,*‘. This 
proposition remains valid also in the case that we have a sequence of connections Ai = A”; + a, 
with different holonomy parameters tli converging to a E (0, i). 

Proof: This is quite standard, given (7.2). See [lo] Lemma 6.4 for the correct way to 
deduce the estimate by transferring to the 4-sphere. The estimate is valid also for p’ > p, as 
long as p’ < 2 + q(v), and this is why one can extract a convergent subsequence. To prove 
the rider, we can assume that the ai are all close to a/v, satisfying the bound of (4.8); then 
nothing else in the proof needs modification. Cl 

The proof, as usual, adapts to cover the case that the metric on the ball is not flat but is 
close to the flat metric; the main point is that Proposition 4.11 is valid for metrics close to 
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the round one, as the proof clearly shows. It also follows that the proposition above remains 
true if the connections are anti-self-dual with respect to metrics which converge to some 
near-standard metric. This will be the basis for the proof of the last rider to Proposition 7.1. 
but we shall not make reference to this again. 

To obtain convergence results on domains other than (B4, B’), we need to patch 
together gauge transformations. The crux of the procedure, in the ordinary case (without 
holonomy), is given in [9], on page 159. The lemma there extends without change to cover 
our situation also, so we have the following result. Let (X, C) be a 4-manifold with an 
embedded surface, A” a model twisted connection in a bundle E, and R c X an open 
domain. 

PROPOSITION 7.5. ([9], CorolEary 4.4.8). Suppose A,, = A” + a,, is a sequence of anti- 
self-dual connections in a bundle E over R, with a, E L~J. Suppose that for each point x E !2 
there is a neighbourhood B of x a subsequence (n’} and gauge transformations h,, defined over 
B such that h,,(A” + a,,,) - A” converges in Ly,A= over B. Then there is a single subsequence 
{n”) and gauge transformations g”,, de$ned over all of R, such that gn,,(Aa + a,,,) = A” + ii,,, 
with a,,#, converging over all of 0. 0 

We also note that the following carries over to our case (see [9], Proposition 4.4.10). As 
in [9], we say that R is strongly simply connected if it is covered by balls B, , . . . , B, such 
that the intersections B, n (B, u . . . B,_,) are connected. 

PROPOSITION 7.6. Suppose that 52 is strongly simply connected and that the model connec- 
tion A” is Jlat on R. Let A = A” + a be an anti-self-dual connection. For any interior domain 
R’, there are constants K~, M and M’, independent of A, such that if 

It FA I\LW < Jk 

then A is gauge-equivalent to A” + LT over I2’ with 

II a I/ L’(U) 5 M IIFA IILw, 
and 

Note that in both these propositions, the gauge fixing is done on balls of 0, not Q\Z. It 
is 0, not Q\Z,, which needs to be strongly simply connected in Proposition 7.6. 

(iii) Removability of singularities 

The third and last ingredient we shall need before proving the basic compactness 
theorem (7.1) is a version of Uhlenbeck’s theorem on the removal of singularities. Again, let 
(B4, B*) be the standard ball-pair, carrying the model connection A”. We shall say that 
a bundle-valued form f is in Lkqaz,loc on a domain R c B4 if every point x E R has 
a neighbourhood on which f is in L&a. We spell this out to emphasize that the case x E B2 
is not excluded. 

PROPOSITION 7.7. Let A = A” + a be a connection matrix with a in LtA.,loc on B4\{O}. 
Suppose that A is anti-selfdual and 

s IFAl < CC. 
B”\ 10) 
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Then there is u gauge transformation g in LLA=,loC on B4\{O), such that g(A) = A” + ii and 
d extends across (0) to dejinz a g,-valued l-form of class Ly,A1. 

Proof: The proof from [9] (also used in [lo]) applies. We recall a sketch of the 

argument. Cover E4\ {0) with overlapping conformally-equivalent 4-dimensional annuli 

W, diffeomorphic to S 3 x I. On the W,, the L2 norm of the curvature goes to zero as n goes 
to infinity, so use (7.6) to find a gauge transformation gn on W, in which g,(A) = A” + a,,, 
with (1 a,, (IL4 approaching zero. In such a gauge, multiply a, by a cut-off function II/ whose 

gradient is supported in W,, and obtain a connection A, = A” + $a, which extends across 

{O}. The L4 bound on a,, ensures that the anti-self-duality condition is not much damaged, 

and Fin goes to zero. Restricting to a smaller ball if necessary, apply (7.2) to put A,, in a good 

gauge, so g(A,) = A” + a”,, with d’d, = 0 and I/ d,/( L: 1? bounded. Then extract a subsequence 

converging weakly to an Lf,AX connection A” + ii. This limit is gauge-equivalent to A” + a 
and therefore anti-self-dual; and d’a” = 0. To complete the proof, mimic the proof of Lemma 

6.4 of [lo] to establish the extra regularity of the L:,J solution. cl 

(iv) Proof of the compactness theorem 

Given the local compactness result (7.4) the patching argument (7.5) and the removabil- 

ity of singularities theorem (7.7) the proof of the compactness theorem (7.1) is standard. The 

only point we need to dwell on is the statement about the action densities, for this involves 

the modified Chern-Weil formula. 

Let (W, C) be the pair (S3 x I, S * x I), thought of as the complement of one ball-pair 

(B4, B2) inside a slightly larger one, and let %w be the gauge group we have associated to 

this pair, for the model twisted connection A’ in the trivial SU(2) bundle Cc @ @. This group 

contains as a dense subgroup the set of smooth gauge transformations which are diagonal 

near C. On the other hand it is contained in the group of continuous gauge transformations 

which are diagonal on Z. It follows easily that all three groups have the same component 

group, which we can identify as 

C(S3, S1),wJ(2h~(1))1 = L-(S3, S’),(S3, S’)l 

To each gauge transformation we can therefore assign a pair of integers (K, i). Now suppose 
- - 

that (E, L) is a bundle-pair over (X, C). Pick a point XEC and a neighbourhood pair 

(B4, B’). Over this neighbourhood, choose a diagonal trivialization of the bundle pair as 

C @ C. Now construct a new bundle (I?‘, t’) over (X, C) by cutting out the neighbourhood 

and gluing it back in using a gauge transformation on the boundary belonging to the class 

(K, A) as above. Let (k’, 1’) be the topological invariants of (l?‘, p). With one choice of signs in 

the isomorphism above, we have 

k=k'+K 

In the proof of the removability of singularities theorem, we must choose a gauge 

transformation on an annulus such as rY; the constraint on the gauge transformation is that 

the connection should be close to A” in the chosen gauge, first in the L4 topology and then, 

because the equations hold, in the Lf.* * topology also. Comparing the chosen gauge on 

W with the unique gauge component which extends across (B4, B’), we obtain a pair of 

integers as above, say (K, A). We use these to define (ki, Ii) in the statement of (7.1) in the case 
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that xiEC. The formula relating the topological numbers is then a consequence of the 
difference formula above. 

The statement about the action densities is now a formal consequence of the conver- 
gence and the following result. 

LEMMA 7.8. Let A = A” + a be a twisted connection in the trivial bundle over (B4, B2), and 
suppose that A isJlat over B4\iB4. Let g be the gauge transformation over the annulus B4\tB4 
such that g(A) = A” (this gauge transformation is unique up to a constant), and let (K, A) be the 
integers associated with g. Then we have 

1 

-4 8n2 C\,Bz 
tr(& A FA) = K + 2~x2. 

Proof: Using the gauge g. attach the connection to the sphere-pair (S4, S2) so that it is 
flat outside the ball. Then apply the Chern-Weil formula (5.7). 0 

8. A TOPOLOGICAL BOUND ON BUBBLING OFF 

(i) Admissible pairs on the sphere 

In the situation described by the compactness theorem (7.1), we associate a pair of 
integers (ki, li) with each point Xi at which the curvature concentrates. These pairs are not 
unconstrained. First of all, the quantity ki + 2a1i must be positive, because of the statement 
about the action density. But this is not all. Roughly speaking, the change in the integers 
(k, 1) in the weak limit must be accounted for by solutions which live on spheres. Let us say 
that a pair of integers (K, A) is an admissible pair for (S4, S2) if the moduli space MC., is 
non-empty for (S4, S2), given the round metric. This notion depends on tl a priori. For 
consistency, let us also say that k is an admissible integer for S4 if there is an ordinary 
instanton on S4 with charge k. Of course, this is the same as saying that k is nonnegative, 
though our arguments could be arranged so as not to exploit this fact. 

PROPOSITION 8.1. In the situation of Proposition 7.1, let xi be a point of concentration. 
Suppose xi E I: and (ki, li) the associated pair. Then there exist pairs (Ki, mr li, Jy admissible for 
(S4, S2), and integers Ki,n, admissible for S4, such that 

ki = C Ki,n + C Ki,n 

Ii = C 2,i.m. 

This proposition is not useful until we know which pairs are admissible on (S*, S’). We 
make the following conjecture: 

CONJECTURE 8.2. For any given CC, a pair (K, A) is admissible for (S4, S2) if and only if 

K>o and K+AzO. 

Remark. These two inequalities are the two extremes of the inequality which comes 
from the Chern-Weil formula as c1 ranges over (0, *). Note that they are interchanged by the 
transformation 

K’=K+l 

TOP 32:4-J 
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which is effected by twisting the bundle by - 1, as in Lemma 2.12; so proving the necessity 

of either inequality implies them both. The conjecture is analogous to a result due to 

Murray [27] on the admissible values for the magnetic charges of non-abelian magnetic 

monopoles. 

Proposition 8.1 will be proved below. We have stated it above with the smooth metric in 

mind, but it is valid also for the orbifold metric, provided we make the obvious modification 

to the definition of admissible by considering solutions on the orbifold sphere. We cannot 

prove the conjecture (8.2) but we can prove a close approximation to it in the orbifold case. 

Let Z, be the compact subinterval I = [E, 4 - E] inside (0, $). Let v = v, be any integer greater 

than the lower bound provided by Proposition 4.10, so the elliptic theory works on the 

orbifolds with cone-angle 27r/v on the Sobolev spaces Lj!, say for k 5 3. 

PROPOSITION 8.3. With E and v as above, a necessary conditionfor (K, A) to be admissible on 
(S4, S2) with the orbifold metric y”,for some a E lE, is that the following two inequalities should 

hold: 

K + 2d 2 0 and K + (1 - 2&);1 2 0. 

Proof of 8.3 (assuming 8.1). First of all, for a solution A on the orbifold sphere, the 

obstruction space Hf, in the deformation complex vanishes identically. The proof is the 

standard one, exploiting a Weitzenbock formula and the positive curvature of the sphere, 

but since the proof involves integration by parts, some care is needed. Suppose the 

obstruction space is not zero, and let w be a harmonic 2-form representing an element of 

H:. Our regularity results in the orbifold framework tell us that w is of class Lt.,p at least, so 

we can find a sequence o, of smooth forms approaching o in Lf,+p norm, with each o, 

compactly supported in the complement of C. For these forms, the Weitzenbock formula 

[13] can be integrated by parts to give 

211d~~./12 = IIVA~,I/~ + RII~nll~r 

where R is a positive constant coming from the curvature of the sphere. Since both sides of 

the equation are continuous functions of w, in the L f,,p topology, we can take the limit as 

n goes to infinity to obtain 

0= IIVA~II~ + RIblIZ, 

showing that tr) is zero. Note that in the framework we have been using for the smooth 
metric, we would only have w in Lp, and the argument would not go through. (This is the 

only obstruction to our proving (8.2) for the smooth metric.) 

With the vanishing theorem out of the way, we turn to the rest of the proof. Suppose the 

second inequality in the proposition is false and let J c I, be the set of a for which there is 

a solution which violates this inequality. We shall show that J is the whole of I, by showing 

that it is both open and closed. The vanishing of H’, shows that for any K and J. the map 

from the parametrized moduli spaces fix,, -+ I, is a submersion, because the fibres are cut 

out transversely. The image of I!?~.~ is therefore open, and this implies the openness of the 

set J. 
To show closedness, let A, be a sequence of solutions in A?I.A, with (K, d) violating the 

inequality, and let a E I, be the limit of their respective holonomies a,,. We need to show that 

a is in J. The sequence A, has a weak limit on the orbifold sphere, and by combining 

Propositions 7.1 and 8.1, we see that there are pairs (Ki, ;li), admissible for the holonomy CL, 
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and integers Kj admissible for S4 such that 

K’CKi+CKj 

Since the Kj are non-negative, it follows from these equalities that at least one of the pairs 
(Ki, Ai) violates the second inequality, so CI is in the bad set J. 

The argument above establishes, in particular, that there is an admissible pair (K, 2) 

violating the second inequality with holonomy u equal to the end-point (4 - E) of the 
interval I,. This gives a contradiction, since the Chern-Weil formula for (S4, S2) gives 
the action of such a solution as K + (1 - 2&)A, and this quantity must therefore be non- 
negative. The proof of the first inequality is similar, but uses the other end-point of the 
interval. 0 

COROLLARY 8.4. In the situation of Proposition 7.1, for an orbifold metric g”, the formal 
dimension of the moduli space Mi,, ,‘, is not greater than theformal dimension ofMf,,, and the 

dimension is strictly smaller if any ki or 1; is non-zero. 

Proof Combining the statements of (7.1) and (8.1) again, we have 

k - k’ = C Ki,m + 1 Ki,n 

1_1’=Clbi,,. 

where (Ki,m, Ai,,) is admissible pairs and Ki,” are non-negative integers. Adding the two 
inequalities in (8.3) gives ~~~~~ + ai,, 2 0, with equality only if Ki,m = &,, = 0. So 
2(k - k’) + (I- 1’) is greater than or equal to 0, and zero only if all Ki,m, Ki,n and Ri,, are 
zero. The difference in the formal dimensions of the moduli spaces is four times this 
quantity, so the result follows. q 

(ii) Proof of Proposition 8. I 

The formalities of our proof are modeled on an argument used by Taubes [33] to study 
minimizing sequences for the Yang-Mills functional. The technical side of the argument is 
rather simpler here, since we are dealing with anti-self-dual solutions. We present the 
argument in the Lp setting, for the smooth metric. The proof adapts quite easily to the 
orbifold case. 

The problem is essentially a local one, so we consider a sequence of solutions on the unit 
4-ball B4. To keep the exposition simple, we suppose at first that B4 has the standard flat 
metric. The setup is the following: we have a sequence of anti-self-dual twisted connections 
A. over (B4, B’); the holonomy parameter for A,, is ~1, and we suppose these converge to 
LYE(O, 1). We suppose that the A, are converging weakly in the sense of (7.1) to a solution A, 
and the curvature is concentrating at the centre of the ball and at no other place; so the 
action densities f, = ) F(A,)12dVol are converging in the sense of measures 

where fA is the action density of A, 

/I = 8z2(k + 2ul), 

and k and 1 are the integers associated with the point of concentration by the construction of 
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Section 7(iv). We aim to show that (k, l) is a sum of admissible pairs (ki, li) and admissible 
integers kj. 

The proof of the compactness theorem shows that p is not less than the critical constant 
ICY which appears in the gauge-fixing result (7.2). Let N(p) be the largest integer not 
exceeding p/~~. We shall prove the proposition by induction on N(p). Note in passing that 
the total action of any non-trivial solution on (S4, S2) cannot be less than K, , for otherwise 
we could construct a sequence of solutions contradicting the local compactness result by 
applying conformal transformations. 

Let ti be a sequence of numbers less than 1 and approaching 0, and let WC be the shell in 
B4 bounded by the 3-spheres of radii Zi and Zi:2. Write the limit connection A in some gauge 
as 

A=Aa+a 

where A” is the model twisted connection, and arrange that the sequence 'si is decreasing 
sufficiently fast that the Ly3*a norm of a restricted to the ball B(Ti) of radius Ti is less than 
C,/i, for some constant Cr. The action density therefore satisfies 

s fA 15 C2/i. 
B(L) 

Since the A, converge strongly to A on Wi in some gauge, we can find an integer ni and 
a gauge representative on Wi 

A,, = Aan{ + ani 

such that the L~.J norm of a, on Wi satisfies a bound 

with a similar estimate for the L4 norm. We can also arrange that the curvature density_&, is 
concentrated in a much smaller ball; specifically, if vi denotes the complement of the ball of 
radius Ti/i inside B4, we can arrange that 

Let pi be a standard cut-off function, with derivative supported in the shell Wi and equal 
to 0 outside the shell and 1 inside. Using the good gauge representative above, cut off the 
connection Ani so as to obtain a twisted connection on all of (R4, R2): 

A”,i = Aan’ + Bian,. 

The new connection is not anti-self-dual since F + (A,,,) will be non-zero in the shell Wi. But 
because the L4 norm of the connection matrix a,, was small, the L2 norm of F ’ is bounded 
by some CJi, and we can continue to suppose that the action densityx, of the connection 
& satisfies the estimate above: 

s i, 2 C4/i. 
v, 

Now we apply a conformal transformation ci to (R4, R2) so that the action density 
c* (fni) of the pulled-back connection satisfies: 

(a) the centre of mass of r.$” (i,) lies on the plane CL; 
(b) the amount of action lying outside the unit ball is exactly ~~/2, where K~ is the 

critical constant of the gauge-fixing theorem. 
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(Here we write C for our standard R2 on which we have the twist, and we write C’ for the 
complementary plane through 0.) We achieve this in two steps: first we apply a translation ti 
parallel to X to achieve (a); then we apply a dilation di centred at 0 to achieve (b). The 
conformal transformation ci is the composite diti. 

The reason for arranging that the integral of i, is small on the domain vi is that it 
ensures that the size of the translation ti is less than C6zi/i and that the factor of the dilation 
di is greater than CTi/ri. This implies that, for the connection c~(&,), the self-dual curvature 
F*+ is supported near infinity, outside a ball of radius C8i. 

Now identify R4 with the complement of the south pole (the point at infinity) in S4 
by stereographic projection, mapping the unit ball to the northern hemisphere. The twisted 
connections CT(&) extend across the south pole since they are flat there. 

To summarize the situation so far, we have transfered the solutions from the ball to the 
sphere by cutting off the connection in a good gauge, and then we have applied conformal 
transformations to spread out the curvature on the sphere. The topological invariants of the 
new connections are the same pair (k, I), and their total actions approach the limit ,L If we 
could show that the connections cr(&) converged strongly to an anti-self-dual twisted 
connection 2, then we would be home, for this would establish that (k, I) was an admissible 
pair. Unfortunately, the curvature may still be concentrating at points, so we need to be able 
to apply our inductive hypothesis to complete the proof. 

First, by condition (b) above, we can apply the gauge-fixing theorem (7.2) to the 
connections on the southern hemisphere, and by the same argument as we used for the 
removability of singularities theorem, some subsequence will converge there to an anti- 
self-dual limit; the convergence is strong in L; away from the point at infinity. On an open 
neighbourthood of the northern hemi-sphere, c*(&) are solutions of the equations, and the 
argument of the compactness theorem (7.1) applies. From these two facts and the patching 
argument, we can conclude as in (7.1) that there is a solution A’ on (S4, Sz) with action 
densityj and a finite set of points x,, (r = 1, , . . , p), in the closed northern hemisphere, such 
that the action densities cr(iJ converge to a limit 

while, in some gauge, the connections c*(&) are converging to A except at the points x,. 
Further, we have 

PL, = k, + 24, 

where (k,, I,) is the pair of integers associated with the point of concentration x, E S4. As in 
(7.1) we have 

k = k’ + 1 k, 

l=I’+Cl, 

where (k’, I’) are the invariants of the limit 2. Finally, since the limit of the total action is p, 
we have 

To complete the proof of (8.1), suppose first either thatjis non-zero or that p 2 2. Under 
this assumption, since each p, must be at least as large as ICY, and jsis also bounded below 
by or if it is non-zero, it follows that each p, is less than p, with a difference not less than x1. 
So the integer N(& is strictly smaller than N(p), and we can complete the proof by applying 
the inductive hypothesis to the points of concentration x,. 
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The only remaining possibility is that p = 1 andf”= 0. In this case, all the curvature is 
concentrating at a single point x 1, with total mass p. The main point now is that x1 cannot 
be on IZ. Indeed, if x1 were on C then by condition (a) above it would have to be the origin 
0 E OX4 (the north pole); but this would contradict condition (b), for not all the curvature can 
be concentrating in the ball of radius 4. It follows now that I is zero, and so p = &r’k where 
k is an admissible integer for S4. 

This completes the proof for the standard metric on B4. For the general case, we 
suppose A, is anti-self-dual with respect to some metric gn, and that the gn converge to some 
general g as n goes to infinity. The restriction of gni to the ball of radius ti is approximately 
standard for large i, and the resealed connections CT(&) on (S4, S2) are therefore anti- 
self-dual (except in the cut-off region) with respect to metrics gi which converge to the round 
metric as i goes to infinity. Proposition 7.1 can still be applied, and the proof by induction 
continues as before. 0 
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APPENDIX 

In this paper we have not so far seen an explicit, non-trivial solution of the anti-self-duality 
equations with the sort of singularity which defines the moduli spaces M”. We shall remedy this 
short-coming here. The first explicit solution to have appeared in print, as far as the authors are aware, 
is an anti-self-dual connection belonging, in our notation, to the moduli space M1’4(S4, S’), for the 
standard round pair; this solution was described in [12], and was later generalized by the same 
authors to give solutions with arbitrary a. 

We shall write down a solution on T* x D*, where T* is a torus and D* is a disk, both with their 
standard metrics. The singular surface Z will be the torus T* x CO}. We take polar coordinates (r, 19) on 

0’ and standard orthogonal coordinates (u, V) on (the universal cover of) the torus. The bundle E will 
be the trivial bundle C @ C with the trivial decomposition into line bundles, so that I = 0. In this 
standard trivialization, we seek a solution which is in radial gauge (so there is no dr term in the 
connection matrix) and which is independent of 0, u and u. We shall suppose it can be written 

for some real functionsf(r), g(r) and h(r). The anti-self-duality equations now become 

r- ‘(dj”/dr) + 2gh = 0 

(dg/dr) + 2r-‘fh = 0 

(dh/dr) + 2r- ‘,[q = 0. 

The equations take on a more familiar form if we substitute r = e-l, and then put 
F = i -1; G = e-‘g and H = e-‘h; we obtain a particular reduction of Nahm’s equations: 

dF/dt = - 2GH 

dG/dt = - 2HF 

dH/dt = - 2FG. 

There is essentially only one solution which has suitable behaviour as t goes to infinity (i.e. r goes to 
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zero); this is given by 
F = ccoth(2ct) 

G = H = ccosech(2ct). 

If we put c = i + CI and return to the original coordinates, we obtain the solution in the form (Al) with 

,=l,2-(1,2+4(5::) 

g=h= 
(2a + I) 

r-2a _ r2+2a’ 

The solution we have obtained blows up as r approaches 1 at the boundary of the disk; but our 
interest is in the behaviour as r goes to zero. Here we have 

d0 + (2~ + l)r2” + O(r’+4”), 

where dw = du + idu. The size of the curvature near r = 0 has leading term 

(F,( - const.r-‘+2a 

(the constant is 2a(l + 2a) for the solution here), which shows that the curvature is in tP near 
Z provided that p < 2/(1 - 2a). 

The leading term in the curvature comes from its four components in the planes which mix 
directions parallel to and orthogonal to Z, such as the drdu plane. In the planes dudu and drd0 (the 
planes of T2 and 0’) the curvature approaches zero as r goes to zero. In general, this can only be the 
case if I is zero, but nevertheless it seems plausible to suggest that, in any event, the curvature in the 
planes parallel to and orthogonal to I: will remain bounded as we approach the singularity. (These 
two components are equal by the anti-self-duality condition.) 


